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1. Introduction

In this paper we are going to prove the following results:

THEOREM 1. There exist two bounded hopfian lattices such that their {0,1}-
free product is not hopfian.

THEOREM 2. There exist two hopfian lattices such that their free product is
not hopfian.

In Theorem 2 free product (coproduct, sum) has its usual meaning (see, for
instance, [4]); in Theorem 1 we use the usual definition but all lattices are assumed
to be bounded (that is, having a least element 0 and largest element 1) and all
homomorphisms are assumed to be {0, l}-homomorphisms (that is, homomor-
phisms preserving 0 and 1).

Recall, that a lattice L (group, ring, and so on) is called hopfian if L is not
isomorphic to any proper quotient L/0 (proper means that 0 # co); or equivalently,
if any onto endomorphism of L is an automorphism. A remarkable result of Evans
[3] states that every finitely presentable lattice is hopfian. A finitely generated non-
hopfian lattice has recently been found by Wille (unpublished).

This paper grew out of a colloquium lecture of H. Neumann in which she
reported on hopfian groups, in particular on the result of [2], namely that the free
product of two finitely generated hopfian groups is hopfian. The problem whether
this is true in general was left open. Theorem 2 of this paper gives a negative answer
to this question for lattices. Later it was shown by the second author [13] that a
modification of the set theoretic scheme of this paper (see section 3) could be used
to settle the original group theoretic problem.

Both authors were supported by the National Research Council of Canada.
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[2] Free products of hopfian lattices 235

The lattices we construct for Theorem 2 are all > Xo generated. It is an open
problem whether this result could be improved. Could the two lattices be con-
structed to be K0-generated; one finitely generated, one K0-generated; one finitely
presented, one K0-generated; both finitely generated; or the ultimate: one finitely
generated and the other finitely presented? The last two possibilities are ruled out
if the following conjecture is true: the free product of two bounded hopfian lat-
tices is hopfian again.

The basic idea of the construction is to use a set theoretic scheme which pro-
vides two "hopfian objects" whose union is not hopfian. The technical work in
section 3 converts this scheme into two hopfian graphs whose disjoint union is not
hopfian.

Graphs can be turned into lattices using our earlier paper [7]; this conversion
preserves the properties of being hopfian and being non-hopfian, while the dis-
joint union of graphs is transformed into the {0, l}-free product of the correspond-
ing lattices. Thus the results of section 3 yield Theorem 1. To obtain Theorem 2 it
is necessary to do some more work about free products of lattices and this is ac-
complished in section 4. All the lattice theoretic lemmas are proved in section 2.

2. Lattice theoretic lemmas

By a graph <X;K> we mean a nonvoid set X with a symmetric binary rela-
tion R such that {a, a} e R for no a e X (that is, an undirected graph with no
loops). A triangle of {X;R} is a three element subset {ao,aua2} of X such that
{a^a-^},{aua2},{a2,a0] eR. All graphs in this paper will be assumed to have the
property that every vertex is contained in at least one triangle.

Let <X; R} be a graph, let F0,,(I) be the bounded lattice freely generated by
X, and let 0 be the smallest congruence relation on F0l{X) such that x Ay
= 0(0) and x V y = 1 (©) for all {x,y}eR. The lattice M(X,R) = Fo>1(X)/0
constructed in [7] has the following properties:

(i) X £ M(X, R) and no two distinct elements of X are comparable in
M(X,R);

(ii) X generates M{X, R);
(iii) {a,b} is a complemented pair in M(X,R) if and only if either {a,b}

= {0,1} or {a, b}eR (this follows from [1] or [5]).
Since M(X,R) is the "most free" lattice satisfying (i)-(iii), every compatible

mapping <f> : (X;R}-+(Y;S} extends uniquely to a {0, l}-homomorphism
M((j>) : M(X,R) -> M(Y,S); in [7] we proved that every {0, l}-homomorphism
/ : M(X, R) ~* M(Y, S) is equal to M(<j>) for some compatible mapping <f> : <X;R>
-*<Y-,sy.

The lattice M(X,R) can also be described as a subset of FOil(X) for which
(iv) if a, be M(X, R) then a ^ b in M{X, R) if and only if a g b in Fo> i <X);
(v) the 0 and 1 of M(X, R) is the 0 and 1 of Fo t(X), respectively;
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(vi) if a,beM(X,R)- {0,1}, then a = Z>(0) if and only if a = b (see [1]
or [5]).

(vii) if a,b,ceM{X,R) - {0,1} and if c is a lower bound of {a,b}, then
a A b formed in F01{X) lies in M(X, R) and is equal to the meet of a, b in M(X, R);
dually for the join.

Now we start proving our lemmas.

LEMMA 1. X is the set of all join and meet-irreducible elements of M(X,R).

PROOF. It is known (Whitman [14]) that any xeX is irreducible in F01(X).
If x = y V z in M(X,R),y ^ x,z =£ x, then {y,z} is disjoint with {0,1} and so
x = y V z in F01(X) by (vii), a contradiction. It follows from (ii) that no other
element is irreducible.

Let M5 denote the five element modular nondistributive lattice, see Figure 1.
If {ao,aua2} is a triangle in <X;.R>, then {0,ao,a1,a2,l} is a sublattice isomor-
phic to M5; we call it the sublattice associated with the triangle {ao,a1,a2}.

Figure 1

The following result is implicit in [12]:

LEMMA 2. A sublattice of M(X,R) is isomorphic with Ms if and only if it is
associated with a triangle of (X;R}.

PROOF. "If" being trivial we prove "only if". Let {o, a, b, c, i} be a sublattice
of M{X,R) isomorphic to M5 with the bounds o and i. If o = 0 and i = 1, then
by (iii), {a, b,c] is a triangle of {X;K} as required. If o # 0 and i # 1, then by
(vii), {o, a, b, c, i} is also a sublattice of F0>1(X) which is known ([10] and [14])
not to have such sublattices. Finally, let o # 0 and i — 1 (or dually). Then
o = a/\b = a/\c'm F0A(X) by (vii). Therefore, by a result of J6nsson [10],
o = a A (b V c) in F0%1(X). Since b\J c = 1(0) we conclude that a =o{&), con-
tradicting (vi).
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[4] Free products of hopfian lattices 237

COROLLARY 3. M(X, R) has no sublattice isomorphic to the lattice of Figure
2 or to M5 x 2.

PROOF. Indeed, if {o, au a2, b, c, i} is a sublattice isomorphic to the lattice of
Figure 2, then by Lemma 2, {ahb,c} is a triangle for i = 1,2 and so alta2eX.
Since ax < a2 this contradicts (i). Also, if a sublattice is isomorphic to Ms x 2,
then we find a sublattice isomorphic to M5 not including {0,1}, contradicting
Lemma 2.

Figure 2

Call a graph <Z; R} hopfian if every compatible map of <X; R> onto itself is
an automorphism.

LEMMA 4. <X;R> is hopfian if and only if M(X,K) is hopfian.

PROOF. Let<Z;/?>be hopfian and let/be an onto endomorphism of M(X,R).
Then there exists a compatible map 0 : X ->• X such that / = M{4>). If <p is not
onto, then x $ <I>(X) for some xeX. But f(M(X, R)) is generated by (/>(X) by (ii),
x is irreducible by Lemma 1, hence x$f(M(X,R)), contradicting that / i s onto.
Therefore $ is onto. Since <X;i?> is hopfian, <j> is an automorphism and so there
is another automorphism <f>' such that 4>(f>' and <t>'<t> are the identity map on X.
Thus, both M(H') = M[^)M{(f>') and M(<t>'<f>) = M(< '̂)M(< )̂ are equal to the
identity map of M(X, R) and so / = M(<f>) is an automorphism, which was to be
proved. Conversely, if <X; i?> is not hopfian, then there is a compatible onto map
(j> : X -y X that is not an automorphism. Now if M(X, R) is hopfian, then M(0) is
an automorphism, hence it has an inverse M(4>'). Just as before, <p' is an inverse
of <f>, a contradiction. This completes the proof of the lemma.

Lemma 4 is the Reduction Theorem. Combined with the next result it com-
pletely reduces Theorem 1 to a statement on graphs.

LEMMA 5. Let <X,;/?j> be graphs i = 1,2, and let <Z;R> be their disjoint
union. Then M(X,R) is the {0, \]-free product ofMiX^Rj and M(X2,R2).
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PROOF. Let <j>i :Xt ->• X be the natural embedding of Xt into X for i = 1,2.
Then M(0f) is a {0, l}-homomorphism of M{Xt, Rt) into M(X, R). Now let L be a
bounded lattice and let/; be a {0, l}-homomorphism of M(Xt, Rt) into L for i = 1,
2. Let i/'j be the restriction of ft to Xt (i = 1,2) and define ^ : X -» L by ^(x)
= i^i(x) for x e X; (i = 1 or 2). If {x, y} e i?, then i^(x) and î (_y) are complemen-
tary in L (since {x, y} e R for no x e Xt and y e X2) and so there is a unique homo-
morphism g : M (X, i?) -> L extending i//. Since gM(<t>,) and / , agree on Xf we ob-
tain gM(<f>t) =ft for i = 1,2. We have verified that M(X,R) is the {0,l}-free
product ofM(Xi,Rj) and M(X2,R2).

Finally, we shall need in section 4 some results on free products. We start
with a result of Lakser [11]:

LEMMA 6. Let Lh iel be lattices and let L be a free product of the L,, i e 7.
Let A be a sublattice of L isomorphic to Ms. Then either A £ Lxfor some iel
or some L{ has a sublattice isomorphic to the lattice of Figure 2 or to M 5 x 2.

Combining Lemma 6 with Corollary 3 and Lemma 2 we obtain

COROLLARY 7. Let L be a free product of the M(XuRt),ieI.If M is a sub-
lattice of Land M is isomorphic to M5,then M c M{XltRt)for some iel and
M is associated with a triangle of (X^R^.

We close this section with a generalization of Lemma 1:

LEMMA 8. Let Lt, iel be lattices and let L be a free product of the Lh i e I.
If aeLt is join-irreducible in Lh then it is also join-irreducible in L and dually.

PROOF. For the proof of this lemma we have to assume that the reader is
familiar with the notation and results of [6J, in particular with pp. 233-235. Let
a be join-reducible in L, a = b V c. Let p and q be polynomials with </>> = b,
<g> = c. Then a £ /> V 1 and p £ a, q c a. Of the rules 3.(1)—3.(6) only two
may be applied to a ^ p\J q, namely 3.(5) and 3.(2). If 3.(5) applies, then a £ p
or a ^ q, and so b = <p> = a or c = <g> = a. If a £ p V q because of 3.(2),
then a(J) ^ (p V?)o) =/*(;>V?o) for some y e / . However, a(/)exists only for
j = i, hence a(1) = a _: p(i) V q^y Furthermore, p(l) _ a and qw ^ a, so p(i)

V ?(j) = o- In view of the join-irreducibility of a in L, we get p(l, = a or qit) = a,
s a y P(o = a- So p ( 0 £ /> £ a and therefore a = p( i ) £ p £ j><0 £ a(i> = a,
yielding fe = <p> = a, as required.

COROLLARY 9. Lef L be a free product of the M(Xt, R,), i e I. Then U (X,\ i e I)
can be characterized as the set of all irreducible elements of L.

3. The scheme and its graph representations

Let N be the set of all positive integers and let Z be the set of integers. Set

cn = w x z.
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[6] Free products of hopfian lattices 239

If there is no danger of confusion, we write aeCn for <n, a>. Let us consider the
sets Cn as arranged in Figure 3. There are two arrows pointing at Cn for each n e N.
The arrow C2n -> Cn represents the map x t-> 2x, the arrow C2n+1 >Cn represents
the map x t-> 2x + 1. For m,neN let us define/mn :Cm-*Cn as follows:

(i) if m = n, then/mm is the identity map on Cm; (ii) if there is a sequence of
arrows from Cm to Cn let /mn be the composition of the maps represented by the
arrows; (iii) otherwise, fmn is not defined.

Observe, that between Cm and Cn there is at most one sequence of arrows, so if
fmn is defined it is defined uniquely. Now set

Ao = U(C 2 t 1 * ^ 1 ) , ^ = U(C2k+11 k ^ 0),

A2 = Aol)A1 = N xZ.

Call a map g :A} -* Aj(j — 0,1, or 2) admissible if for any Cm £ .4,, gr restricted
to Cm agrees with some fmn. Call Af hopfian if every admissible onto map has an
inverse which is also admissible, or equivalently, if the only admissible onto map
is the identity map.

LEMMA 10. Ao and Ax are hopfian but A2 is not hopfian.
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PROOF. Define g on A2 as follows: g on C t is the identity map; g isf2nn on
C2n for n ^ 1 and # i s / 2 n + 1 „ on C 2 n + 1 for n ^ 1. g is onto since

for every n e N. But g is not one-to-one as every element of Cx is the image of two
distinct elements. Hence A2 is not hopfian. It is somewhat more complicated to
show that Ao and At are hopfian. We will show it for Ao. We start with an ob-
servation :

If/nt(x) = - 1 e Ck and n = 2k or n = 2k + 1, then x = -1 and n = 2k + l.
Consequently,

if /«(*) = - 1 e Q» then / is odd.

Now let g : Ao -* / l 0 be an admissible onto map. We claim that g is the identity
map on Ao (so we prove more than hopfian). Indeed, if g is not the identity map
on Ao, then there is a k such that g restricted to Ck isfkm for some m ^ fc. We claim
that - 1 e Cfc is not in g(A0). Indeed, if - 1 = g(x), then - 1 =/„*(*) for some
neN and Cn S ^0- B u t we have shown above that this would imply that n is odd,
contradicting Cn £ Ao.

Observe, that — 1 is the only element of Ck not necessarily in g(A0); the proof
of the fact that At is hopfian requires 0 instead of —1 and is analogous to the
proof above.

Now we start constructing the graphs. First, some definitions. Let (X;R} be
a graph. The vertices x,y are said to be triangle-connected if there is a sequence
r0,r1)--,riIoftrianglessuchthatxer0,3;e7'nand 7,0 T^, #<£forj = 0,l,
—,n — 1. Triangle-connected components of a graph and triangle-connected
graphs are defined in the obvious fashion. Finally, a graph is rigid if the iden-
tity map is the only compatible map of the graph into itself. The following result
is a weak version of a theorem of Hell [9J:

LEMMA 11. For every infinite cardinal m there exists a triangle-connected
rigid graph of cardinality m.

The idea of the transformation of the scheme into graphs is to replace each
element in Cn by a copy of an infinite triangle-connected rigid graph <F;£> and
to add some more edges so that the only compatible maps will be of the form

(identity on V) x fma.

So let <F;£> be an infinite triangle-connected rigid graph and assume that
N £ V. For every n s N we define the graph

Hn = <F x Z;5n>

as follows (see Figure 4 which indicates the edges listed under (b) as segments of
the horizontal lines between two consecutive dots):
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Figure 4

(a) for i e Z and {v, v'} e E we set

(b) for all m e N such that/™ is defined and for all i eZ

(c) no other pairs are in Sn.

(a) shows that V x {i} with SB restricted to V x {i} is isomorphic to <F;E>.
The edges under (b) will be called mixed. For each meN, the set {m} x Z is
called the level m of Hn. Observe that a mixed edge of Hn is always on a level, in
fact on a level m with m ^ n.

HB is connected since < F; £> is; in fact, any two copies of < V; £> are connect-
ed on the level n.

Now define the map g^ for all <m, n> for which/„,„ is defined:

9mn = (identity map on V) x /„„,
that is,

g^ is obviously a compatible map of Hm into tfB. The converse of this statement
is the crucial step in this section.

LEMMA 12. Let h be a compatible map ofHm into Hn. Then h = gmn.

PROOF. Since all mixed edges are on a level it follows easily that all the trian-
gles of Hm are contained in the V x {i}, i e Z. Thus the V x {/}, i e Z are the tri-
angle-connected components of Hm and so they have to be mapped by h into the
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242 G. Gratzer and J. Sichler [9]

triangle-connected components of Hn. Therefore, for each ieZ there exists a

4>{i) e Z such that

h(V x {/}) s V X

Since <F;£> is rigid we conclude that

*<»,*> = <»,#0>,
so that </> : Z -» Z determines h. To show ft = gmn it will be sufficient to verify
that <£=/„„,.

••• CLAIM 1. Let i,jeZ, meN. Then there exist i'J'eZ and m'eN such that

i' —j' is odd, and

fm.m(i') = i and fm.mU') = j .

PROOF. If i — j is odd we set i' = i,j' = j, and m' = m. Now let i - j

= 2 *• t, when f is odd. We proceed by induction on k. If for smaller exponents
the statement has been verified, then if i is even, set m* = 2m and if i is odd, set
m* = 2m + 1. In both cases there are i* a n d j * e Z such that i* —j* = 2*"1 • t,
fm'mi1*) = h a n d fm'm(j*)=j- Applying the induction hypothesis to i*,j*,m*
we get the i'J', and m' as required.

CLAIM 2. <£ is one-to-one.

PROOF. Indeed, if <j>(i) = <I>(J) for i j e Z and i ^ j , then we choose i', j ' , and
m' as in Claim 1. Consider the map g = hgm-m of Hm- into Hn. Since 0m'm and h
are compatible maps so is g. Consider the path

in Hm>. Any two adjacent vertices are connected by an edge since this is the level
m' in Hm: Therefore,

9<m',O,g<m',i' + l>,-,ff<m',/>

has the same property. Moreover,

9<m', i'> = %. .«<m ' , i ' » = /i<m',/m.n(r)>

= Km',fn,-Jj')> = tf<m'J'>.

We found a cycle of an odd length on the level m' of HB, which is impossible since
any level is two-colorable.

CLAIM 3. 0 ( 0 ) = fjfi).

PROOF. V x {0} is distinguished in Hm by the fact that on each level 2km
there is a mixed edge with one vertex in V x {0}. Therefore, V x (0(0)} has the
same property in Hn and so
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0(O)e/,k . . (C,k ) f o r f c = 1 ,2 , - .

So 0(0) = /„,„(*) where x is divisible by 2* for all k ^ 1. Thus x = 0 as claimed.

CLAIM 4. 0(1) =/m B(l) .

PROOF. Same proof as that of Claim 3; use the levels 2* (2m + 1).

Now we prove that 0(x) = /„,„(*) for all x e Z. We already know that 0 is
one-to-one and 0(x) = /„„(*) for x = 0 and x = 1. There is a mixed edge between
<m, 1> and <m, 2> in Hm; therefore there is a mixed edge between <m, 1> and
<m, 0(2) > in //„. Consequently, 0(2) = 0 or 0(2) = 2. But 0(2) = 0 contradicts
that 0 is one-to-one, hence 0(2) = 2. Proceeding thus, we conclude that 0(x)
— fmn(x) f° r aH xeZ, concluding the proof of Lemma 12.

Define Go as the disjoint union of the HZn, n = 1,2, ••• and G, as the disjoint
union of the H2n+i, n = 0,1,2, —. Let G2 be the disjoint union of Go and Gl.
Since Hk are components of Gt, Lemma 10 and Lemma 12 combined yield that
Go and Gx are hopfian but G2 is not. So if we use these graphs to construct the lat-
tices M(G,) i=0,1 ,2 , by Lemmas 4 and 5 we have finished the proof of Theorem 1.

Combining the results of [8] and [9] yields the existence of 2m pairwise non-
isomorphic rigid triangle-connected graphs of any cardinality m ^ Ko. Since the
correspondence <-£;£> -* M(X,R) is, in fact, a full embedding of the category
of graphs into the category of bounded lattices, it follows that for every infinite
m there are 2m pairs of hopfian lattices of cardinality m whose {0, l}-free product
is not hopfian and any two such pairs are non isomorphic. This is obviously best
possible.

4. Free products

In this section we prove Theorem 2. Throughout the proof let <K;£> be a
fixed triangle-connected rigid graph with | V\ > Ko.

Let Kn = <£/„; TB> be defined by

Un = (K x Z) x {«},

z>, n > , « » ' , z'>, «>} e Tn iff {<», z>, <»',*'>} e Sn.

Let hmn be the compatible map between Km and Ktt corresponding to g^, that is,
> ieN set

Let Lo be the free product of the B2i, i = 1,2, ••• and let L, be the free product
of the B21+1, i = 0,1, —. Finally, let L be the free product of Lo and L l t or equiv-
alently, of all the B,, i = 1 ,2 , - .

LEMMA 13. L is not hopfian.
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PROOF. Observe that L is generated by U(t/ j | i = 1,2, •••)• Now we define a
map on L patterned after the map g of Lemma 10. Let gx be the identity on Bt

viewed as an embedding of Bx into L; let g2l be the extension of g2iti into a homo-
morphism of B2i into Bt £ L; let #2i+i be the extension of g2i+i i into a homo-
morphism of B2l+1 into Bt <= L. Since L is a free product there is a homomor-
phism g of L into L extending all the gt, i = 1,2, •••. The endomorphism g is onto
but not one-to-one and so L is not hopfian.

LEMMA 14. Lo is hopfian.

PROOF. Let ^ be an onto endomorphism of Lo. We are going to show that \//
is the identity map which yields in particular that Lo is hopfian.

Lo is generated by U = U ( ^ 2 i | ' = 1.2, •••)• ^2i
ls a s e t °f irreducibles in

B2i and so by Lemma 8, U2i is a set of irreducibles of Lo. Therefore

\I/(U) = U.

Every u e U2i is contained in a triangle of [/2,-- If this triangle is collapsed by \j/
the B2i is mapped into a singleton by $; otherwise, the image of the triangle yields a
sublattice isomorphic to M5 and so, by Corollary 7, i^(u) e U2l is mapped by \j/
into l / 2 j , t n e n ^(^21) - U2j since the <t/2*; T2k> a r e all connected. If ^ is not
the identity map on Lo, then \j/ is not the identity map on some U2i. Since B2i has
no nontrivial non-constant endomorphisms, i/j(U2i) is either disjoint from U2l or
is a singleton. Thus j((K x {-1}) x {2j}) n i/r(l/2()| g 1 and it follows from the
statements in the proof of Lemma 10 that (K x { — 1}) x {2i} is disjoint from any
ij/(U2j) (except if ^( t / 2 ; ) is a singleton). Consequently, (V x {-1}) x {2i} would
have to be covered by those \j>{U2j) which are singletons. This is impossible how-
ever since there are only finite or countably infinite such ij/(U2j) and (V x { — 1})
x {2i} is uncountable.

A similar proof shows that Lx is hopfian. This completes the proof of Theo-
rem 2.

It can be observed that if (<X1;R1y and <X2;i?2) a r e hopfian graphs, then a
free product o f M ^ ! , ^ ! ) and M(X2,R2) is always hopfian. Therefore, there are
2m pairs of pairwise nonisomorphic lattices of cardinality m such that in any pair
the lattices are hopfian and also their free product is hopfian. Also, for m > Ko

we also have 2m pairs such that the lattices are hopfian but their free product is
not. Both results are best possible. It would be interesting to prove the last state-
ment also for m = Ko.
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