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Turbulent plumes above a heated plate
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Our focus concerns the turbulent convective flow above a uniformly heated
high-aspect-ratio rectangular plate on z = 0. Prior to this study, classic plume theory could
not be applied directly as the Richardson number is ill-defined at the plate. Guided by
observation, conservation equations are posed for the near-plate region where the attached
buoyant flow is predominantly horizontal. Analytical solutions under the Boussinesq
approximation reveal this to be a dynamically invariant region where the attached ‘plumes’
grow linearly toward the plate centreline, their merger forming an ‘apparent’ source for
the vertical plume above. Coupling predictions with data from flow visualisation and
temperature measurement, we deduce the half-width 0.72b0, height z = 0.46b0 and finite
Richardson number (∼18) of an apparent source from which plume theory can be applied
to model the plume above a heated plate of width 2b0. Finally, practical implications of
this advancement to the analytical theory of turbulent plumes are noted.

Key words: plumes/thermals, turbulent convection

1. Introduction

This theoretical and experimental study examines the turbulent flow of miscible fluid
above a horizontal rectangular plate, of width 2b0 and length L � b0, whose surface
emits a steady uniform heat flux q (Wm−2). This flux is assumed to be small enough that
the density differences induced in the fluid are small relative to the ambient density ρ∞
and, therefore, we treat the flow as Boussinesq. Despite numerous practical occurrences,
including the convective flow above a slender heated panel in an otherwise unheated floor,
a chilled beam set in a ceiling or a straight section of road heated by the sun, an analytical
description of the bulk convective flow immediately above a plate (§ 2), that develops into
a classic far-field pure plume (§ 3), has not been developed until now.
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Figure 1. Shadowgraph images of the turbulent airflow above a rectangular heated plate of aspect ratio 6.6 at
Ra ≈ 3 × 1010: (a) instantaneous and (b) time averaged. (c) Intensity profiles on AA′ (blue), BB′ (red), CC′
(yellow), DD′ (purple) and EE′ (green).
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Figure 2. Representation of the mean flow above a plate on z = 0 emitting a uniform heat flux q (Wm−2) over
x ∈ [0, 2b0] and y ∈ [−∞, ∞] into an environment of density ρ∞. Here A denotes a horizontal plume with
velocity u, height h and density ρ; B denotes the transitional region in which the horizontal plumes converge to
form a vertical plume, labelled C. The height and half-width of the plume neck (zn and bn) and apparent source
(za and ba) are indicated. Dot-dash lines (– · – ·) indicate slender boundary layers.

From a modelling perspective, flow visualisation (figure 1) indicates that the turbulent
flow above the plate consists of three distinct regions, as shown schematically in figure 2:
a predominantly horizontal region of inward flow from the edges towards the plate centre,
which we refer to as a horizontal plume, labelled A; a central transitional region where
these plumes merge, labelled B, and within which the flow is turned vertically; and a
plume-like region of predominantly vertical flow, labelled C, formed as buoyant fluid rises
from region B.

The nature of the horizontal plume A is determined by the Prandtl Pr and Rayleigh
Ra = gβq(2b0)

4/Kνκ numbers (Fan et al. 2021), where g is the gravitational acceleration
and β, ν, κ and K are, respectively, the coefficient of thermal expansion, the kinematic
viscosity, thermal diffusivity and thermal conductivity of the fluid. Our focus is primarily
on thermal plumes in air, for which Pr ≈ 1. The horizontal plume is observed to be laminar
for Ra ≤ O(103) (Fan et al. 2021) and the bulk of the existing work has focused on this
case, using boundary layer theory to estimate the heat transfer from the plate (Stewartson
1958; Gill, Zeh & del Casal 1965; Rotem & Claassen 1969; Pera & Gebhart 1973a;
Ackroyd & Lighthill 1976; Kozanoglu & Lopez 2007; Jiang, Nie & Xu 2019b). Kitamura
et al. (2015) found the critical value of Racrit = 5 × 105 for the transition to turbulence for
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a plate of aspect ratio L/b0 = 6. In our experiments (§ 4), L/b0 = 6.6, Ra = O(1010) and
we observed the flow to be turbulent.

By contrast, theoretical models based on classic plume theory have been developed
for vertical, turbulent plumes C above high-aspect-ratio rectangular area sources with
non-zero specific source momentum flux (M0 /= 0), and plume behaviour classified (van
den Bremer & Hunt 2014) in terms of the source Richardson number

Γ0 = CB0Q3
0

M3
0

. (1.1)

In (1.1), B0 and Q0 are the physical fluxes per unit length (y direction, figure 2) of buoyancy
and volume, respectively, at the physical source, and C is a constant. The significance of
M0 /= 0 is that the source supplies fluid, whereas for the heated plate, M0 ≡ 0. van den
Bremer & Hunt (2014) consider top-hat profiles for the cross-stream variation of buoyancy
and velocity, defining C = (2αh)

−1, where αh is the horizontal entrainment coefficient
for a well-established, i.e. pure, vertical planar plume. ‘Lazy’ or buoyancy-dominated
releases, for which a heated plate represents the limiting case given M0 ≡ 0, correspond to
Γ0 > 1. The virtual origin of a plume is the location z = zavs of a line source of buoyancy
flux only that gives rise to the same asymptotic behaviour as above the physical source at
z = 0. For a plume that is lazy at source, it is readily shown (van den Bremer & Hunt 2014)
that the virtual origin is at

zavs

b0
= F(Γ0) − 3

3αhΓ
1/3

0

where F(Γ0) =
j=∞∑
j=1

⎛
⎜⎜⎜⎝
⎛
⎝ i=j∏

i=1

(i − 2/3)

⎞
⎠
(

Γ0 − 1
Γ0

) j

( j − 1/3)j!

⎞
⎟⎟⎟⎠ , (1.2)

and for Γ0 > 2, the plume contracts to a minimum half-width bn, or neck, where locally
Γ = Γn = 2, at a height zn where

bn

b0
=
(

Γn

Γ0

)2/3 (
Γ0 − 1
Γn − 1

)1/3

and
zn

b0
= (Γ0 − 1)1/3

3αhΓ
2/3

0

∫ Γ0

2

dY
Y1/3(Y − 1)4/3 .

(1.3a,b)

Solutions (1.2) and (1.3) are based on the assumption of an invariant entrainment
coefficient. Modelling the flow above a heated plate using plume theory is problematic
given M0 ≡ 0 and, thus, Γ0 is undefined. Alternatively, if one considers the limit
M0 → 0, Γ0 → ∞ and the plume is predicted to contract to a width of zero (1.3a) and
zn/b0 → 0 (1.3b), i.e. the neck is coincident with the physical source. Moreover, from
(1.2), zavs/b0 → 0, which suggests that the physical plume can be represented as that
from the virtual line source (B0 > 0, Q0 = M0 = 0) at the same elevation as the physical
source. This contradictory prediction is clearly non-physical. Evidently, existing plume
models (Kaye 2008; Woods 2010; Hunt & van den Bremer 2011) cannot accurately capture
the bulk features of the time-averaged turbulent flow above a heated plate and an improved
description of the near-plate plume flow is required, providing motivation for the current
study.

Only in the past twenty five years has information on the large-scale turbulent motion
above a heated plate at high Ra been reported. Kitamura, Chen & Kimura (2001) focused
on laminar-turbulent transition, with flow visualisation revealing a near-plate horizontal
convergent flow that turns to become vertical. Tsitsopoulos (2013) considered theoretically
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the axisymmetric flow above a heated disc, however, this model became intractable due
to mathematical difficulties attributed to the geometry. We initially adopt his approach to
model the flow above a rectangular plate (§ 2). Notably, the recent review of Fan et al.
(2021) cites no examples of previous theoretical studies on the turbulent case.

Our approach is as follows. In § 2 we develop the first theoretical description of the
attached horizontal plumes and successfully avoid the aforementioned contradiction(s).
We model the horizontal plume growing from one edge of the plate in isolation, assuming
the mean flow is two dimensional, and solve analytically the resulting conservation
equations. By assuming that the vertically rising plume-like flow is supplied at its apparent
source by a horizontal plume growing from each edge of the heated surface, in § 3 we
characterise theoretically the apparent source. With these predictions, we use the theory
for planar plumes of van den Bremer & Hunt (2014) to predict the neck height above the
heated plate. In § 4 we detail shadowgraph experiments and temperature measurements
that are compared with the theory of §§ 2 and 3, confirming that our model captures the
observed flow well and that the plume from a heated plate may now be described by
applying classic plume theory from the apparent source we identify.

2. Governing equations for the horizontal plume

Consider the horizontal plume on a heated plate of width 2b0 that extends infinitely
in the spanwise direction (y axis into the page, figure 2). A steady uniform heat flux
q > 0 (Wm−2) is supplied on z = 0 for 0 ≤ x ≤ 2b0, and q = 0 on z = 0 for x < 0 and
x > 2b0. These unheated regions are assumed to be perfectly insulated from the heated
region and remain isothermal with temperature identical to the surrounding ambient. The
environment for z > 0 is unbounded, of uniform density ρ∞ and is treated as an ideal
gas. The heat flux is equivalent to a uniform buoyancy flux of F = (g/ρ∞T∞cp)q per
unit area, where cp denotes the specific heat capacity. The convective flow so driven is
treated as incompressible, fully turbulent and independent of the Reynolds number, so the
effects of molecular diffusion and viscosity are neglected. While we acknowledge that
the effects of viscosity play a key role in the development of slender boundary layers
within the near-plate region of A, we neglect altogether the presence of boundary layers
and any associated loss of momentum in the horizontal plume due to contact with the
plate; our solutions therefore do not satisfy the no-slip condition and velocities may be
interpreted as those outside the boundary layer. Whilst a simplifying assumption, the
results of Rotem & Claassen (1969) and Pera & Gebhart (1973b) would appear to aid
us in justifying such an approach. Indeed, they found that the boundary layer growing
from the plate edge separated when the local Grashof number Grx = gβx3ΔT/ν2 ≈ 100,
where ΔT is the temperature difference between the plate surface and the ambient. For
the experimental conditions we consider, separation is therefore expected at x ≈ 5 mm,
i.e. after only ∼3 % of the plate half-width of b0 ∼ 152 mm, meaning that the majority
of the flow we are modelling is not expected to be a classic boundary layer flow but
a convective turbulent flow. Accordingly, given a primary aim is to establish how bulk
entrainment and plume merger (§ 3) ultimately control the ‘apparent source’ conditions
for C, we make the simplifying assumption that the cross-stream profiles of both mean
horizontal velocity u(x) and density ρ(x) are uniform.

The mean quantities considered are those averaged in time and spatially in y. The
interface at z = h(x) is gravitationally unstable and subject to shear. The resulting
Rayleigh–Taylor instabilities and turbulent engulfment give rise to mixing at this interface,
causing a net downward transport of fluid, with velocity we and density ρ∞, into the
plume (region A, figure 2). The mean height of the plume h(x) thereby increases in the
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x direction. Adapting the entrainment assumption, cf. Taylor (1945) for vertical plumes,
the entrainment velocity we is proportional to a local characteristic velocity in the plume,
i.e. we = −αvu, where αv > 0 is the vertical entrainment coefficient. As confirmed in
§ 4.1.4, it is to be expected that αv > αh due to both the gravitational and shear instabilities
at the horizontal plume perimeter, compared with just the shear instability at the vertical
plume boundary. Under these assumptions, approximating the fluid as a Boussinesq, ideal
gas it is readily shown (Appendix A) that statements of conservation of mass, specific
momentum and energy reduce to

dQ
dx

= αv

M
Q

,
dM
dx

= 1
2

d
dx

(
BQ3

M2

)
and

dB
dx

= F, (2.1a–c)

respectively, where Q = uh, M = u2h, B = g′uh and the reduced gravity g′ = g(ρ∞ − ρ)/

ρ∞. The boundary conditions are Q = M = B = 0 at x = 0. The equations for volume flux
Q and buoyancy flux B, (2.1a) and (2.1c), are identical to those for a vertical wall plume
(Cooper & Hunt 2010). The difference in the momentum flux equation (2.1b) is due to the
fact that the increase in specific momentum flux M in the horizontal plume is driven by
a horizontal pressure gradient, whereas in a wall plume it is driven by buoyancy. While
there is no naturally arising characteristic length scale for the horizontal plume flow above
a semi-infinite plate, we have elected below to non-dimensionalise using the physical plate
half-width, b0, given our ultimate goal concerns the plume above a plate of finite width.
With lengths scaled on b0, indicated with hatted variables, we introduce the dimensionless
fluxes Q̂, M̂ and B̂ via

Q̂ = Q
αvb0U

, M̂ = M
αvb0U2 , B̂ = B

b0F
, (2.2a–c)

where U is a horizontal velocity scale. Accordingly, (2.1) and the boundary conditions
reduce to

dQ̂
dx̂

= M̂

Q̂
,

dM̂
dx̂

= b0F
2U3

d
dx̂

(
B̂Q̂3

M̂2

)
,

dB̂
dx̂

= 1, (2.3a–c)

and Q̂ = M̂ = B̂ = 0 on x̂ = 0. Defining U as the velocity at the centre of the
plate, i.e. U = (b0F/2)1/3 as confirmed in (2.6), the governing equations are rendered
independent of the source conditions. Equations (2.3b) and (2.3c) may be integrated
directly, thence

dQ̂
dx̂

= M̂

Q̂
,

B̂Q̂3

M̂3
= 1 and B̂ = x̂. (2.4a–c)

That the ratio of fluxes B̂Q̂3/M̂3, a Richardson number for the horizontal plume, is
invariant enables comparisons to be drawn with the analogous dynamical invariance in
the far field of a vertical plume. Moreover, (2.4c) indicates, as expected for a uniformly
distributed buoyancy input, that the buoyancy flux increases linearly with x̂. Solving (2.4)
we obtain

Q̂ = 3
4 x̂4/3, M̂ = 3

4 x̂5/3 and B̂ = x̂, (2.5a–c)

or, in terms of the height, velocity and reduced gravity of the horizontal plume

h = 3
4
αvx, u = U

(
x
b0

)1/3

and g′ = 4
3αv

(
2F2

x

)1/3

. (2.6a–c)
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That u(x = b0) = U confirms U = (b0F/2)1/3 as a natural choice for the velocity scale.
The linear dependence of plume height (2.6a) and the singular behaviour g′ → ∞ as
x → 0+ (2.6c) are assessed in § 4.

3. Source conditions for the vertical plume

The Richardson number Γa, cf. (1.1), that characterises the ‘apparent’ source governs
the classification and, thereby, behaviour of the vertical plume C. The vertical fluxes
of volume, specific momentum and buoyancy at the apparent source are taken to be
(Qa, Ma, Ba) = (2Qc, 2λMc, 2Bc), where the fluxes in the horizontal plumes (2.5) are
evaluated on the centreline, viz.

Qc = 3
4αvb0U, Mc = 3

4αvb0U2, Bc = b0F. (3.1a–c)

In other words, the combined volume fluxes of the horizontal plumes at the centre of
the plate form the apparent source volume flux and we have assumed that the vertical
momentum flux at the apparent source should scale so as to be proportional to the
magnitude of the horizontal momentum (evaluated on the centreline), an assumption
routinely applied to plume-boundary impingements (Jiang et al. 2019a).

Without further scaling, these fluxes lead to an invariant Richardson number of
BaQ3

a/M3
a = 4/λ3. Given our goal is to apply the results of plume theory from this

apparent source, we rescale so as to be consistent with that required for a pure plume to
have a Richardson number of unity. Accordingly, with reference to (1.1) with C = (2αh)

−1,

Γa = BaQ3
a

2αhM3
a

= b0F
αhλ3U3 = 2

αhλ3 . (3.2)

Given measurements indicate that αv ≈ 1.2 (§ 4.1.4), from (2.6), h ≈ b0 at x = b0 and,
thus, it is not reasonable to treat the heated plate as a Γ0 = 2/αhλ

3 source at z = 0 using
plume theory; indeed, our observations (§ 4) show that the neck is higher and narrower
than that predicted based on such a treatment. Thus, we proceed by predicting the apparent
source height, za, half-width, ba (figure 2), and its virtual origin location, zavs,a, that would
match the observed bn and zn. To do this, we relate za, ba and zavs,a to the quantities we
can directly measure, bn and zn, and infer zavs (§ 4) using the relationship derived below.

On dimensional grounds, we define, for the constants {k, m, p} > 0,

b̂n = k, ẑn = m and ẑavs = −p. (3.3a–c)

Given Γn = 2, the ratio of the neck and apparent source half-widths is, from (1.3),

bn

ba
=
(

Γn

Γa

)2/3 (
Γa − 1
Γn − 1

)1/3

=⇒ b̂a = k(αhλ
3(2 − αhλ

3))−1/3. (3.4)

The location of the apparent source ẑa is given by the distance between the actual and
apparent neck heights, i.e. ẑa = ẑn − ẑn,a (figure 2), hence,

ẑa = m − kI where I = 1
22/33αh

∫ 2/(αhλ
3)

2

dY
Y1/3(Y − 1)4/3 , (3.5)

cf. (1.3). If the plume from the apparent source is an accurate model for the far-field
data, the experimentally observed virtual origin, measured by linearly tracing the far-field
plume perimeter back to a line of intersection, and the theoretical apparent virtual origin
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will be coincident. In other words, if the model is accurate, the far-field perimeter of the
plume above the heated plate, and that of a theoretical plume issuing from the apparent
source will be the same. The measured virtual origin is determined relative to the physical
source (i.e. the physical plate), while the apparent virtual origin is located relative to the
apparent source. The virtual origin for the plume from the apparent source, ẑavs,a, relative
to the apparent source is therefore given by the distance between the virtual origin location
relative to the plate and the apparent source location, i.e. ẑavs,a = ẑavs − ẑa. Equating this
expression with (1.2) and using (3.5) gives

ẑavs,a = kI − p − m = −k
3

3 − F(Γa)

[α4
hΓa(2 − αh)]1/3

. (3.6)

While Γa has been established above, ba and za must be inferred from experimental
measurements of the neck width, neck height and asymptotic virtual origin location,
parameterised by k, m and p, respectively. Thus, in what follows we report on
measurements of k and m, and predict the value of p. This choice was made as p would
need to be established from the far-field gradient of the width. In contrast, k and m can
be established solely from measurements made nearer to the source – this near-field
measurement approach offers significant advantages for the study of convection above
large-aspect-ratio plates given the true far field is often not accessible to measurement.

Throughout this section the constant of proportionality, λ, was retained in the analysis,
however, we set λ = 1 in § 4. Here λ = 1 corresponds to the least lazy apparent source.
However, it transpires that the question of identifying the most appropriate value for λ
is not problematic as knowledge of the neck location and width (empirically observed
constants in the model we develop) determines the plume perimeter below that height.
For 0 < λ < 1, the apparent source is increasingly lazy, wider and further below the neck
(closer to the plate) and, as such, the predicted plume perimeter is extended nearer to the
plate, but forms a smooth continuation of the predicted plume perimeter for λ = 1.

4. Experimental investigation

The heat source was a rectangular brass plate (L = 1000 ± 1 mm, 2b0 = 305 ± 1 mm,
thickness 6 ± 0.1 mm) mounted directly atop four electrically heated discs (diameter
φ = 154 mm, maximum heat output 1 kW) aligned along the plate centreline with
centres at 232 mm spacing. Shadowgraph experiments were conducted in air for
2.6 × 1010 < Ra < 8.0 × 1010, a range achieved by varying the plate temperature.
Temperature profile measurements were made for Ra ≈ 4 × 1010. The plumes were
interrogated by means of flow visualisation for ẑ � 3 (§ 4.0.1) and direct temperature
measurements for ẑ � 4 (§ 4.0.2). Yokoi (1960) established that the plume from
a slender rectangular source departs from the two-dimensional scaling (g′ ∼ z−1)
toward the axisymmetric scaling (g′ ∼ z−5/3) at elevations of z/L = 6 − 7; given
ẑ = 4 corresponds to z/L ≈ 0.6, our measurements are firmly within the region in
which two-dimensional flow is to be expected. The plate temperature was measured
using type-K thermocouples (Omega Engineering (OE), φ =0.025 mm, response time
tr = 0.15 s), surface mounted at (x, y) = (40, 30), (40,270), (153,150) and (153,390) mm
(±1 mm). Across all experiments, the time-averaged ensemble mean surface temperature
spanned 〈Tp〉 = 69.2–125.2◦C(±0.1◦C) and the instantaneous room temperature
T∞ = 23.4–25.1◦C(±0.1◦C); the ± range given for 〈Tp〉 and T∞ was dictated by the
precision of the instrument. The variation of temperature recorded across the plate is
given in table 1, Appendix B. Accordingly, we take the properties of air at T∞ = 297 K
and standard atmospheric pressure (1.01325 bar) (Cimbala & Çengel 2008). Finally, we
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note that van den Bremer & Hunt (2014) identify the non-dimensional vertical length
over which non-Boussinesq effects are important scales as LNB−B ∼ (4F2/(b0g3α2

h))1/3.
Whilst expressed as a length scale, LNB−B incorporates effects of both the size and strength
of the buoyancy source. For a typical shadowgraph experiment, LNB−B ≈ 0.1 (taking
g = 9.81 ms−2); given this length scale is measured from the virtual origin at ẑavs ≈ −1
(see § 4.1.3), the vertical plume is expected to be Boussinesq at all heights.

4.0.1. Shadowgraph
The flow was visualised using direct shadowgraphy in diverging light (Settles 2001). Light
rays passing through each x–z plane are continuously deflected due to the inhomogeneous
density field. Each shadowgraph image therefore captures the superposition of the
deflections over all x–z planes between light source and camera, and thereby provides
a spanwise integrated view of the flow. Images were recorded at 12.5 frames per second
using a JAI SP-5M CCD camera and Kowa 16 mm lens. Instantaneous images so obtained,
figure 1(a), show turbulent motion above the plate, an increase in the depth h of the
horizontal plume with x and the contraction in the vertical flow to a neck.

A characteristic time scale for the horizontal plume is

τ = b0

U
=
(

2b2
0cpT∞ρ∞

qg

)1/3

≈ 1s. (4.1)

Each experiment was recorded for a period of 90 s � τ , and the corresponding 1125
instantaneous images combined to produce a single time-and-space averaged image,
cf. figure 1(b). For ẑ � 0.2, the intensity distribution is near Gaussian for each row of
the resulting image (the coefficient of determination R2 = {0.985, 0.985, 0.976, 0.937}
for profiles AA′ to DD′, respectively) and, hence, the plume perimeter was defined as
the locations x = blhs and x = brhs, at which the intensity had fallen to 1/

√
e of the row

maximum, where ln(e) = 1. Accordingly, the normalised plume half-width was defined as
b̂ = (brhs − blhs)/2b0.

4.0.2. Temperature measurements
Cross-stream profiles of time-averaged temperature T̄(x, z) at y = L/2 were obtained
by horizontally traversing a type-K thermocouple (OE, φ = 0.25 mm, tr < 1 s) from
x = {−60, 370} mm in 10 mm increments at elevations of z = {0, 5, 10} mm, and from
z = {20, 290} mm in 10 mm increments. Temperatures at each location were sampled by
the datalogger every second for ∼60τ , from which T̄ was calculated. Consistent with
shadowgraph experiments, the plume perimeter was defined as the x locations at which
T̄ = T̄m/

√
e, where T̄m denotes the maximum time-averaged temperature at that elevation.

4.1. Results

4.1.1. Width measurements
Figure 3(a) plots profiles of the normalised half-width inferred from 21 shadowgraph
experiments with different T̄p, and their ensemble median. The plate temperature for each
of the shadowgraph experiments is detailed in Appendix B. Half-widths obtained from
the temperature traverses are overlaid as crosses. While values differ, both approaches
capture the same general trends; the morphology of the high-Ra plume is invariant and is
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ẑn

b̂ b̂ b̂

(a) (b) (c)

Figure 3. (a) Normalised half-width from: (—–, light red) 21 shadowgraph experiments; (—–, blue) the
ensemble median (from which ẑn = 1.37, b̂n = 0.423, as marked on (c)); (×, black) temperature data.
(b) Linear best fits to data in (a) for ẑ > 2; gradients are 7.82 (temperature) and 7.89 (shadowgraph), with
correlation coefficients 0.720 and 0.945, respectively. (c) Prediction of our model for an impingement region
of: (—–, red) zero width; (- - - -, red) finite width with an aspect ratio of 2. The shadowgraph measurements
were recorded for 2.6 × 1010 < Ra < 8.0 × 1010 and the temperature traverses for Ra ≈ 4 × 1010.

characterised by a far-field linearly expanding region (§ 4.1.2), a height at which the plume
is narrowest (§ 4.1.3) and a near-field linearly contracting region (§ 4.1.4).

The shadowgraph data are noisy immediately above the plate (figure 3(a) for
ẑ � 0.35) and this is evident in the ensemble average. The cause is twofold: firstly, as
the shadowgraphy was in diverging light, the magnification of the flow above the plate
edge nearest the light source is 15 % greater than that above the farthest edge (as estimated
from Settles (2001) given the light source and plate centreline were 911 and 196 cm from
the visualisation screen, respectively) and this creates some uncertainty as to the plate
location in an image; secondly, the intensity profiles here are not Gaussian, cf. profile EE′
in figure 1(b,c), and, as such, the thresholding of the intensity breaks down.

Figures 4(a) and 4(b) plot the dimensionless neck width and neck height, respectively,
against non-dimensional plate temperature, θp = (〈Tp〉 − T∞)/T∞. It is clear that both b̂n
and ẑn are approximately constant over the range of θp measured. For each shadowgraph
experiment, b̂n was taken as the smallest value of b̂, and ẑn as the height at which
this minimum occurred. The greater spread observed in the neck height measurements,
compared with the neck width measurements, is expected; near the neck db̂/dẑ → 0, so
measurements of neck width are relatively robust to errors in the shadowgraph, whereas
the neck height measurements are more sensitive (there is a large range of values of ẑ with
b̂ ≈ b̂n). Transition to turbulence in the horizontal plume could provide an explanation for
the increased spread in the measurements for θp � 2.3.

4.1.2. Far-field region
Irrespective of the actual, or apparent, source Richardson number, Γ → 1 as ẑ → ∞
(van den Bremer & Hunt 2014), a dynamically invariant region where the entrainment
coefficient αh can be inferred from the constant growth rate of the vertical plume.
While the Richardson & Hunt (2022) assessment of the literature on line plumes
and their own independent measurements based on the plume-induced flow show
αh ≈ 0.11, for completeness we estimate αh from our own measurements. Figure 3(b)
plots the half-width data and linear best fits for ẑ > 2. Given the cross-stream profiles
are approximately Gaussian (see profiles AA′–DD′, figure 1), αh = (

√
π/2)db̂/dẑ (van

den Bremer & Hunt 2014) from which the respective gradients lead to αh ≈ 0.113
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Figure 4. (a) Normalised neck width versus plate temperature; - - - - neck width b̂n = 0.423 corresponding
to the ensemble-averaged shadowgraph data. (b) Normalised neck height versus plate temperature; - - - - neck
height ẑn = 1.37 corresponding to the ensemble-averaged shadowgraph data. Horizontal error bars show the
standard error of the mean (σ/

√
N), where σ is the standard deviation and N the number of observations.

Vertical error bars reflect the 15 % difference in magnification along the plate.

(temperature data) and 0.112 (shadowgraph data). That these estimates agree closely with
the established value provides confidence in our data and, moreover, we may assert that
the shadowgraph offers a robust approach for interrogating this source geometry.

Substituting αh = 0.11 into (3.2) and (3.6) gives

Γa = 18.2, I = 2.16 and p + m = 6.51k, (4.2a–c)

to three significant figures.

4.1.3. Apparent source
Substituting our empirical measurements k = 0.423 and m = 1.37, figure 3(c), into (3.4)
and (3.5), the half-width and location of the apparent source are, respectively,

b̂a = 0.423 × 1.69 = 0.715 and ẑa = 1.37 − (0.423 × 2.16) = 0.456, (4.3a,b)

to three significant figures. Given b0 > 0 and Q0 ≡ 0 the heated plate was anticipated to
produce a contracting plume and, hence, it was to be expected that (i) ba/b0 < 1 (4.3) and
(ii) ẑa < ẑn given previous results show Γ ≈ 1 above the neck. Additionally, compatibility
with Γa = 2/αh (given λ = 1), as predicted by our theory, requires p = (6.51 × 0.423) −
1.37 = 1.38 (from (4.2c) with αh = 0.11). Figure 3(c) overlays the perimeter predicted
by the classic model of van den Bremer & Hunt (2014) for a plume emanating from our
prediction of the apparent plume source (ba = 0.715b0, za = 0.456b0, Γa = 18.2) with the
widths inferred from temperature measurements, and the ensemble median shadowgraph
data. The data are well described by this approach, notably our predicted virtual origin
location (−p = −1.38) is within 12 % of the measured value – the latter given by the
intercept of the trendline in figure 3(b) with the vertical axis, ẑavs = −p = −1.56. For
ẑ > ẑn, db̂/dẑ increases, asymptotically approaching the far-field value. It is therefore
expected that measurements at greater heights would give a smaller value for p. By taking
the neck as the point of minimum width in the ensemble median rather than, for example,
smoothing the data with a moving average, it is also expected that our value for k = 0.423
is a lower bound. It is natural to consider whether our assuming the horizontal plumes
impinge and turn at the centre of the plate, rather than in a control volume of finite width
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Figure 5. Horizontal plume. (a) Variation of ĥ with x̂ obtained from the ensemble-averaged shadowgraph data
(×, blue) and temperature measurements for Ra ≈ 4 × 1010 (×, blue), with linear best fits to the data (- - - -,
red). Profiles of θ at ẑ = 0.033 on (b) linear and (c) logarithmic axes. In (c) the solid lines show the average
temperature profile between the peaks, and the dashed lines show a linear best fit.

has also introduced error. The analysis considered herein can readily be extended to an
impingement region of finite width; this changes the values of ba, za and Γa, but does
not change the predicted plume perimeter, only extends it to lower heights, the same
qualitative effect as taking a value of λ from the range 0 < λ < 1. The dashed red line
in figure 3(c) shows this extension for an impingement region of aspect ratio 2, for which
b̂a = 0.876, ẑa = 0.395 and Γa = 34.5. Whilst there are then a multiplicity of potential
apparent sources, in the interests of simplicity we advocate for use of the model (§ 3) with
a zero-width impingement region, λ = 1, and apparent source

ba = 0.72b0, za = 0.46b0, Γa = 18.2. (4.4a–c)

Despite the assumptions made, our model describes the data well, extending our predictive
capability to the near field, in addition to providing ‘source’ conditions for the far
field.

4.1.4. Near-source region
Figure 5(a) plots our data for the growth of the horizontal plume. Assuming symmetry
about x = b0, x̂ = 1 − b̂ and ĥ = ẑ. Both shadowgraph (×, blue) and temperature
measurements (×, black) exhibit a linear evolution ĥ ∝ x̂, consistent with (2.6a), that
extends over 0 � ẑ � 0.6. The gradients of the respective trendlines (- - - -, red) are
0.960 and 0.860. For ẑ = ĥ � 0.35, measurements using the shadowgraph method were
unreliable for the reasons outlined in § 4.1.1. Comparing dh/dx = 3αv/4 from (2.6a) with
these gradients gives αv ≈ 1.28 and αv ≈ 1.15, respectively, and thereby, the average
estimate

αv = 1.21. (4.5)

Thus, near-source entrainment exceeds the far-field entrainment (αh ≈ 0.11) by an order
of magnitude. That αv > αh is consistent with previous evidence of enhanced entrainment
in the near-source region of lazy plumes (Kaye & Hunt 2009; Marjanovic, Taub &
Balachandar 2017; Ciriello & Hunt 2020).

Treating air as an ideal gas at room temperature (T∞ = 297 K), θ = (T̄ − T∞)/T∞ =
0.023 x̂−1/3 from (2.6c); thus, θ ∼ x̂−1/3 for x̂ ∈ [0, 1], θ ∼ (2 − x̂)−1/3 for x̂ ∈ [1, 2] and
behaviour is singular for x̂ = {0, 2}. Figure 5(b) plots profiles of θ(x̂) recorded close
to the plate and their mean. The temperatures peak close to the plate edges, giving a
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distinctive ‘cat-ears’ shape. Figure 5(c) replots the mean profile on log-log axes; the
data for x̂ ∈ [0, 1] has a gradient of −0.201 (blue) and −0.563 for x̂ ∈ [1, 2] (red).
Data for x̂ ∈ [1, 2] has been reflected about x̂ = 1 to aid comparison and as the profile
is expected to be symmetric about x̂ = 1. If the data are in agreement with (2.6c), a
gradient of −1/3 is expected; our data yields an average gradient of −0.382. Evidently
viscous effects become important as x̂ → 0+ and 2−, preventing the singular behaviour
predicted.

In summary, the behaviour observed supports the predictions.

5. Conclusions

Our dual theoretical and laboratory investigation concerned the region of quasi-steady
miscible Boussinesq flow in the near field above a high-aspect-ratio rectangular heated
plate in quiescent surroundings. Having zero momentum flux at source, the heated
plate represents the limiting case of an infinitely lazy plume source that, prior to
this study, was not amenable to solution based on the application of classic plume
theory.

Guided by flow visualisation in air, our thesis was (i) that the merger of two convergent
horizontal flows that propagate along the plate controls the (apparent) source conditions
for the classic two-dimensional plume above, and (ii) by determining these conditions
plume theory may be successfully applied to capture the bulk convective flow above a
heated plate. Our analytical solutions demonstrate that the two horizontal plumes grow
linearly, controlled by vertical entrainment, with an associated coefficient that we measure
to be αv = 1.2. In this region, the temperature profile takes the form of characteristic ‘cat
ears’, i.e. with a temperature peaking slightly inboard of the plate edges. Based on our
findings we assert that both the far-field flow and the contracting-expanding flow in the
near field, above a plate of width 2b0, can be modelled using plume theory applied from an
apparent source of width ba = 0.72b0, located at za = 0.46b0 and with Richardson number
Γa ≈ 18. Notably, our approach accurately captures the behaviour in the neck region;
this would not be possible on modelling the plate as a line source located at a virtual
origin.

The significance of this advancement to the analytic theory of turbulent plumes is in
opening up its extension to an entire class of sources, namely, infinitely lazy sources, and
thereby in our ability to predict the bulk convective flow established above heated (or
below cooled) plates, for which there are many practical examples, underfloor heating in a
room and cooling from a chilled beam to name but a few.
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Appendix A. Conservation equations

A.1. Conservation of mass
For a two-dimensional horizontal plume flow, with horizontal velocity u, vertical velocity
w and density ρ, conservation of mass can be expressed as

∂(ρu)

∂x
+ ∂(ρw)

∂z
= 0 =⇒ ∂

∂x

∫ ∞

0
ρu dz = −[ρw]∞0 , (A1)

on integrating vertically. With reference to figure 2, turbulent entrainment gives rise to
a net vertical flow, across the plume perimeter, of fluid with density ρ∞ at velocity we,
hence, (A1) becomes

∂

∂x

∫ ∞

0
ρu dz = −ρ∞we. (A2)

Assuming that the horizontal velocity and density have top-hat profiles, we obtain

d
dx

[ρuh] = −ρ∞we. (A3)

Applying the entrainment hypothesis, i.e. writing we = −αvu, where αv is the vertical
entrainment coefficient and the negative sign indicates the velocity is downwards, yields

d
dx

[ρuh] = ρ∞αvu. (A4)

On making the Boussinesq approximation (A4) reduces to the statement of conservation
of volume in (2.1a).

A.2. Conservation of momentum
The horizontal momentum equation from Navier–Stokes, neglecting the viscous term
gives

ρu
∂u
∂x

+ ρw
∂u
∂z

= −∂P
∂x

. (A5)

With reference to (A1) this can be rewritten as

∂(ρu2)

∂x
+ ∂(ρuw)

∂z
= −∂P

∂x
, (A6)

which, noting that u|z=∞ = w|z=0 = 0, can be integrated vertically to give

∂

∂x
[ρu2h] =

∫ ∞

0
−∂P

∂x
dz. (A7)
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Figure 6. Schematic of the control volume ABCD and associated quantities considered in deriving (A16). At
section AB, A has elevation z = h, the pressure P = PI and the density is ρ. At section CD, D has elevation
z = h + Δh, the pressure P = PII and the density is ρ + Δρ.

To resolve the pressure gradient, consider the pressure PI along the vertical segment AB
(figure 6),

PI = kI − ρgz, (A8)

where kI is a constant for a given value of x. The pressure is continuous across the plume
boundary; therefore, at A, PI |z=h = P0 − ρ∞gh = kI − ρgh, where P0 is the pressure in
the ambient at z = 0. Thus, kI = P0 − (ρ∞ − ρ)gh and, hence, (A8) becomes

PI = P0 − (ρ∞ − ρ)gh − ρgz. (A9)

Similarly considering the pressure, PII , along vertical segment CD, parallel to AB gives

PII = P0 − (ρ + Δρ)gz − (ρ∞ − ρ)g(h + Δh) + Δρgh + O(Δ2). (A10)

The pressure gradient can then be written as

PII − PI

Δx
= −(ρ∞ − ρ)gΔh + Δρg(h − z)

Δx
, (A11)

which, on taking the limit as Δx → 0 yields

∂P
∂x

= −(ρ∞ − ρ)g
dh
dx

− (z − h)g
dρ

dx
. (A12)

The horizontal momentum equation then becomes

d
dx

[ρu2h] = +
∫ ∞

0

(
(ρ∞ − ρ)g

dh
dx

+ (z − h)g
dρ

dx

)
dz, (A13)

which gives

d
dx

[ρu2h] = (ρ∞ − ρ)g
dh
dx

h − gh2

2
dρ

dx
. (A14)

This can be rearranged to give

d
dx

[ρu2h] = (ρ∞ − ρ)gh
dh
dx

+ gh2

2
d
dx

[ρ∞ − ρ], (A15)
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and use of the chain rule gives

d
dx

[ρu2h] = 1
2

d
dx

[g(ρ∞ − ρ)h2]. (A16)

On taking the Boussinesq approximation, (A16) reduces to the statement of conservation
of momentum in (2.1b).

A.3. Conservation of energy
Following the method of Rooney & Linden (1996), starting from the internal energy
equation for a system capable of expansion work only and assuming an ideal gas gives

cp

R

∫
τp

P∇ · v dτ = Q̇ − cp

R

∫
τp

v · ∇P dτ, (A17)

where τp is the volume enclosed by the plume, v is the velocity vector, Q̇ is the total
heating power input to the system and R is the gas constant. For the two-dimensional
geometry considered, (A17) becomes

cp

R

∫
τp

P
(

∂u
∂x

+ ∂w
∂z

)
dτ = Q̇ − cp

R

∫
τp

(
u
∂P
∂x

+ w
∂P
∂z

)
dτ. (A18)

Differentiating with respect to x and rearranging yields

q = dQ̇
dx

= cp

R

∫ h

0

∂

∂x
(uP) dz + cp

R

∫ h

0

∂

∂z
(wP) dz. (A19)

Assuming an ideal gas so that P = ρRT , where T is the plume temperature,

q = ∂

∂x

∫ h

0
(cpρuT) dz + cpρ∞weT∞, (A20)

where T∞ is the ambient temperature. Assuming a top-hat profile for T (consistent with
that for ρ) gives

q
cpρ∞T∞

= d
dx

[
ρuhT
ρ∞T∞

]
+ we. (A21)

Taking the Boussinesq approximation yields

d
dx

[uh] = αvu + q
cpT∞ρ∞

, (A22)

on taking we = −αvu. Combining (A22) with (A4) and multiplying by g gives

d
dx

[g′uh] = g
cpT∞ρ∞

q, (A23)

the statement of conservation of buoyancy in (2.1c).
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Appendix B. Experimental data

〈Tp〉 T∞ θp SEM b̂n ẑn

69.2 23.9 1.90 0.0661 0.386 1.87
69.8 24.0 1.91 0.0836 0.351 1.18
69.9 24.1 1.90 0.0837 0.245 1.44
77.4 24.1 2.21 0.0933 0.365 1.64
77.3 24.2 2.20 0.0825 0.287 1.84
77.1 24.2 2.18 0.0764 0.337 1.63
85.7 24.3 2.53 0.0864 0.427 1.90
85.4 24.4 2.50 0.0921 0.429 1.37
85.9 24.5 2.51 0.101 0.413 1.56
96.9 24.5 2.95 0.124 0.416 1.49
99.1 24.5 3.04 0.142 0.419 1.77
97.5 24.6 2.97 0.116 0.424 1.64
106 24.6 3.33 0.127 0.399 1.40
107 24.6 3.33 0.159 0.410 1.85
107 24.6 3.35 0.114 0.422 1.52
117 24.7 3.76 0.197 0.418 1.39
116 24.7 3.69 0.157 0.404 1.34
115 24.8 3.62 0.169 0.401 1.42
123 24.9 3.95 0.214 0.407 1.43
125 25.0 4.01 0.192 0.423 1.37
121 25.1 3.84 0.162 0.408 1.43

Table 1. Shadowgraph experiment data (to 3 significant figures), plotted in figure 4. The standard error of the
mean is defined by SEM = σ/

√
N where σ is the standard deviation and N is the number of observations of

the plate temperature.
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