
Appendices

A

Symbols and SI units [1, 2]

Symbol Quantity Unit Dimension

I current A Q T−1

K sheet current density A/m Q T−1 L−1

J volume current density A/m2 Q T−1 L−2

B magnetic flux density T M T−1 Q−1

ΦB magnetic flux Wb = T m2 M L2 T−1 Q−1

μ0 permeability of free space =4π 10�7 T m/A M L Q−2

M magnetization A/m Q T−1 L−1

H magnetic intensity A/m Q T−1 L−1

A vector potential Wb/m = T m M LT−1 Q−1

Vm scalar potential A Q T−1

L, M self, mutual inductance H = Wb/A M L2 Q−2

ρ electric charge density C/m3 Q L−3

V potential difference V M L2 T−2 Q−1

E electric field intensity V/m M LT−2 Q−1

σ conductivity (Ω m)−1 T Q2 M−1 L−3

ε permittivity farad/m T2 Q2 M−1 L−3

D electric flux density coulomb m2 Q M−2

F force N = J/m M LT−2

W stored energy J = N m M L2 T−2

P power W = J/s M L2 T−3
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B

Vector analysis

Vector analysis plays an essential role in describing the theory of magnetic phe-
nomena.[1, 2] A vector V is a quantity that has both a magnitude and a direction.
A scalar S is a quantity that only has an associated magnitude. Vector fields are
functions that describe a physical quantity at every point in space.
The vector differential operator (del) is

r ¼ ∂
∂x

x̂ þ ∂
∂y

ŷ þ ∂
∂z

ẑ:

Whenr is applied to a scalar function, it results in a vector known as the gradient.

rS ¼ ∂S
∂x

x̂ þ ∂S
∂y

ŷ þ ∂S
∂z

ẑ:

The gradient gives a measure of the rate of change of a vector. The dot product ofr
with a vector forms a scalar known as the divergence.

r · V
! ¼ ∂Vx

∂x
þ ∂Vy

∂y
þ ∂Vz

∂z
:

Roughly speaking, the divergence gives a measure for the spreading out of
a function away from a localized source. The Laplacian is an important operator
that describes the second derivative of a scalar function and is given by

r2S ¼ r ·rS ¼ ∂2S
∂x2

þ ∂2S
∂y2

þ ∂2S
∂z2

:

It is also useful to define the Laplacian of a vector function, which is given in
Cartesian coordinates as

r2V
! ¼ r2Vx x̂ þr2Vy ŷ þr2Vz ẑ:
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The cross product of r with a vector forms another vector known as the curl.

r � V
! ¼

�����
x̂ ŷ ẑ
∂x ∂y ∂z
Vx Vy Vz

�����:
The curl gives a measure of the tendency of the vector to circulate around some
source. According to Helmholtz’s theorem,[3] a vector function that is bounded at
infinity can be uniquely defined by specifying its divergence and its curl.
If we consider a volume of space V enclosed by a surface S, then we find that any

changes in a vector W inside the volume must match the flux of W through the
boundary surface. This is the basis for an important result known as Gauss’s diver-
gence theorem.[4] ð

r·W
!

dV ¼
ð
W
!

·n̂ dS;

where n is the normal vector to the surface. If, on the other hand, we break up the
surface S into a number of smaller areas and look at the net result of the circulation
in all the subareas, we find that the circulations cancel in the interior of the region
and only give a net result around the perimeter of S. The result is known as Stokes’s
theorem.[5] ð

ðr �W
!Þ·n̂ dS ¼

þ
W
!

·dl
!

Some other integral relations involving the gradient, divergence, and curl are less
common, but still useful.[6] ð

rP dV ¼
ð
P n̂ dSð

n̂ �rP dS ¼
þ
P dl
!

ð
r�W

!
dV ¼ �

ð
W
!� n̂ dS;

where P is a scalar function and S is the surface that bounds the volume V.
The differential vector operators for cylindrical and spherical coordinate systems

are given in Table B1.
Some important vector identities are

A
!� ðB!� C

!Þ ¼ B
! ðA!·C

!Þ � C
! ðA!·B

!Þ (B.1)
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rðA!·B
!Þ ¼ A

!� ðr � B
!Þ þ B

!� ðr� A
!Þ þ ðA!·rÞ B

!þ ðB!·rÞ A
!

(B.2)

r·ðS V
!Þ ¼ V

!
·rS þ S r·V

!
(B.3)

r·ðA!� B
!Þ ¼ B

!
·ðr � A

!Þ � A
!
·ðr � B

!Þ (B.4)

r·ðr � V
!Þ ¼ 0 (B.5)

r� ðS V
!Þ ¼ rS � V

!þ S r� V
!

(B.6)

r�r� V
! ¼ rðr·V

!Þ �r2V
!

(B.7)

r�rS ¼ 0 (B.8)

r� ðA!� B
!Þ ¼ A

! ðr·B
!Þ � B

! ðr·A
!Þ þ ðB!·rÞ A

!� ðA!·rÞ B
!

(B.9)

Table B1 Vector operators in cylindrical and spherical coordinates [6]

Cylindrical Spherical

rS ∂ρS ρ̂ þ 1

ρ
∂ϕS ϕ̂ þ ∂zS ẑ ∂rS r̂ þ 1

r
∂θS θ̂ þ 1

r sin θ
∂ϕS ϕ̂

r·V
! 1

ρ
∂ρðρ VρÞ þ 1

ρ
∂ϕVϕ þ ∂zVz

1

r2
∂rðr2VrÞ

þ 1

rsin θ
½∂θðVθsin θÞ þ ∂ϕVϕ�

r � V
! �

1

ρ
∂ϕVz � ∂zVϕ

�
ρ̂ þ ð∂zVρ � ∂ρVzÞ ϕ̂

þ 1

ρ
½∂ρðρ VϕÞ � ∂ϕVρ� ẑ

1

rsin θ
½∂θðVϕsin θÞ � ∂ϕVθ �̂r

þ 1

rsin θ
½∂ϕVr � sin θ∂rðr VϕÞ�θ̂

þ 1

r
½∂rðr VθÞ � ∂θVr�ϕ̂

r2S
1

ρ
∂ρðρ∂ρSÞ þ 1

ρ2
∂2ϕS þ ∂2z S

1

r2
∂rðr2∂rSÞ

þ 1

r2sin θ
∂θðsin θ ∂θSÞ

þ 1

r2sin 2θ
∂2ϕS
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C

Bessel functions

Using the method of separation of variables for the Laplace equation in cylindrical
coordinates gives rise to Bessel’s equation.[1, 2]

ρ
d
dρ

ρ
dR
dρ

� �
þ ðk2ρ2 � n2Þ R ¼ 0:

In this equation, R ¼ RðρÞ and k and n are separation constants. The parameter
n must be an integer to keep the azimuthal dependence of the solution single-
valued, i.e., we must have

ΦðϕÞ ¼ Φðϕþ 2πnÞ:
Bessel’s equation is a second order differential equation that has two indepen-

dent classes of solution. One class involves Bessel functions of the first kind,[3]
RðρÞ ¼ JnðkρÞ: The behavior of the first three Bessel functions Jn are shown as
a function of kρ in Figure C1. All functions of this type are well-behaved at ρ = 0.
They are oscillatory with a decreasing amplitude that approaches zero as kρ → ∞.
The first root of the function J0ðxÞ occurs at x = 2.405, where x = kρ. The first root of
J1ðxÞ occurs at x = 3.832. The series expansion is

JnðxÞ ¼
X∞
k ¼ 0

ð�1Þk
k! ðnþ kÞ!

x
2

� �nþ2k
:

The Bessel functions satisfy the recurrence relation

2n
x

JnðxÞ ¼ Jn�1ðxÞ þ Jnþ1ðxÞ;

while the derivatives satisfy the relation

2 J 0nðxÞ ¼ Jn�1ðxÞ � Jnþ1ðxÞ:
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The derivative of J0 is given by

dJ0ðxÞ
dx

¼ �J1ðxÞ:

The other class of solutions to Bessel’s equation are the Bessel functions of
the second kind,[4] RðρÞ ¼ NnðkρÞ: The behavior of the first three Bessel functions
Nn are shown as a function of kρ in Figure C2. These solutions are also oscillatory
with decreasing amplitude that approach zero as kρ→∞. However, they diverge at
ρ = 0, so they cannot be used in magnetostatics for any region that contains the

Figure C2 Bessel functions of the second kind for n = 0, 1, 2.

Figure C1 Bessel functions of the first kind for n = 0, 1, 2.
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origin. The NnðxÞ functions satisfy the same recurrence relations as JnðxÞ. The
derivative of N0 is given by

N 0
0ðxÞ ¼ �N1ðxÞ:

If in applying the method of separation of variables for the Laplace equation in
cylindrical coordinates, we require that the solution along z is oscillatory, then the
separation parameter for the axial and radial terms must have the opposite sign
from that used in deriving the Bessel differential equation. This leads to the radial
equation

ρ
d
dρ

ρ
dR
dρ

� �
� ðk2ρ2 þ n2Þ R ¼ 0:

The solutions of this equation are known as modified Bessel functions. This same
equation can be produced by replacing k with i k in the ordinary Bessel equation.
One class of radial solutions involves the modified Bessel function InðkρÞ.[5]
The behavior of the first three modified Bessel functions In are shown in Figure C3.
All functions of this type are well behaved at ρ = 0. They are related to the ordinary
Bessel functions by

IνðxÞ ¼ i�ν Jνði xÞ:

The series expansion is

InðxÞ ¼
X∞
k¼0

1

k! ðnþ kÞ!
x
2

� �nþ2k

Figure C3 Modified Bessel functions InðkρÞ for n = 0, 1, 2.
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and it satisfies the recursion relations1

2n
x

InðxÞ ¼ In�1ðxÞ � Inþ1ðxÞ

2I 0nðxÞ ¼ In�1ðxÞ þ Inþ1ðxÞ:
The other class of solutions for the modified Bessel’s equation are the functions

KnðkρÞ: The behavior of the first three modified Bessel functions Kn are shown in
Figure C4. These solutions diverge at ρ = 0, so they cannot be used in any region
that contains the origin. The functions Kn satisfy the recursion relations2

� 2n
x

KnðxÞ ¼ Kn�1ðxÞ � Knþ1ðxÞ

�2K0
nðxÞ ¼ Kn�1ðxÞ þ Knþ1ðxÞ:
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D

Legendre functions

Separation of variables for the Laplace equation in spherical coordinates gives the
partial differential equation

1

sin θ
∂θðsin θ ∂θYÞ þ 1

sin 2θ
∂2ϕY þ lðlþ 1Þ Y ¼ 0

for the angular dependence. The solution of this equation is given in terms of the
spherical harmonic functions Ylm [1, 2]

Yl mðθ; ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π
ðl� mÞ!
ðlþ mÞ!

s
Pm
l ðcos θÞ eimϕ;

where l and m are integers and Pm
l is an associated Legendre function. Allowed

values ofm are all integers in the range –l ≤m ≤ l. Values of the spherical harmonics
for negative m are given by

Yl;�m ¼ ð�1Þm Y	
l;m;

where the asterisk denotes complex conjugation. The spherical harmonics for l ≤ 2
are given in Table D1.
The polar angle part ΘðθÞ of the solution to the Laplace equation has to satisfy

the second order, ordinary differential equation

d
dx

ð1� x2Þ dΘ
dx

� �
þ lðlþ 1Þ � m2

1� x2

� �
Θ ¼ 0

where x = cos θ. The solutions of this equation are called associated Legendre
functions of the first and second kind,

fPm
l ðxÞ;Qm

l ðxÞg:

283

https://doi.org/10.1017/9781009291156.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.013


Only the functions of the first kind have convergent power series over the complete
range 0 ≤ x ≤ 1, so we choose

ΘðθÞ ¼ Pm
l ðcos θÞ:

The associated Legendre functions can be calculated from

Pm
l ðxÞ ¼

ð�1Þm
2l l!

ð1� x2Þm=2 dlþm

dxlþm
ðx2 � 1Þl:

Associated Legendre functions with negative m are related to functions with
positive m by

P�m
l ðxÞ ¼ ð�1Þm ðl� mÞ!

ðlþ mÞ! P
m
l ðxÞ :

The associated Legendre functions for l ≤ 3 and m > 0 are given in Table D2.
In problems with azimuthal symmetry, we havem = 0. In this case, the associated

Legendre functions reduce to the ordinary Legendre polynomials.

P0
l ðcos θÞ ¼ Plðcos θÞ

Table D1 Spherical harmonics

l m Ylm

0 0 1ffiffiffiffiffi
4π

p

1 0

ffiffiffiffiffi
3

4π

r
cos θ

1 1 �
ffiffiffiffiffi
3

8π

r
sin θ ei ϕ

2 0

ffiffiffiffiffiffiffiffi
5

16π

r
ð3 cos2θ � 1Þ

2 1 �
ffiffiffiffiffi
15

8π

r
sin θ cos θ ei ϕ

2 2

ffiffiffiffiffiffiffiffi
15

32π

r
sin2θ e2i ϕ
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The Legendre polynomials form a complete set of orthogonal functions over the
interval �1 ≤ cos θ ≤ 1. The behavior of the Legendre polynomials for l ≤ 4 are
shown in Figure D1 as a function of x. Legendre polynomials satisfy the recurrence
relation

ðlþ 1Þ Plþ1ðxÞ ¼ ð2lþ 1Þ x PlðxÞ � l Pl�1ðxÞ

and their derivatives satisfy the recurrence relation

ðx2 � 1Þ P0
lðxÞ ¼ l x PlðxÞ � l Pl�1ðxÞ:

Table D2 Associated Legendre functions

l m Pm
l

1 1 sin θ

2 1 3 cos θ sin θ

2 2 3 sin2θ

3 1
3

2
ð5 cos2θ � 1Þ sin θ

3 2 15 cos θ sin2θ

3 3 15 sin3θ

Figure D1 Legendre polynomials for l ≤ 4.
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E

Complex variable analysis

We present here a brief summary without proofs of some of the important
results from complex analysis that are relevant to the material covered in this
book.[1, 2]

Complex variables

In a Cartesian coordinate system, the complex variable z is given by

z ¼ xþ i y;

where x is called the real part of z, y is called the imaginary part of z, and i ¼ ffiffiffiffiffiffiffi�1
p

.
In polar coordinates, z can be written in the form

z ¼ r eiθ

¼ r ðcos θþ i sin θÞ;
where r is called the modulus of z and θ is the argument of z. The De Moivre
formula is useful for evaluating powers of z.

ðcos θþ i sin θÞn ¼ cos nθþ i sin nθ

The complex conjugate of a complex variable z is

z	 ¼ x� i y:

The real and imaginary parts of a complex number can be written as

ℝeðzÞ ¼ zþ z	

2

ImðzÞ ¼ z� z	

2 i
:
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Care is required in working with the complex counterparts of some real func-
tions. An important function in magnetostatics is the complex logarithm function.
This is defined as

w ¼ ln z
¼ lnðr eiθÞ
¼ ln rþ i ðθþ 2πnÞ;

where n ¼ 0; � 1; � 2;…. This function has multiple branches of angular
width 2π, depending on the value of n.[3] We customarily compute this function
using the principal branch where n = 0 and where θ is in the range –π < θ ≤ π. In this
case, the function changes discontinuously when crossing the negative x axis,
which is called a branch cut.

Complex differentiation

The derivative of the complex function F is defined as [4]

F0ðzÞ ¼ lim
Δz→0

Fðzþ ΔzÞ � FðzÞ
Δz

;

provided that the limit exists and is independent of the manner in which Δz
approaches 0. If the derivative of F exists at all points throughout some planar
region R, we say that the function is analytic in the region.[5] Examples of analytic
functions include polynomials, exponentials, trigonometric, and hyperbolic func-
tions. The real and imaginary parts of an analytic function are harmonic, i.e., they
satisfy the Laplace equation.
Points where a function F(z) is not analytic are called singularities. A singularity

in F(z) at a point z0 is called a pole of order n if [6]

lim
z→z0

ðz� z0ÞnFðzÞ

exists and is not 0.
An important property of analytic functions is that constraints exist between

their real and imaginary parts.

Theorem E.1 (Cauchy-Riemann) [7] (Necessity) If a function f ðzÞ ¼ uðx; yÞþ
ivðx; yÞ is analytic in some domain D, then u and v have continuous first partial
derivatives in D and satisfy the Cauchy-Riemann equations

∂u
∂x

¼ ∂v
∂y

∂u
∂y

¼ � ∂v
∂x

:
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(Sufficiency) If a function f ðzÞ ¼ uðx; yÞ þ ivðx; yÞ is defined in D, if u and
v have continuous first partial derivatives in D and if the Cauchy-Riemann
equations hold in D, then f(z) is analytic in D.

For a region not including the origin, the Cauchy-Riemann equations can be written
in polar coordinates as

∂u
∂r

¼ 1

r
∂v
∂θ

1

r
∂u
∂θ

¼ � ∂v
∂r

:

Series

TheoremE.2 (power series) [8] Let f(z) be analytic on a domain G and let zo
be an arbitrary point of G. Let d ¼ dðz0Þ be the distance between zo and the
boundary of G. Then there exists a power series

f ðzÞ ¼
X∞
n¼0

cnðz� zoÞn

that converges to f(z) on the disk |z – zo| < d.

A power series can be differentiated or integrated term-by-term within its radius of
convergence.

Theorem E.3 (Taylor series) [9] Let f(z) be analytic and single-valued in an
open region G. Let a be any point in G and let C be a circle with center at a, which
together with its interior lies entirely in G. Then at every point z in C, the series

f ðaÞ þ f 0ðaÞðz� aÞ þ f 00ðaÞ
2!

ðz� aÞ2 þ � � � þ f ðnÞðaÞ
n!

ðz� aÞn þ � � �
converges to f(z).

In other words, f(z) can be written as a Taylor series that converges in the region
jz� aj < R; where R is the radius of convergence.

TheoremE.4 (Laurent series) [10] Let f(z) be analytic for the annular region

G: R1 < jz� zoj < R2

and let C be any simple closed contour lying inside G and having zo in its interior.
Then for points z in G, the function f(z) may be expanded in the series
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f ðzÞ ¼
X∞
k¼�∞

ckðz� zoÞk;

where

ck ¼ 1

2πi

þ
f ðzÞ

ðz� z0Þkþ1 dz

and the integration is along the contour C.

The Laurent series is valid in a region surrounding, but not including, a singularity.
Note that this series includes negative values of k. The coefficient c�1 has special
significance and is known as the residue.

Complex integration

Theorem E.5 [11] If f ðzÞ ¼ uðx; yÞ þ ivðx; yÞ is continuous on a simple smooth
arc from points a to b, then the integral exists and is given byð

f ðzÞ dz ¼
ðb
a
ðuþ ivÞ ðdxþ i dyÞ:

Theorem E.6 (Cauchy integral theorem) [12] If f(z) is analytic in a simply
connected domain D, then þ

f ðzÞ dz ¼ 0

on every simple closed path in D.

If instead of f(z), we consider the contour integral of f(z) / (z – zo), then we have the
following theorem.

Theorem E.7 (Cauchy’s Integral Formula) [13] Let f(z) be analytic within and
on a simple closed contour C. Then, if zo is a point inside C,

f ðzoÞ ¼ 1

2πi

þ
f ðzÞ

ðz� zoÞ dz:

This gives the value of f ðzoÞ at the singularity zo inside a region in terms of the
contour integral around the boundary C.
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Theorem E.8 [14] Let f(z) be analytic within and on a simple closed contour
C. Then all derivatives of f ðzoÞ exist at a point zo inside C and are given by

f ðnÞðzoÞ ¼ n!
2πi

þ
f ðzÞ

ðz� zoÞnþ1 dz:

Theorem E.9 (Residue theorem) [15] Let f(z) be analytic within and on a simple
closed contourC, except for a finite number of isolated singularities insideC. Let σ be
the sum of the residues at the singular points of f(z) that lie inside C. Then

1

2πi

þ
f ðzÞ dz ¼ σ:

In other words, the value of the contour integral is 2πi times the sum of the
residues for the enclosed singularities. For a pole of order n, the residue can be
found as [16]

a�1 ¼ 1

ðn� 1Þ! lim
z→a

dn�1

dzn�1
½ðz� aÞn f ðzÞ�:

In the case of a simple pole (n = 1), the residue is given by

a�1 ¼ lim
z→a

ðz� aÞ f ðzÞ:

Conformal mapping

We can define a function F that maps a complex variable z into a variable w in
another two-dimensional space.

w ¼ FðzÞ:
Assume that two curves that cross at a point zo in the z space are separated by an
angle θ. A mapping w ¼ FðzÞ is conformal, or angle preserving, if the mapped
curves in the w space cross at the point wo ¼ FðzoÞ with the same angle θ.

Theorem E.10 [17] A mapping defined by an analytic function F(z) is conformal,
except at points where the derivative F0ðzÞ is zero.

Theorem E.11 (Riemann mapping theorem) [18] Let D be a simply connected
domain with at least two boundary points. Then there exists a simple function
w ¼ FðzÞ which maps D onto the unit disk |w| < 1. If we specify that a given point
zo in D maps into the origin and a given direction at zo is mapped into a given
direction at the origin, then the mapping is unique.
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Theorem E.12 (Schwarz-Christoffel transformation) [19] Let R be a polygon
in thew plane having vertices at w1; w2; . . . ; wn with corresponding interior angles
α1; α2; . . . ; αn respectively. Let the points w1; w2; . . . ; wn map into the points
x1; x2; . . . ; xn on the real axis of the z plane. Then the transformation

dw
dz

¼ Aðz� x1Þα1=π�1ðz� x2Þα2=π�1 � � � ðz� xnÞαn=π�1;

where A is a complex constant, maps the interior of the polygon in the w plane onto
the upper half of the z plane and maps the boundary of the polygon onto the real axis
of the z plane.
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F

Complete elliptic integrals

An elliptic integral is an integral that can be written in the form [1]ð
Rðx;

ffiffiffiffiffiffiffiffiffi
f ðxÞ

p
Þdx;

where R is a rational function and f is a third- or fourth-order polynomial in x. All
integrals of this type can be written in terms of the three standard forms.

Fðk; θ 0Þ ¼
ðθ 0

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p
Eðk; θ 0Þ ¼

ðθ 0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p
dθ

∏ðk; n; θ 0Þ ¼
ðθ 0

0

dθ

ð1þ n sin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p :

Each of these integrals depends on a parameter k called the modulus that satisfies
k2 ≤ 1. The third type of integral also depends on a second parameter n called the
characteristic.[2] When the upper limit of integration is

θ 0 ¼ π
2
;

these functions define the complete elliptic integrals of the first, second, and third1

kinds.

1 One should be aware that the complete elliptic integral of the third kind is sometimes defined with a negative
sign before the factor n in the denominator.
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KðkÞ ¼
ðπ=2
0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p
EðkÞ ¼

ðπ=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p
dθ

∏ðk; nÞ ¼
ðπ=2
0

dθ

ð1þ n sin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2sin2θ

p
Moreover, these functions can alternatively be defined in polynomial form as

KðkÞ ¼
ð1
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þð1� k2x2Þp
EðkÞ ¼

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þp dx

∏ðk; nÞ ¼
ð1
0

dx

ð1þ nx2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� x2Þð1� k2x2Þp :

It is important to emphasize that, despite the awkward nomenclature, the complete
elliptic integrals are functions of k, and in the case of the third kind, also a function of n.
The complete elliptic integrals K and E can be expressed in terms of the infinite

series

KðkÞ ¼ π
2

�
1þ

�
1

2

�2
k2 þ

�
1 � 3
2 � 4

�2
k4 þ � � �

�

EðkÞ ¼ π
2

�
1�

�
1

2

�2 k2
1
�
�
1 � 3
2 � 4

�2 k4
3
þ � � �

�
;

where k2 < 1.[2] Efficient numerical algorithms have been developed to calculate
the complete elliptic integrals.[3]
The dependences of the complete elliptic integrals of the first and second kinds are

shown as a function of k in Figure F1. Both functions have the value π/2 for k = 0.
The function EðkÞ has the value 1 for k = 1, while KðkÞ approaches ∞ as k → 1.
The behavior of the complete elliptic integral of the third kind for several values of n is
shown as a function of k in Figure F2. The function∏ðk; nÞ increases as k increases
for all values of n. For a given value of k, the function increases as n becomes more
negative.
If the vector potential is defined in terms of complete elliptic integrals, we

need to take derivatives to find the magnetic field. In this case, we need to know
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the derivatives of the complete elliptic integrals with respect to their
arguments.2

∂KðkÞ
∂k

¼ EðkÞ
kð1� k2Þ �

KðkÞ
k

∂EðkÞ
∂k

¼ EðkÞ
k

� KðkÞ
k

0.0 0.2 0.4 0.6 0.8 1.0

k
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Π
 (k

,n
)

Figure F2 Behavior of the complete elliptic integral of the third kind.

Figure F1 Dependence of the functions KðkÞ and EðkÞ on the modulus k.

2 GR 8.123.2, GR 8.123.4.
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For the complete elliptic integral of the third kind, the derivatives are given by
[4, 5]

∂∏ðk; nÞ
∂k

¼ k
ð1� k2Þðk2 � nÞ ½EðkÞ � ð1� k2Þ∏ðk; nÞ�

∂∏ðk; nÞ
∂n

¼ 1

2ðn� 1Þðk2 � nÞ EðkÞ þ k2 � n
n

KðkÞ � k2 � n2

n
∏ðk; nÞ

� �
:
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