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Summary

Most QTL mapping methods assume that phenotypes follow a normal distribution, but many

phenotypes of interest are not normally distributed, e.g. bacteria counts (or colony-forming units,

CFU). Such data are extremely skewed to the right and can present a high amount of zero values,

which are ties from a statistical point of view. Our objective is therefore to assess the efficiency of

four QTL mapping methods applied to bacteria counts : (1) least-squares (LS) analysis,

(2) maximum-likelihood (ML) analysis, (3) non-parametric (NP) mapping and (4) nested ANOVA

(AN). A transformation based on quantiles is used to mimic observed distributions of bacteria

counts. Single positions (1 marker, 1 QTL) as well as chromosome scans (11 markers, 1 QTL) are

simulated. When compared with the analysis of a normally distributed phenotype, the analysis of

raw bacteria counts leads to a strong decrease in power for parametric methods, but no decrease is

observed for NP. However, when a mathematical transformation (MT) is applied to bacteria

counts prior to analysis, parametric methods have the same power as NP. Furthermore, parametric

methods, when coupled with MT, outperform NP when bacteria counts have a very high

proportion of zeros (70±8%). Our results show that the loss of power is mainly explained by the

asymmetry of the phenotypic distribution, for parametric methods, and by the existence of ties, for

the non-parametric method. Therefore, mapping of QTL for bacterial diseases, as well as for other

diseases assessed by a counting process, should focus on the occurrence of ties in phenotypes

before choosing the appropriate QTL mapping method.

1. Introduction

Infectious diseases cause important economic losses in

livestock production (Adams & Templeton, 1998). A

major objective in current animal breeding strategies

is therefore to improve animal health, but this is

difficult to achieve by traditional breeding methods.

There are many documented instances of breed or

individual differences in genetic disease resistance.

Thus, the identification of chromosomal regions

implied in disease resistance, i.e. disease resistance loci

(DRL), might have important implications for the

development of strategies for the control of diseases in

livestock. Statistical methods have been developed for
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the mapping of genes that contribute to the variation

of quantitative traits (e.g. Beckmann & Soller, 1988;

Lander & Botstein, 1989; Weller et al., 1990). Such

genes are called QTL, for quantitative trait loci. QTL

mapping methods use marker information to identify

chromosomal segments likely to contain QTL. For

disease resistance traits that show continuous vari-

ation, QTL mapping methods have already proved to

be effective for the identification of DRL (e.g. Kemp

et al., 1997; Vallejo et al., 1998; Heyen et al., 1999).

Most QTL mapping methods share a common

assumption: the phenotype follows a normal dis-

tribution. However, there are many instances of

disease resistance phenotypes that are not normally

distributed. Examples include counts (such as number

of bacteria in spleen or nodes), truncated data (such as

https://doi.org/10.1017/S0016672301005365 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005365


P. Tilquin et al. 304

survival times in a censored experiment) and quali-

tative data (such as severity grades assigned upon

histological examination). QTL mapping methods

based on parametric assumptions cannot be directly

applied in such cases. On the one hand, least-squares

and ANOVA based methods (Haley & Knott, 1992;

Martinez & Curnow, 1992; Weller et al., 1990) assume

that residual errors, i.e. residuals within QTL genotype

classes, are normally distributed. Such methods are

commonly said to be robust against non-normality;

however, robustness against any type of non-nor-

mality in the context of QTL mapping methods has,

to our knowledge, never been established. On the

other hand, maximum-likelihood based methods

(Lander & Botstein, 1989) use the normal density

function for the building of the likelihood itself.

Quality of estimations is therefore very dependent on

the normality of the phenotype. One approach to

circumvent the assumption of normality is to attempt

to find a mathematical transformation that will

convert the trait into an approximately normal

variable. An alternative approach is to apply non-

parametric (or distribution-free) methods to QTL

mapping. Recently, Kruglyak & Lander (1995a)

described a non-parametric interval mapping ap-

proach based on the Wilcoxon rank-sum test ap-

plicable to experimental crosses. Coppieters et al.

(1998) adapted this method to half-sib pedigrees in

outbred populations.

Natural resistance to bacterial diseaseswas observed

a long time ago (e.g. Roberts & Card, 1926; Cameron

et al., 1943 [cited by Adams & Templeton, 1998]).

More recently, studies were carried out on resistance

to Salmonella enteriditis in chicken (Guillot et al.,

1995; Protais et al., 1996), and differences in sus-

ceptibility between lines were highlighted. Typically,

measures of resistance to bacterial diseases are counts

such as colonization levels in organs (CFU, i.e.

colony-forming units). This type of data presents an

extremely asymmetric distribution with, sometimes, a

spike at zero. In order to study the robustness of

current QTL mapping methods to this type of highly

asymmetric distributions, data were obtained from a

bacterial infection which was performed experimen-

tally in a sheep flock of 30 sires families of 40 half-sibs

each (Fre!de! ric Lantier, personal communication;

Moreno et al., 2001).

A first aim of the present study is to compare the

current QTL mapping methods in terms of statistical

power when applied to bacteria counts. The second is

to assess the interest of applying a mathematical

transformation to bacteria counts prior to QTL

analysis. By use of simulations, the efficiency of four

QTL mapping methods in a half-sib design are

compared: (1) least-squares (LS) analysis, (2)

maximum-likelihood (ML) analysis (Knott et al.,

1996), (3) non-parametric (NP) mapping set up by

Kruglyak & Lander (1995a) and adapted to half-sib

designs by Coppieters et al. (1998) and (4) nested

ANOVA (AN). Methods are compared according to

their efficiency for detecting QTL of various effects,

either when a single marker and a single QTL sharing

the same location are simulated, or when chromosome

scans are simulated.

2. Materials and methods

All the simulations are based on the same design: 30

families of 40 half-sibs. Each sire is randomly mated

to 40 unrelated dams and the trait is measured on a

single offspring per mating, which amounts to 1200

measured individuals. Heritability of the trait is set to

0±25 in all simulations. Either single positions (1

position, 1 marker) or chromosomes scans (100 cM,

11 markers) are simulated. Simulations are carried

out either under the null hypothesis (H
!
) or under the

hypothesis of one QTL segregating (H
"
). In single-

position simulations and under H
"
, a single marker

and a single QTL share the same location on a

chromosome. In chromosome scans, the 11 markers

are evenly spaced (interval 10 cM) on a 100 cM

chromosome segment. For simulations under H
"
, a

single QTL is positioned at 35 cM on the 100 cM

chromosome segment (between the fourth and the

fifth marker). In all simulations, the number of alleles

at the markers is equal to 16, occurring with equal

frequency. Such a number of alleles was chosen to

mimic a fully informative situation. Furthermore, the

dam allele is specifically coded to be always

identifiable. For simulations under H
"

(one QTL

segregating), the number of alleles at the QTL is equal

to 2 with equal frequency (0±5). The value of the QTL

effect is given according to Falconer & Mackay’s

(1996) definition of substitution effect (a), i.e. half the

difference between the mean trait values for the two

alternative homozygotes at the QTL (in phenotypic

standard deviation unit). Conversion to heritability

due to the QTL can be achieved using the following

equation:

h#
QTL

¯ 2 p q a# (1)

where p and q are the frequencies of alleles A and B of

the QTL. Using this equation and assuming that p¯
0±5, values of 0±2, 0±4 and 0±6 of Falconer & Mackay’s

substitution effect are respectively equal to 0±02, 0±08

and 0±18 in terms of heritability due to the QTL, i.e.

2%, 8% and 18% of the total phenotypic variance.

In chromosome scans, only one level of the QTL effect

is simulated, i.e. a QTL accounting for 8% of the total

phenotypic variance.

(i) Simulation process

The simulation process is based on an algorithm

developed by Baret et al. (1998). The QTL has two
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alleles that are assigned at random to the sire

haplotypes depending on their frequency. For each

offspring, the haplotype inherited from the sire (taking

into account recombination events) is determined by a

binomial distribution draw between the two sire

haplotypes. The QTL allele inherited from the dam is

drawn from a binomial distribution.

Normally distributed values of offspring phenotypes

are simulated as detailed below. Sire breeding value is

equal to:

A
s
¯A

QTLs

­A
infs

(2)

where A
QTLs

is the sum of the effects of QTL alleles

allocated to the sire ; and A
infs

is the contribution of

other chromosomes to the trait and is randomly

simulated by a normal distribution assuming the

infinitesimal model N (0, [h# σ#
P
]). Offspring pheno-

typic value is equal to:

P
offspring

¯A
QTLsire

­A
QTLdam

­"

#
A

infs

­I­E (3)

where A
QTLsire

is the effect of the QTL allele inherited

by the offspring from the sire ; A
QTLdam

is the effect of

the QTL allele inherited by the offspring from the

dam; I is the remaining polygenic effect simulated by

a normal distribution N (0, [0±75h# σ#
P
]) – this term

includes dam infinitesimal effects ; and E is the

environmental noise simulated by a normal distri-

bution N (0, [(1®h#) σ#
P
]).

In order to simulate non-normally distributed

phenotypes (bacteria counts), an approach used in

geostatistics and referred to as normal score back-

transformation is applied (Goovaerts, 1997; Deutsch

& Journel, 1998). The rationale of this transformation

is explained below.

Let G(z) be the cumulative density function (cdf ) of

the standard normal random variable Z (the one of

the simulated normal phenotypes) ; let F(y) be the cdf

of the non-normal random variable Y (i.e. the non-

normally distributed phenotype) :

G (z)¯Pr(Z% z) (4)

F (y)¯Pr(Y% y) (5)

The normal score back-transformation can be seen as a

correspondence table between the p-quantiles z
p

and

y
p
of the two different distributions; in other words, z

p

and y
p

correspond to the same cumulative probability

p :

F (y
p
)¯F [F−"(G (z

p
)]¯G (z

p
)¯ p c p ` [0,1] (6)

In practice, the cumulative density function of the

non-normal phenotype is not available. Instead, one

uses a sample of the distribution, called the conditional

cumulative density function (ccdf ), since it depends

on the number of observations in the data set. Let

F(yrN ) and G(zrN ) be the ccdf of the non-normal

random variable Y and the standard normal variable

function Z ; the transformation of a normally distri-

buted phenotypic value z
i

into a non-normally

distributed phenotypic value y
i
is given by:

y
i
¯F−"[G (z

i
rN )] (7)

where G(z
i
rN ) is the probability value of the pheno-

typic value z
i
in the standard normal ccdf. The value

of the non-normally distributed phenotype is obtained

by reversing the non-normal ccdf F(yrN ). Simulation

of a non-normally distributed phenotype is therefore

performed by applying this transformation to all

simulated values of the normally distributed pheno-

type.

In most cases the simulated z
i

values will not

correspond exactly to an original value of the standard

normal ccdf ; therefore, to get y values of the non-

normally distributed phenotype, some interpolation

between the original y values or extrapolation beyond

the smallest and largest y value of the non-normal ccdf

will be required. Interpolation between two known

values is chosen to be linear. For the treatment of the

lower and upper tails, no extrapolation is used: the

simulated z
i
values lower or greater than the minimum

or the maximum values of the standard normal ccdf

are respectively set to the minimum (i.e. zero) and to

the maximum values of the non-normal ccdf.

(ii) Data set

Distributions of bacteria counts (i.e. non-normal ccdf

F(yrN )) were obtained from the study of Fre!de! ric
Lantier (personal communication) who performed an

artificial infection with a live vaccine in sheep, using

30 sires families of 40 half-sibs. Lambs weighing

approximately 36 kg (males) or 32 kg (females) were

infected intravenously with the vaccinal Salmonella

abortuso�is strain Rv6. Their blood, spleen and lymph

nodes were sampled at slaughtering (10 days later) for

the assessment of bacterial colonization and antibody

responses, and for DNA typing. Bacteria counts (per

gram of the organ dry weight), i.e. CFU, were

measured in the spleen and in left and right lymph

nodes.

Even though pooling of the counts from left and

right lymph nodes is controversial since vaccination

was done on the right side of the lambs (which showed

higher values than the left lymph node), counts are

pooled to take advantage of the resulting distribution.

Indeed, bacteria counts present an extremely asym-

metric distribution which is bimodal : a spike at zero

(8±5% of zeros for the sum of both lymph nodes,

20±0% and 16±9% of zeros in right and left lymph

nodes respectively, 70±8% of zeros in spleen) and the

rest distributed as an exponential distribution. As our

objective is to study a representative range of zero

values, three sample distributions from the study of

Fre!de! ric Lantier (personal communication) are
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chosen: bacteria counts for the sum of both lymph

nodes (n¯1170, 8±5% zeros), in the right lymph

node (n¯1171, 20±0% zeros) and in the spleen (n¯
1169, 70±8% zeros). A fourth distribution was

generated by suppressing zero-valued data in the first

sample distribution of bacteria counts ; the resulting

distribution will be referred to as bacteria counts with

0±0% of zeros (n¯1071).

(iii) Methods of analysis

Four methods of analysis are compared: three interval

mapping methods – two based on parametric assump-

tions concerning the distribution of the phenotype

(least-squares and maximum likelihood interval map-

ping) and one that makes no assumptions (non-

parametric interval mapping) ; and one QTL detection

test commonly used for a preliminary genome scan

(e.g. Vallejo et al., 1998; Yonash et al., 1999; Heyen

et al., 1999), which will be referred to as single-marker

analysis.

(a) Inter�al mapping analysis. In the interval map-

ping approach (Lander & Botstein, 1989), for given

positions (e.g. 1 cM intervals) in a linkage group (i.e.

chromosome), the probability of an offspring in-

heriting one or the other of its parents’ haplotypes

(gametes) at that position is calculated conditional on

its marker genotype. As applied to a half-sib design,

where little or no information on QTL}marker

linkages can come from the dam, it is of interest to

calculate these probabilities only for the sire gamete.

Once these probabilities have been calculated, they

can be incorporated into either a least-squares (LS), a

maximum-likelihood (ML) or a non-parametric (NP)

analysis.

The LS approach is based on a regression of the

value of the trait on the probabilities of inheriting a

given gamete from the sire (see Knott et al., 1996).

The evidence in favour of a segregating QTL, at a

given chromosome position is assessed by an F-test :

the ratio of the between-marker alleles within-sire

mean square to the residual mean square. Under the

null hypothesis of no QTL at the corresponding

chromosome position, the test statistic is assumed to

follow an F distribution with s and s(n®2) degrees of

freedom, s being the number of sires heterozygous at

the marker and n the number of offspring per family.

The ML analysis is based on the approximate

model proposed by Knott et al. (1996). The ML at

each position is entirely defined by three parameters :

the proportion of sires homozygous at the QTL (h),

Falconer & Mackay’s (1996) substitution effect of the

QTL (a) and the within-marker within-sire residual

variance (σ#
w
) (see likelihood equation in Knott et al.,

1996). The statistic is a likelihood ratio test (LRT): the

ratio of the ML fitting a QTL and of the ML when the

QTL is omitted. As shown by Baret et al. (1998), the

distribution of this LRT is assumed to be close to a

mixture of two χ# distributions of degrees of freedom

0 and 1 ("
#
χ#
(!)

­"

#
χ#
(")

).

The NP interval mapping approach based on the

Wilcoxon rank-sum test was described by Kruglyak &

Lander (1995a). Coppieters et al. (1998) adapted this

method to half-sib pedigrees in outbred populations.

Principles of this approach were extensively presented

in Coppieters et al. (1998). Briefly, to measure the

evidence in favour of a QTL at a given map position,

the following statistic is used (illustrated for an half-

sib design) :

Z
K
(p)¯Y

K
(p)}o©σ#

YK(p)
ª (8)

where

Y
K
(p)¯ 3

ni

j="

[n
i
­1®2 rank( j )] (P

ij
(A)®P

ij
(B)) (9)

in which n
i
is the number of progeny of sire i ; rank( j )

is the rank by phenotype of progeny j ; P
ij
(A) (and

P
ij
(B)) are the probabilities – conditional to marker

information – that offspring j inherits gamete A (or B)

from sire i at the position being considered (equivalent

to the notation P[g
i, A

(p) r g
i,L

, g
i,R

] in Coppieters et

al., 1998) ; and

o©σ#
YK(p)

ª (10)

is the standard deviation of Y
K
(p), expected under the

null hypothesis of no QTL over all possible sets of

genotypes. Under the null hypothesis of no QTL, Z
K

is shown to behave asymptotically as a standard

normal variable that reduces to a Wilcoxon rank-sum

test at the marker positions. As demonstrated by

Kruglyak & Lander (1995a), the expected variance of

Y
K
(p) is :

©σ#
YK(p)

ª¯
E

F

n$®n

3

G

H

©σ#
(Pij(A)−Pij(B))

ª (11)

where ©σ#
(Pij(A)−Pij(B))

ª is the expected value of

σ#
(Pij(A)−Pij(B))

over all possible genotypes. In outbred

designs, it depends on the marker allele frequencies

(among the dams) and on the genotype of the founder

sire. Coppieters et al. (1998) calculated the value of

©σ#
(Pij(A)−Pij(B))

ª for each half-sib pedigree by simulating

all possible offspring and by calculating a frequency-

weighted variance of P
ij
(A)®P

ij
(B). By definition, the

within-family ratio of the observed variance of Y
K
(p)

to the expected variance ©σ#
YK(p)

ª is the information

content at position p.

When doing across-family analysis, the different

sibships cannot be assumed to segregate for the same

alleles within the QTL or even for the same QTL; i.e.

one cannot assume locus and allelic homogeneity

across families. Instead of analysing every half-sib

family separately, Coppieters et al. (1998) suggested

squaring and summing the individual Z
K
(p) scores
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Table 1. Summary of the characteristics of the three inter�al mapping methods and of the single-marker method

Method Test statistic Theoretical distribution Estimates

LS F¯
MS

m

MSε

F [s ;s(n®2)]a Position

Within-sire effect

ML
LRT¯®2log

E

F

ML
reduced

ML
QTL

G

H

"

#
χ#

(!)
­"

#
χ#

(")
Position
Experiment-wise effect
Frequency of heterozygous sires

NP χ#
(s)

¯ 3
s

i="

Z#
K
(p)

i
χ#

(s)
Position

AN F¯
MS

m

MSε

F [s;s(n®2)] Marker associated with the QTL

a s is the number of sires heterozygous at the marker and n is the number of offspring per family.

over all s families to yield a χ# statistic with s degrees

of freedom:

χ#
(s)

¯ 3
s

i="

Z#
K
(p)

i
. (12)

A slightly modified version of the computer program

developed by Coppieters et al. (1998) is used in our

analysis to implement this non-parametric approach.

The first modification concerns the most likely linkage

phase, which is calculated in Coppieters’s computer

program using a computationally demanding algor-

ithm based on a maximum-likelihood method de-

scribed by Georges et al. (1995). Instead, the most

likely linkage phase is calculated by choosing for

every pair of markers the most frequent combination

of adjacent marker alleles among all offspring from

the sire. In this way, all interval mapping methods

(LS, ML and NP) receive the same conditional

probabilities, i.e. P
ij
(A) and P

ij
(B), which allows us to

compare them on the same basis.

The second modification concerns the method of

calculation of the information content, which is

required by the non-parametric method. As described

above, Coppieters et al. (1998) calculated within-

family values of information content at each position

by simulating all possible offspring and calculating a

frequency-weighted variance of P
ij
(A)®P

ij
(B). If the

true descent (maternal or paternal) of every centi-

morgan of DNA were known, values of QTL

conditional probabilities would be either 0 or 1. The

distribution of these QTL conditional probabilities

has mean 0±5 and variance 0±25. Under the design used

in our study, the dam allele is specifically coded to be

always identifiable, and therefore, at a marker

location, the allele inherited by every offspring from

its sire can always be identified. Consequently, at a

marker location, true descent applies in our study. It

is therefore a realistic assumption to take a distribution

of the QTL conditional probabilities with mean 0±5

and variance 0±25. Outside a marker location, this

variance would take lower values. Following similar

applications by Kruglyak & Lander (1995b) and

Spelman et al. (1996), for each position, the within-

family ratio of the observed variance of QTL

conditional probabilities to an expected maximum

value of 0±25 is used as a measure of the information

content.

(b) Single-marker analysis. The principles of using

analysis of variance (AN) to detect association

between a marker and a QTL have been previously

described (Neimann-Sørensen & Robertson, 1961 ;

Weller et al., 1990). For each marker in turn,

informative (i.e. heterozygous) sires and offspring in

which the allele inherited from the sire can be identified

are selected; the test performed is an F-test : the ratio

of the between-marker allele within-sire mean square

to the residual mean square. As for the F-test applied

in LS interval mapping, under the null hypothesis of

no QTL at the corresponding marker, the test statistic

is assumed to follow an F distribution with s and

s(n®2) degrees of freedom.

The principal characteristics of the three interval

mapping methods and of the single-marker method

are summarized in Table 1.

(c) Mathematical transformation. A classic way to

cope with non-normally distributed data such as

bacteria counts is to apply a mathematical trans-

formation. After tests (data not shown), the log-

arithmic transformation was chosen; a constant 1 was

added to the phenotypic values prior to transformation

to avoid negative infinity problems due to the log of

zero.

(iv) Comparison of methods

Using parameters described above, single-position

simulations as well as chromosome scans are achieved

either under the null hypothesis of no QTL (10000 or
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1000 replicates, respectively, for single-position simu-

lations or chromosome scans), for the determination

of empirical thresholds. Simulations are also achieved

under the hypothesis of one QTL segregating (1000

replicates), for the determination of power estimates.

Methods are compared according to their power to

detect the simulated QTL, either when the phenotype

is normally distributed or when the phenotype is

distributed as bacteria counts. For chromosome scans,

mean estimates of QTL location over all replicates are

compared.

In the single-position context, AN and LS are

statistically identical and give the same results ; only

LS, ML and NP are therefore compared in single-

position simulations, while all four methods are

compared in chromosome scans. In chromosomes

scans, analysis is repeated at fixed location (every 1

cM); a grid search increment of 0±25 is used in the ML

optimization (see Baret et al., 1998).

(a) Empirical thresholds. Each simulated data set is

analysed using three or four methods according to the

type of simulation (LS, ML and NP for single-

position simulations, or AN, LS, ML and NP for

chromosome scans).

In the context of the single-position simulations,

degrees of freedom of F ratios (LS) vary from one

replicate to another since sires homozygous at the

marker are dropped from the analysis. A sire has a

1}16 chance of being homozygous at the single

marker. Therefore, once a sire is homozygous, 1

degree of freedom is lost for the numerator and (n®2)

for the denominator of the F-test (n being the number

of sons in the half-sibship). Hence, direct comparison

of F ratios may not be possible as they do not belong

to the same distribution and, instead, the P value of

each F ratio is used as proposed by Knott et al. (1996).

In this way, all analyses can contribute to a single

distribution of the test statistic. Since the χ# statistic of

the NP analysis is dependent on s (the number of

heterozygous sires), the values of the test statistics are

also converted into P values. To aid comparison,

however, rather than using values of the LRT, P

values of the LRT are calculated, assuming a mixture

of two χ# distributions: "

#
χ#
(!)

­"

#
χ#
(")

(Baret et al.,

1998). Over the 10000 replicates, for all three methods,

5% and 1% significance thresholds are determined by

ranking P values of the observed test statistics under

the null hypothesis. In this way, the values of

significance thresholds that are used are threshold

values of P values to reach an overall 5% or 1% error

rate.

In chromosome scans, for LS, ML and NP,

maximum values of the test statistics are ranked to

determine chromosome-wise 5% and 1% significance

thresholds. Indeed, unlike the single-position case,

degrees of freedom of F-tests for LS will not differ

between markers for two reasons: firstly, because the

probability of a sire being homozygous at all markers

is very low, i.e. (1}16)"" (11 markers, with 16 alleles

each) ; secondly, because when a marker is homo-

zygous, information at that position will come from

flanking markers. Consequently, the number of

degrees of freedom of F ratios will be constant

throughout the chromosome, and F values will be

used for the computation of significance thresholds.

Similarly, for NP and ML analysis, actual values of

the χ# statistics will be used. Conversely, as stated by

Knott et al. (1996), degrees of freedom of F ratios in

AN will vary from marker to marker. To allow for

this and similarly to single-position simulations, the P

value of the F ratio for each marker is determined and

the most significant marker selected as providing the

best estimate of the closest marker to any QTL.

(b) Power calculations. Simulations under the hy-

pothesis of one QTL segregating are achieved by

generating data sets with a QTL (at marker location in

single-position simulations and at 35 cM in chromo-

some scans). Power estimates are obtained using

empirical thresholds for the three levels of QTL effect

in single-position simulations (2%, 8% and 18% of

phenotypic variance) and for one level of QTL effect

in chromosome scans (8%). Power estimates are

considered as different if the difference is higher than

1±96 ou(1®u) (1}n
"
­1}n

#
), where u is the proportion

of runs above the significance threshold pooled across

methods, and n
"

and n
#

are the number of runs for

each method. As power is calculated in parallel on the

same simulated data, the results of the methods of

analysis are positively correlated and this test is

conservative (Baret et al., 1998).

3. Results

(i) Simulated data

Using the approach described in Section 2, we use the

normal score back-transformation to simulate bacteria

counts with various proportions of zeros (Fig. 1).

Average percentages of zeros (mean³SD) in simu-

lated bacteria counts (for the 10 000 replicates of

single-position simulations) were 8±0³1±1%,

19±4³1±7%and 71±1³2±1%, respectively, for bacteria

counts in both lymphe nodes together, in the right

lymphe node and in the spleen. Such values are very

close to the initial parameters of the simulation:

8±5%, 20±0% and 70±8%.

(ii) Empirical thresholds

As expected, degrees of freedom of F ratios vary

between replicates (from F [21;798] to F [30;1140]).

This confirms the interest of taking into account

homozygous sires for the determination of empirical
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Fig. 1. Distribution of simulated bacteria counts in CFU units with (a) 8±5% of zeros, (b) 20±0% of zeros, (c) 70±8%
of zeros (data of bacteria counts with 0±0% of zeros are not shown since the graph is very similar to graph (a)) ;
(d ) distribution of bacteria counts with 8±5% of zeros after mathematical transformation (other transformed data not
shown); one replicate used (n¯1200). Fixed boundaries are used for histograms: the first bar is the proportion of zero
values, and the rest are intervals of 1000 for (a) and (b), 2 for (c) and 0±5 for (d ).

Table 2. Empirical 5% significance thresholds of P �alues for single-

position simulations and for chromosome scans

Method

Phenotype

Normal

Bacteria counts

Proportion of zeros

0±0% 8±5% 20±0% 70±8%

Single-position simulations
LS 0±05005a 0±03692a,b 0±03587a,b 0±03365b 0±03092b

ML 0±03767a 0±00036b 0±00030b 0±00018b 0±00006c

NP 0±04343a 0±04327a 0±04115a 0±04074a 0±04481a

Chromosome scans
LS 0±00575a 0±00122a 0±00131a 0±00105a 0±00086a

ML 0±00388a 1±348 E-6b 7±044 E-7b 4±309 E-7b,c 8±391 E-8c

NP 0±00397a 0±00421a 0±00409a 0±00375a 0±00362a

AN 0±00620a 0±00226a 0±00234a 0±00165a 0±00114a

Based on 10000 replicates for single-position simulations, and on 1000 replicates
for chromosome scans, under the null hypothesis of no QTL. Threshold values are
presented as the probability of the relevant test statistic (i.e. P value), since degrees
of freedom of test statistics (LS and NP in single-position simulation and AN in
chromosome scans) vary between replicates.
a Comparison of P value distributions between phenotype within methods (LS,
ML, NP or AN; Mann–Whitney U-test) ; values with the same superscript are not
significantly different ; P" 0±005.
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Table 3. Power (%) at the 5% significance le�el in single-position simulations

QTL effect
(%) Phenotype

Proportion of zeros
(%)

Mathematical transformation

No Yes

LS ML NP LS ML NP

2a Normal 20 20 18 20 20 18
Bacteria counts 0±0 11 7 18 19 18 18

8±5 11 7 17 18 17 17
20±0 10 7 17 16 16 17
70±8 9 7 10 13 9 10

8 Normal 78 76 74 78 76 74
Bacteria counts 0±0 45 16 74 77 75 74

8±5 43 15 73 75 73 73
20±0 36 13 71 73 73 71

70±8 32 11 30 51 33 30

18 Normal 99 99 99 99 99 99
Bacteria counts 0±0 85 47 99 99 99 99

8±5 82 43 98 98 98 98
20±0 75 30 98 98 98 98
70±8 67 20 69 91 80 69

Power estimates based on 1000 replicates of each alternative using 5% significance thresholds determined from 10000
simulations under the null hypothesis of no QTL. Heritability of the trait was 0±25.
a QTL effect is expressed in terms of heritability due to the QTL (h#

QTL
) ; conversion to Falconer & Mackay’s (1996)

substitution effect amounts to values of 0±2, 0±4 and 0±6 respectively for values of 2%, 8% or 18% of h#
QTL

.

thresholds of LS and NP methods, in the context of

our single-position simulations, and of AN in the

context of our chromosome scans (Table 2).

In single-position simulations, when the normal

phenotype is analysed, the 5% thresholds for ML and

NP are lower than the expected 5% value (i.e. more

conservative). The same pattern was observed for 1%

thresholds (data not shown). Conversely, the LS

method has threshold values close to the expected

level for a single test. When bacteria counts are

analysed, the significance thresholds decrease as the

proportion of zeros in the phenotype increases (i.e. to

be significant, the P value of the test statistic obtained

for a single analysis has to be more extreme). The

threshold values of parametric tests obtained for

bacteria counts are lower than the threshold values

obtained with the normal phenotype, especially with

ML. Unlike parametric methods, threshold values of

the non-parametric test are not influenced by the

proportion of zeros in bacteria counts. When a

mathematical transformation is applied to bacteria

counts prior to QTL analysis (data not shown),

threshold values are close to the one obtained with the

normally distributed phenotype, except for ML when

bacteria counts have a high proportion of zeros

(70±8%): the value of the 5% significance threshold is

equal to 0±7%.

In chromosome scans, 5% thresholds are lower

than the expected 5% value and are close to those that

would be obtained using a Bonferroni adjustment for

the number of intervals on the chromosome. All

significance thresholds decrease when bacteria counts

are analysed, but this decrease is only significant for

ML.

(iii) Power estimates

In single-position simulations, power estimates at the

5% level (and at the 1% level ; data not shown) are

not significantly different between methods when the

normally distributed phenotype is analysed and within

each QTL effect (Table 3) (except at the 1% level and

for a QTL effect of 18% for which the power of LS

(97%) is significantly higher than the power of NP

(95%); data not shown). However, when bacteria

counts are analysed, at the 5% level, all power

estimates of parametric methods are significantly

decreased. Conversely, the power of NP is not

significantly decreased when bacteria counts are

analysed, except when the proportion of zeros in

bacteria counts is very high (70±8%) and for a QTL

effect of 8% and 18%. Even when bacteria counts

have 20%of zeros, at the 5% level, the non-parametric

method detects the simulated QTL of 8% in 71% of

the replicates, compared with 36% of the replicates

for F ratio based methods. At the 1% level, the same

decrease is observed when bacteria counts are

analysed, except for a small QTL effect (2%) for

which this decrease is not significant (data not shown).

At the 5% level and for bacteria counts with 0±0%,

8±5% and 20±0% of zeros, the power of the non-

parametric method is significantly higher than the
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Table 4. Power (%) at the 5% significance le�el in chromosome scans

Phenotype
Proportion
of zeros

Method

LS MTa ML MT NP MT AN MT

Normal 61 – 60 – 52 – 59 –
Bacteria counts 0±0% 19 59 8 58 53 52 23 56

8±5% 19 55 7 54 53 53 22 54
20±0% 15 58 6 54 50 51 16 51

70±8% 13 30 6 21 16 16 13 28

Power estimates obtained using 5% significance thresholds determined from the ranking of maximum values of 1000
simulations under the null hypothesis of no QTL. Heritability of the trait was 0±25. Heritability due to the QTL was set to
8% of the total phenotypic variance.
a Mathematical transformation (MT) of bacteria counts prior to analysis.

power obtained by other methods except for the

lowest QTL effect (2%). For the highest proportion of

zeros in bacteria counts (70±8%), the power of NP is

equal to the power of F ratio based methods and

higher than the power of ML. At the 1% level, the

same pattern is observed, except for the highest QTL

effect (18%) and the highest proportion of zeros,

where the power of NP is significantly higher than the

power of LS, i.e. 49% versus 39% (data not shown).

Among the parametric methods, ML is the most

affected by the analysis of bacteria counts : power

estimates are strongly decreased compared with the

power estimate when the normally distributed pheno-

type is analysed. This decrease is higher for a QTL

accounting for 8% of phenotypic variance than for

small (2%) and high (18%) QTL effects (Table 3).

Unlike single-position simulations, there are

differences between power estimates in chromosome

scans when the normally distributed phenotype is

analysed: the power of parametric methods is signifi-

cantly higher than the power of NP (Table 4). As

expected, the power of the single-marker method

(AN) is lower than the power of LS, but not

significantly. Except for NP, all power estimates are

significantly decreased when bacteria counts are

analysed. Indeed, the power estimate of NP is not

significantly decreased for bacteria counts with low

and intermediate proportions of zeros (0±0%, 8±5%

and 20±0%).

(iv) Mathematical transformation

In single-position simulations, when a logarithmic

transformation is applied on simulated bacteria counts

before analysis, the power of all parametric methods

is significantly increased compared with the analysis

of raw bacteria counts, except for the smallest QTL

effect for LS (Table 3). ForNP, the power is unchanged

when data are mathematically transformed. For low

and intermediate proportions of zeros (8±5% and

20±0%), the power of LS and ML is slightly higher

than the power obtained by NP (non-significant),

when mathematically transformed bacteria counts are

analysed. For the highest proportion of zeros (70±8%)

with QTL effect of 8% and 18%, LS outperforms NP

by 21% and 22% of power respectively (significant)

(Table 3). Within each method, all the differences in

power between the analyses of normal phenotypes

and of mathematically transformed bacteria counts

are non-significant except for the highest proportion

of zeros and with a QTL effect of 8% and 18%.

In chromosome scans, the power of all parametric

methods is increased when a logarithmic transform-

ation is applied to bacteria counts (Table 4). Values of

power estimates are not significantly different from

the power obtained when the phenotype is normally

distributed, except for ML and AN for 20±0% of

zeros, and for all four methods for the highest

proportion of zeros, for which power estimates are

significantly lower. The LS method coupled with a

mathematical transformation of bacteria counts yields

higher power estimates than the non-parametric

method for all proportions of zeros in bacteria counts :

59% versus 53%, 55% versus 53%, 58% versus 50%

and 30% versus 16% respectively from 0±0% to

70±8% of zeros (Table 4). This difference is significant

only for intermediate and high proportion of zeros

(20±0% and 70±8%). Other parametric methods (ML

and AN) give significantly higher power estimates

than NP when the proportion of zeros is equal to

70±8%.

(v) Mean �alues of test statistics along the

chromosome

All interval mapping methods clearly yield very similar

curves when the normally distributed phenotype is

analysed (Fig. 2). However, there are differences

between methods in terms of sensitivity to bacteria

counts. Interval mapping using ML is the method

most affected, showing a very flat curve for the three

proportions of zeros. Mean values of F ratios, along
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Fig. 2. Mean test statistic values (1000 replicates) along the chromosome for the four QTL mapping methods when a
normally distributed phenotype and bacteria counts (0±0%, 8±5%, 20±0% or 70±8% of zeros) are analysed. For the
single-marker method (AN), a test is performed only at marker location (positions 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100) ; instead of F ratio values, (1®P) values of the F ratios are presented, since degrees of freedom vary between
markers and replicates. Arrowheads indicate the location of the simulated QTL.

Table 5. Mean estimates (³SE ) of QTL location in chromosome scans (based on 1000 replicates of each

alternati�e)

Phenotype
Proportion
of zeros

Method

LS ML NP AN

Normal 38±6³0±6a,b 38±7³0±6a 38±4³0±6a 38±8³0±6a

No mathematical transformation
Bacteria counts 0±0% 41±7³0±8b,c 43±5³0±9b 38±5³0±6a 41±3³0±8a,b

8±5% 41±7³0±8b,c 43±5³0±9b 38±5³0±6a 41±7³0±8a,b

20±0% 42±7³0±9a 44±1³0±9b 38±7³0±6a 42±6³0±9b

70±8% 43±7³0±9a 45±5³1±0b 43±0³0±9b 42±9³0±9b

Mathematical transformation
Bacteria counts 0±0% 38±2³0±6a 38±8³0±6a,b 38±4³0±6a 38±6³0±6a

8±5% 38±1³0±6a 38±6³0±6a 38±5³0±6a 38±6³0±6a

20±0% 38±5³0±6a,b 38±1³0±6a 38±8³0±6a 38±4³0±6a

70±8% 40±9³0±8a,b,c 42±4³0±8b,c 43±0³0±9b 41±5³0±8a,b

Heritability of the trait was 0±25. Heritability due to the QTL was set to 8% of total phenotypic variance. One QTL was
simulated in position 35±0 cM.
a Comparison of mean estimates of QTL location between phenotype within methods (LS, ML, NP or AN, Bonferroni
t-tests) ; values with the same superscript are not significantly different ; P" 0±05.

the chromosome (LS) and at marker location (AN),

are strongly decreased when bacteria counts are

analysed, especially with the two highest proportions

of zeros (20±0% and 70±8%). Except with the highest

proportion of zeros (70±8%), the mean value of the

NP test statistic is not decreased compared with the

mean value of the test statistic when the normally

distributed phenotype is analysed.

https://doi.org/10.1017/S0016672301005365 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005365


QTL mapping methods for bacteria counts 313

When bacteria counts are mathematically trans-

formed prior to analysis, mean values of test statistics

are close to values of the normally distributed

phenotype, except with the highest proportion of

zeros (data not shown).

(vi) Mean estimates of QTL location

For all QTL mapping methods, when a normally

distributed phenotype is analysed, the estimated QTL

location tends to be biased towards the centre of the

chromosome as expected (Table 5). This bias increases

as the proportion of zeros in bacteria counts increases,

except for NP and at a low proportion of zeros (0±0%,

8±5% and 20±0%), for which the mean location

estimates are between 38±5 and 38±7 cM. Similarly, as

the proportion of zeros increases, the mean location

estimates become less precise, i.e. the standard errors

(SE) of the estimates increase. This pattern is observed

for all methods except for NP, for which this increase

in the SE is only observed with 70±8% of zeros in

bacteria counts.

For low and intermediate proportions of zeros

(0±0%, 8±5% and 20±0%), when a mathematical

transformation is applied to bacteria counts before

analysis, mean estimates of QTL location are closer to

the mean estimate when the normal phenotype is

analysed (non-significantly different for all methods).

Furthermore, the standard errors of the mean esti-

mates are decreased. For the highest proportion of

zeros (70±8%), the mean estimates of QTL location

for ML and NP are significantly more biased than the

mean estimates of the normal phenotype. Mean

estimates of QTL location for LS and AN are also

more biased to the centre of the chromosome but not

significantly : this bias is lower for the interval mapping

test (LS) than for the association test (AN): 40±9³0±8
versus 41±5³0±8.

4. Discussion

To our knowledge, this is the first study in which three

interval mapping methods and one association test are

studied in parallel in the context of non-normal

phenotypes and outbred half-sib populations. Other

studies on non-normality in QTL mapping focused on

artificial distributions (rarely met in the field) which

were simulated from random functions (Doerge &

Rebaı$ , 1996; Rebaı$ , 1997; Coppieters et al., 1998).

Studies by Doerge & Rebaı$ (1996) and Rebaı$ (1997)

were dedicated to backcross and F2 experiments.

Coppieters et al. (1998) compared LS and NP methods

in the context of half-sib designs. In the present study,

real data (bacteria counts) from a case study by

Fre!de! ric Lantier (personal communication) are used

to simulate non-normality by means of the normal

score back-transformation used in geostatistics. This

transformation is a very efficient tool to simulate any

type of non-normality. When it is coupled with the

simulation algorithm developed by Baret et al. (1998),

it enables simulation of half-sib populations with a

segregating QTL for both normally and non-normally

distributed phenotypes.

In this studywe showed that the power of parametric

QTL mapping methods is strongly reduced if raw

bacteria counts are analysed. This reduction was

observed for single-position simulations (1 marker, 1

QTL) as well as for simulations of chromosome scans

(11 markers, 1 QTL). For example, in single-position

simulations, in the situation of a moderate QTL effect

(8% of the total phenotypic variance), and when

bacteria counts with 20±0% of zeros are analysed, we

observed a loss of power of 42% for LS at the 5%

significance level, when compared with the analysis of

a normally distributed phenotype. This loss of power

reached 63% in the case of ML analysis. In

chromosome scans, the loss of power using LS and

ML was respectively 46% and 54%. Conversely, no

significant loss of power was observed with the non-

parametric method (3% and 2% respectively for

single-position and chromosome scan simulations, at

the 5% significance level).

LS, as well as AN, had the same power as NP for

low proportions of zeros in bacteria counts when it is

coupled with a logarithmic transformation of bacteria

counts before analysis. The power of LS was even

significantly higher than the power of NP for bacteria

counts with 20±0% and 70±8% of zeros. For example,

for 70±8% of zeros, in the situation of a moderate

QTL effect (8%), the power of LS was 21% and 14%

higher than the power of NP for single-position and

chromosome scan simulations respectively.

Losses of power encountered by either parametric

or non-parametric methods when mapping QTL for

bacteria counts can be explained by two distinct

causes : the non-normality of bacteria counts, and the

occurrence of tied values (zero values) in bacteria

counts.

Non-normality : Our results showed that parametric

methods are not as robust as expected to non-

normality. Even though least-squares methods and

ANOVA are commonly said to be robust against non-

normality, we showed that their robustness against

bacteria counts is low. As expected, robustness of

maximum-likelihood QTL mapping to non-normality

was very poor. Indeed, the ML method uses the

normal density function for the building of the

likelihood. The poor performance of ML is therefore

explained by the fact that the distribution of bacteria

counts is closer to an exponential distribution than to

a normal distribution. Indeed, bacteria counts are

characterized by some high values (highly infected

individuals) which can be considered as outliers as

opposed to the normal distribution (see Fig. 1). For
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example, bacteria counts in both lymph nodes

together, when zero-valued data are suppressed, range

between 3 and 22 628 while 50% of the observations

are below the value of 318 bacteria. These outliers

contribute excessively to the residual variation, and

therefore decrease the power of parametric tests. As

stated by Coppieters et al. (1998), when using the NP

method, the contribution of outliers to the residual

variation is tempered, since ranks are used rather than

the actual phenotypes.

From a probabilistic point of view, distributions of

bacteria counts are neither continuous nor categorical.

Indeed, these distributions are usually composed of a

spike at zero and a continuous right tail (also known

as ‘tobit ’ distributions in econometrics). One ap-

proach could be to transform bacteria counts into

either a dichotomous trait (resistant vs. sensible) or a

polychotomous trait (discrete levels of infection). This

would allow the existence of outliers to be circum-

vented and would imply the use of methods adapted

to threshold traits such as those proposed by Visscher

et al. (1996) and Hackett & Weller (1995). However,

such an approach would lead to a loss of information

since the intensity of the colonization would be

omitted. Another approach would be to consider the

use of Poisson models to analyse bacteria counts, by

including the Poisson density function in a likelihood.

Up to now, the use of Poisson models for QTL

mapping was restricted to traits presenting a small

number of categories, such as litter size (e.g. Kayis et

al., 1999). Extensions to distributions with very large

values – up to 22000 in our data – should be studied.

Occurrence of tied �alues : When a mathematical

transformation was applied to bacteria counts before

analysis, the power of parametric methods was

increased. Such a result was observed even if there was

a high proportion of tied values (zeros). This confirms

that the robustness problems of parametric methods

can be explained by the non-normality of bacteria

counts (and therefore by the existence of outliers)

rather than by the occurrence of tied values. Con-

versely, loss of power of NP when bacteria counts

with a high proportion of zeros (70±4%) were analysed,

could be explained by this high occurrence of tied

values. As suggested by Kruglyak & Lander (1995a),

random ranking of ties was applied in our study. This

approach has the merit of simplicity but obviously

sacrifices some information contained in the data (i.e.

the existence of ties). Furthermore, when the number

of ties is very high, this random ranking of tied values

has the drawback of adding new information in the

data: individuals with the same phenotypic value but

with different genotypes turn out to be hierarchically

classified even though they should have the same

rank. Conversely, when using parametric methods,

i.e. when using actual values of phenotypes rather

than the ranks, the information of tied values is kept,

and individuals with the same phenotypic value are

considered as equivalent. The problem of the random

ranking of tied individuals highlighted in this study is

restricted to phenotypes presenting a high number of

ties (e.g. bacteria counts, lesion scores). For con-

tinuous phenotypes where the occurrence of ties is

rare, one should not observe a loss of efficiency when

using a non-parametric test (as shown in this study for

small proportions of zeros). Further research on NP

interval mapping could therefore focus on differences

in power when tied values are ranked at random,

compared with the method of attributing to each of

the tied observations the average of those tied.

Except for the NP method, probability values of

empirical thresholds were strongly reduced (i.e. actual

values increased) when bacteria counts were analysed.

This confirms the interest of using empirically de-

termined thresholds, e.g. simulation-based or

permutation-based thresholds (e.g. Churchill &

Doerge, 1994), instead of using theoretical thresholds

when analysing non-normally distributed traits. In-

deed, theoretical thresholds could lead to an increase

in the false positive rate. Contrary to Coppieters et al.

(1998), we did not observe a gain in power of NP

when analysing non-normal traits compared with the

analysis of a normally distributed trait. The maximum

power of NP was obtained when the phenotype was

normally distributed or when bacteria counts with no

ties were analysed. This could be explained by

differences in the computation of significance

thresholds : permutation-based for Coppieters et al.

(1998) versus simulation-based in our approach.

The simulation of the non-normal phenotype was

achieved using a simple correspondence table between

a normal distribution and an observed distribution

(normal score back-transformation). We could have

simulated separately the QTL effect, polygenic back-

ground and residual variation that underlie the

bacteria counts phenotype. Such an approach would

have implied that the properties of the distributions of

these three components were known or inferred.

In the context of our chromosome scan simulations,

interval mapping methods (LS, ML and NP) and the

nested ANOVA (single-marker analysis) were com-

pared simultaneously. However, AN is not exactly a

QTL mapping method and should be considered more

as an association test. Our results showed that the

power of AN was very close to the power of interval

mapping methods; furthermore, mean estimates of

QTL location were very similar. However, in a less

informative situation (lower number of alleles per

marker and with adjacent markers of varying in-

formation content), interval mapping methods would

outperform AN in terms of power and precision of

QTL location as shown by Rebaı$ et al. (1995) and

Knott et al. (1996). Therefore, the use of AN for QTL

detection should be restricted to a first screening of
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chromosome regions susceptible to containing QTL

(when a small number of markers are typed), before

DNA typing of a larger number of markers. Putative

association should always be confirmed by an interval

mapping analysis.

This study showed that the use of standard QTL

mapping methods for the analysis of bacteria counts

data may lead to a significant decrease in statistical

power. A QTL analysis of bacteria counts should

either use a non-parametric test or transform the

observed phenotype by use of the appropriate math-

ematical transformation prior to using a parametric

test. However, it needs to be borne in mind that

parametric methods (LS and ML) provide a direct

estimate of phenotypic effect of the QTL, whereas the

non-parametric method simply tests for the presence

of a QTL. Consequently, when there is evidence of

non-normality, both non-parametric and parametric

approaches should be used as recommended by

Kruglyak & Lander (1995a). Our results could be

extended to other disease traits implying a counting

process, e.g. fecal egg counts (FEC) in parasitic

diseases or plaque-forming units (PFU) in viral

diseases.
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