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Abstract

Let p and ` be distinct primes, and let ρ be an orthogonal or symplectic representation of
the absolute Galois group of an `-adic field over a finite field of characteristic p. We define
and study a liftable deformation condition of lifts of ρ ‘ramified no worse than ρ’, general-
izing the minimally ramified deformation condition for GLn studied in Clozel et al.
[Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ.
Math. Inst. Hautes Études Sci. 108 (2008), 1–181; MR 2470687 (2010j:11082)]. The key
insight is to restrict to deformations where an associated unipotent element does not
change type when deforming. This requires an understanding of nilpotent orbits and
centralizers of nilpotent elements in the relative situation, not just over fields.
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1. Introduction

Let ` and p be primes, L be a finite extension of Q`, and ΓL be the absolute Galois group
of L. Suppose O is the ring of integers in a p-adic field with residue field k. For a reductive
group G, it is important to study deformations of a continuous representation ρ : ΓL → G(k).
Information about the universal deformation ring, and quotients corresponding to restricted
classes of deformations, have many applications, for example to producing congruences between
modular forms, proving modularity lifting theorems, and understanding generalizations of Serre’s
conjecture and of the Breuil–Mézard conjecture. The case G = GLn has received the most
attention. In this paper, we assume ` 6= p and generalize the minimally ramified deformation
condition for GLn studied by Clozel, Harris and Taylor [CHT08, § 2.4.4] to symplectic and
orthogonal groups.

This question was originally motivated by the problem of producing geometric deformations
of representations of the absolute Galois group of a number field using a generalization of a
method introduced by Ramakrishna [Ram99, Ram02]. For use in Ramakrishna’s method, we
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would like to define a deformation condition of lifts which are ‘ramified no worse than ρ’, such that

the resulting deformation condition is liftable despite the fact that the unrestricted deformation

condition for ρmay not be liftable. WhenG= GLn, the minimally ramified deformation condition

defined in [CHT08, § 2.4.4] works. Attempting to generalize the argument of [CHT08, § 2.4.4] to

groups besides GLn leads to a deformation condition based on parabolics which is not liftable.

Instead, inspired by the arguments of [Tay08, § 3] we define a deformation condition for symplectic

and orthogonal groups based on deformations of a nilpotent element of LieGk. This condition

is liftable, which illustrates how genuinely new ideas are needed to study the deformation rings

for representations valued in groups besides GLn.

In § 5.2, we define a minimally ramified deformation condition for symplectic and orthogonal

groups after extending the residue field k. This extension is harmless for the original application,

and for that application it is also convenient to consider deformations with a fixed similitude

character. Our main result is the following, which is precisely the local input needed in

Ramakrishna’s method in the ` 6= p case.

Theorem 1.1. Let G be GSpn or GOn over Zp with p > n, and let ρ : ΓL→G(k) be a continuous

representation with ` 6= p. After extending k, the minimally ramified deformation condition with

fixed similitude character is a liftable deformation condition (in the sense of Definition 2.5), and

its tangent space has dimension dimH0(ΓL, ad0(ρ)).

This can equivalently be expressed as exhibiting a formally smooth quotient of the universal

lifting ring R�ρ . In this paper, we study only the local theory: the applications to producing

geometric lifts are discussed in [Boo19]. In the remainder of the introduction, we will sketch how

to correctly generalize the minimally ramified deformation condition introduced for GLn and

analyze it. The strategy could work for general G, but several pieces of the argument are specific

to orthogonal or symplectic groups (or GLn), which was all that was needed for the original

application.

The first step in [CHT08, § 2.4.4] is to reduce to studying certain tamely ramified

representations. Clozel, Harris and Taylor reduce the problem to defining a nice class of

deformations for representations of the group Tq := Ẑ n Zp, where the first factor is generated

by a Frobenius φ and the second by an element τ in the inertia group. They satisfy the relation

φτφ−1 = qτ for some q prime to p. This reduction generalizes without surprises to symplectic and

orthogonal groups in § 6 (but the argument is genuinely restricted to orthogonal and symplectic

groups as it relies heavily on the pairing).
The second step is to specify when a lift of ρ : Tq→ GLn(k) is ‘ramified no worse than ρ’. For

a coefficient ring R, a deformation ρ : Tq→ GLn(R) is minimally ramified according to [CHT08]
when the natural k-linear map

ker((ρ(τ)− 1n)i)⊗R k→ ker((ρ(τ)− 1n)i) (1.1)

is an isomorphism for all i. The deformation condition is analyzed as follows.

• Defining Vi = ker((ρ(τ)− 1n)i) gives a flag

0 ⊂ Vr ⊂ Vr−1 ⊂ · · · ⊂ V1 ⊂ kn.

This flag determines a parabolic k-subgroup P ⊂ GLn (points which preserve the flag) such

that ρ(τ) ∈ (RuP )(k) and ρ(φ) ∈ P (k).
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• Lift P to a parabolic subgroup P of GLn. The deformation functor of such lifts is formally
smooth, and for any minimally ramified deformation ρ over R there is a choice of such P for
which ρ(τ) ∈ (RuP )(R) and ρ(φ) ∈ P (R). Conversely, any ρ with this property is minimally
ramified.

• Finally, for the standard block-upper-triangular choice of P , one shows the deformation
functor

{(T,Φ) : T ∈ RuP,Φ ∈ P,ΦTΦ−1 = T q, T = ρ(τ),Φ = ρ(φ)}

is formally smooth by building the universal lift over a power series ring: this uses explicit
calculations with block-upper-triangular matrices.

To generalize beyond GLn, we need to replace (1.1) with a more group-theoretic criterion.
The naive generalization is to associate a parabolic P to ρ and then use the following definition.

Definition 1.2. For a coefficient ring R, say a lift ρ : Tq → G(R) is ramified with respect to P
provided that there exists a parabolic R-subgroup P ⊂ GR lifting P such that ρ(τ) ∈ (RuP )(R)
and ρ(φ) ∈ P (R).

This idea does not work. Let us focus on the symplectic case to illustrate what goes wrong.
The first problem is to associate a parabolic subgroup to ρ. Recall that parabolic subgroups

of a symplectic group correspond to isotropic flags 0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ V ⊥r ⊂ · · · ⊂ V ⊥1 ⊂ k2n.
There is no reason that the flag determined by (1.1) is isotropic, so we would need some other
method of producing a parabolic P such that ρ(τ) ∈ (RuP )(k). In [BT71], Borel and Tits give a
natural way to associate to the unipotent ρ(τ) a smooth connected unipotent k-subgroup of G.
The normalizer of this subgroup is always parabolic and so gives a candidate for P . However,
working out examples in GLn for small n shows that this produces a different parabolic than the
one determined by (1.1). This raises the natural question of how sensitive the smoothness of the
deformation condition is to the choice of parabolic.

This leads to the second, larger problem: there are examples such that for every parabolic
P satisfying ρ(τ) ∈ (RuP )(k), not all deformations ramified with respect to P are liftable.

Example 1.3. Take L = Q29 and k = F7. Consider the representation ρ : T29 ' Ẑ n Z7 →

GSp4(F7) defined by

ρ(τ) =

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ρ(φ) =

1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 .

The deformation condition of lifts ramified relative to a parabolic P of GSp4 whose unipotent
radical contains ρ(τ) is not liftable for any choice of P : there are lifts to the dual numbers that do
not lift to F7[ε]/(ε3). This is easy to check with a computer algebra system such as [SAGE], since
the existence of lifts can be reduced to a problem in linear algebra. This is a general phenomenon,
which we will explain conceptually in § 5.3.

The correct approach is to define a lift ρ : Tq → G(R) to be minimally ramified if ρ(τ) has
‘the same unipotent structure’ as ρ(τ). It is more convenient to work with nilpotent elements,
using the exponential and logarithm maps (defined for nilpotent and unipotent elements since
p > n). There are combinatorial parametrizations of nilpotent orbits of algebraic groups over an
algebraically closed field, for example in terms of partitions or root data, which make precise the
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notion that the values of N ∈ gO in the special and generic fiber lie in the same nilpotent orbit.
In particular, for each nilpotent orbit σ, we use the results of § 3.1 to choose particular elements
Nσ ∈ gO with this property lifting N ∈ gk. In § 3.2, we define the pure nilpotents lifting N to be
the Ĝ(R)-conjugates of Nσ for a coefficient ring R.

Example 1.4. For example, let G = GL3 and

N =

0 1 0
0 0 0
0 0 0

 .

Consider the lifts

N1 =

0 1 0
0 0 0
0 0 0

 ∈ g and N2 =

0 1 0
0 0 p
0 0 0

 ∈ g.

Both are nilpotent under the embedding of O into its fraction field K. The images of N1 in gK
and gk both lie in the nilpotent orbit corresponding to the partition 2 + 1, so N1 is an example
of the type of nilpotent lift we want to consider. On the other hand, the image of N2 in gK
lies in the nilpotent orbit corresponding to the partition 3, while the image on gk lies in the
orbit corresponding to 2 + 1, so we do not want to use it. The pure nilpotents lifting N are
Ĝ(R)-conjugates of N1.

We finally define a lift ρ : Tq → G(R) to be minimally ramified provided ρ(τ) is the
exponential of a pure nilpotent lifting log ρ(τ) = N . Proposition 5.6 shows that this deformation
condition is liftable. The main technical fact needed to analyze this deformation condition is that
the scheme-theoretic centralizer ZG(Nσ) is smooth over O for Nσ as above. The smoothness of
such centralizers over algebraically closed fields is well understood, and in § 4 we study ZG(Nσ)
and show that ZG(Nσ) is flat over O and hence smooth. Lemma 4.4 gives a criterion for flatness
that is easy to verify for classical groups, which suffices for our applications. We can reduce
checking O-flatness to the problem of finding elements g ∈ ZG(Nσ)(O) such that gk lies in any
specified component of ZGk(N)/ZGk(N)◦. There are difficulties beyond the classical cases due
to the varied structure of π0(ZG(N)k) in general.

Remark 1.5. It is a fortuitous coincidence (for [CHT08]) that for GLn the lifts minimally ramified
in the preceding sense are exactly the lifts ramified with respect to a parabolic subgroup of G.
This rests on the fact that all nilpotent orbits of GLn are Richardson orbits (see § 5.3 for details).

1.1 Structure of the paper
Section 2 discusses deformation conditions, deformation rings, and lifting rings. Section 3
constructs integral representatives for nilpotent orbits, and defines the notion of a pure nilpotent
lift. This notion requires a study of the O-smoothness of ZG(N), which is carried out in § 4.
Finally §§ 5 and 6 define and study the minimally ramified deformation condition, first in a
special tamely ramified case and then in general.

1.2 Notation and assumptions
Throughout the paper, ` and p will be distinct primes, and O will be a discrete valuation ring
with residue field k of characteristic p. We will ultimately work with orthogonal or symplectic
(similitude) groups, or GLn over O, although the strategy of the argument (but not the
details) would work in greater generality. Since reductive group schemes have connected fibers

4
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(a restriction going back to [SGA3, XIX, 2.7] to avoid the component group jumping across
fibers), and since GOm may be disconnected, the natural class of group schemes to work with are
what we call almost-reductive groups. By this we mean a smooth separated group scheme over O
such that the identity components of the fibers are reductive. Then G◦ is a reductive O-subgroup
scheme of G and G/G◦ is a separated étale O-group scheme of finite presentation [Con14,
Proposition 3.1.3 and Theorem 5.3.5]. Furthermore, by a result of Raynaud G is affine as it
is a flat, separated, and of finite type with affine generic fiber over the discrete valuation ring O
[PY06, Proposition 3.1].

We will often assume that p is very good for G: in cases of interest this means that p 6= 2 if
G is orthogonal or symplectic, and p - n when G = GLn. To make uniform statements, we say
that characteristic zero is very good for any G.

We will also work with a nilpotent N ∈ gk associated to a continuous representation ρ : ΓL→
G(k), where L is an `-adic field. We will eventually impose additional hypotheses, including the
following:

(A1) G is GSpn, GOn or GLn and p is very good for G;

(A2) p > n;

(A3) k and O are large enough so that q, the size of the residue field of L, is a square in O×,
and O× includes square roots of −1 and 2;

(A4) k and O are large enough so there exists a pure nilpotent Nσ ∈ g lifting N for which
ZG(Nσ) is smooth.

2. Deformations of Galois representations

We recall some facts about the deformation theory for Galois representations: a basic reference
is [Maz97], with the extension to algebraic groups beyond GLn discussed in [Til96]. While we
are mainly concerned with classical groups, there are no problems with doing so for any smooth
group scheme G over a discrete valuation ring O with residue field k of characteristic p.

Let Γ be a pro-finite group satisfying the following finiteness property: for every open
subgroup Γ0 ⊂ Γ, there are only finitely many continuous homomorphisms from Γ0 to Z/pZ.
This is true for the absolute Galois group of a local field and for the Galois group of the maximal
extension of a number field unramified outside a finite set of places.

Let ĈO be the category of coefficient O-algebras: complete local Noetherian rings with residue
field k, with morphisms local homomorphisms inducing the identity map on k and with the
structure morphism a map of coefficient rings. Let CO denote the full subcategory of Artinian
coefficient O-algebras. Recall that a small surjection of coefficient O-algebras f : A1 → A0 is a
surjection such that ker(f) ·mA1 = 0.

For A ∈ ĈO, define
Ĝ(A) := ker(G(A)→ G(k)).

We are interested in deforming a fixed ρ : Γ→ G(k). Let g = LieG.
• Let f : A1 → A0 be a morphism in ĈO and ρ0 : Γ→ G(A0) a continuous homomorphism.

A lift of ρ0 to A1 is a continuous homomorphism ρ1 : Γ→ G(A1) such that the following
diagram commutes.

Γ
ρ1 //

ρ0

!!

G(A1)

f
��

G(A0)

5
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Define the functor D�ρ,O : ĈO → Sets by sending a coefficient O-algebra A to the set of lifts
of ρ to A.

• With the notation above, two lifts ρ and ρ′ of ρ to A1 ∈ CO are strictly equivalent if they
are conjugate by an element of Ĝ(A1). A deformation of ρ0 to A1 is a strict equivalence
class of lifts. Define the functor Dρ,O : ĈO → Sets by sending a coefficient O-algebra A to
the set of deformations of ρ to A.

We will drop the subscript O when it is clear from context.

Fact 2.1. The functor D�ρ,O is representable. When gΓ
k = Lie(ZG)k, the functor Dρ,O is

representable.

The first part is simple, the second is a reformulation of [Til96, Theorem 3.3].
The representing objects are denoted R�ρ,O and (when it exists) Rρ,O. The former is called

the universal lifting ring, while the latter is the universal deformation ring. While we usually
care about deformations, it is technically easier to work with lifts.

This deformation theory is controlled by Galois cohomology. Let ad(ρ) denote the
representation of Γ on gk via the adjoint representation. Letting G′ be the derived subgroup
of G◦ with Lie algebra g′, we also consider the representation ad0(ρ) of Γ on g′k. As p is very
good, we have gk = g′k ⊕ zg where zg is the Lie algebra of ZG. The condition in Fact 2.1 is just
that H0(Γ, ad(ρ)) = zg, or equivalently that H0(Γ, ad0(ρ)) = 0. In general, since p is very good
the natural map H i(Γ, ad0(ρ)) → H i(Γ, ad(ρ)) is injective for all i; we often use this without
comment.

We can use the first order exponential map [Til96, § 3.5] to understand the tangent space.
Recall that for a smooth O-group scheme G, and a small surjection f : A→ A/I of coefficient
rings (I ·mA = 0), smoothness gives an isomorphism

exp : g⊗k I ' ker(G(A)→ G(A/I)) = ker(Ĝ(A)→ Ĝ(A/I)).

The tangent space Dρ,O(k[ε]/ε2) is identified with H1(Γ, ad(ρ)): Under this isomorphism, the
cohomology class of a 1-cocycle τ corresponds to the lift ρ(g) = exp(ετ(g))ρ(g). For the
universal lifting ring R�ρ,O, the tangent space is identified with the k-vector space Z1(Γ, ad(ρ))
of (continuous) 1-cocycles of Γ valued in ad(ρ).

Remark 2.2. We also observe that

dimk Z
1(Γ, ad(ρ))− dimkH

1(Γ, ad(ρ)) = dimk B
1(Γ, ad(ρ)) = dimk g− dimkH

0(Γ, ad(ρ))

since the space of coboundaries admits a surjection from ad(ρ) with kernel ad(ρ)Γ. This will be
useful when comparing dimensions of lifting rings and deformation rings that are smooth.

We will want to study special classes of deformations.

Definition 2.3. A lifting condition is a sub-functor D� ⊂ D�ρ,O : CO → Sets such that we have
the following.

(i) For any coefficient ring A, D�(A) is closed under strict equivalence.

(ii) Given a Cartesian diagram in CO

A1 ×A0 A2
π2 //

π1
��

A2

��
A1

// A0
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and ρ ∈ D�ρ,O(A1 ×A0 A2), we have ρ ∈ D�(A1 ×A0 A2) if and only if D�(π1) ◦ ρ ∈ D�(A1)

and D�(π2) ◦ ρ ∈ D�(A2).

As it is closed under strict equivalence, we naturally obtain a deformation condition, a sub-

functor D ⊂ Dρ,O.

By Schlessinger’s criterion [Sch68, Theorem 2.11] being a lifting condition is equivalent to

the functor D� being pro-representable. Likewise, the deformation condition D associated to a

lifting condition D� is pro-representable provided that Dρ,O is.

The tangent space of a deformation condition D is a k-subspace of H1(Γ, ad(ρ)), and will be

denoted by H1
D(Γ, ad(ρ)). For a small surjection A1→ A0 and ρ ∈ D(A0), the set of deformations

of ρ to A1 subject to D is a H1
D(Γ, ad(ρ))-torsor. This torsor-structure is compatible with the

action of the unrestricted tangent space to Dρ on the space of all deformations of ρ to A1.

Example 2.4. Suppose G is almost-reductive, and let G′ be the derived group of G◦. The most

basic examples of deformation conditions are the conditions imposed by fixing the lift of the

homomorphism Γ → (G/G′)(k). To be precise, for the quotient map µ : G → G/G′ =: S, a

fixed ν : Γ→ S(O) lifting µ ◦ ρ, and A ∈ ĈO with structure morphism ı : O → A, we define a

deformation condition Dν ⊂ Dρ by

Dν(A) = {ρ ∈ Dρ(A) : µA ◦ ρ = ı ◦ νA}.

One checks this is a deformation condition. Its tangent space is H1(Γ, ad0(ρ)) since p is very

good. We define D�ν similarly.

Another important example is the unramified deformation condition for a non-archimedean

place v where ρ is unramified: this consists of lifts that are unramified (possibly with a specified

choice of ν). The tangent space is H1
nr(Γv, ad(ρ)) (respectively H1

nr(Γv, ad0(ρ))).

Definition 2.5. A deformation condition D is liftable (over O) if for all small surjections f :

A1→ A0 of coefficient O-algebras the natural map

D(f) : D(A1)→ D(A0)

is surjective.

A geometric way to check local liftability is to show that the corresponding deformation ring

(when it exists) is smooth. Obviously it suffices to check liftability for lifts instead of deformations,

so we can work with the lifting deformation ring and avoid representability issues for Dρ.

Example 2.6. The unramified deformation condition is liftable: an unramified lift is completely

determined by the image of Frobenius in G(A0), and G is smooth over O.

When attempting to lift with a fixed lift ν of Γ → (G/G′)(k), the obstruction to lifting is

measured by a 2-cocycle ob(ρ0) that lies in H2(Γ, ad0(ρ)). To see this, recall that the obstruction

cocycle is defined by picking a continuous set theoretic lift ρ1 of a given ρ0 : ΓK → G(A0): the

2-cocycle records the failure of ρ1 to be a homomorphism. By choosing the lift ΓK → G(A1)

so that ΓK → (G/G′)(A0) agrees with ν (as we may easily do since ker ρ0 is open in ΓK), the

obstruction cocycle takes values in ad0(ρ).

7
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3. Representatives for nilpotent orbits and pure nilpotents

As a first step on the road to defining the minimally ramified deformation condition, we study
integral representatives of nilpotent orbits and then define pure nilpotent lifts. Useful background
about nilpotent orbits is collected in [Jan04]. We focus on classical groups, so consider G = GLn,
G = Spm, or G = Om over a discrete valuation ring O with residue field k of characteristic p > 0.
Assume p is very good for Gk. Let g = LieG and K be the field of fractions of O.

3.1 Integral representatives
The nilpotent orbits for G over an algebraically closed field of good characteristic can be classified
by combinatorial data C that is independent of the characteristic. For classical groups, nilpotent
orbits can be classified by their Jordan canonical form in terms of partitions. For a partition
σ ∈ C, let OF,σ ⊂ gF denote the corresponding orbit over the algebraically closed field F . For
σ ∈ C, we seek elements

Nσ ∈ g such that (Nσ)k ∈ Ok,σ and (Nσ)K ∈ OK,σ. (3.1)

This makes precise the statement that NK and Nk ‘lie in the same nilpotent orbit’.

Remark 3.1. For a general reductive group scheme G, the Bala–Carter classification can
be interpreted as giving a characteristic-free classification of nilpotent orbits, allowing a
generalization of the condition in (3.1). One can obtain such Nσ in terms of root data
following [SS70, III.4.29]. We need the additional information provided by the concrete
description in the symplectic and orthogonal cases to analyze the centralizer ZG(N) as an
O-scheme, so do not use this.

Example 3.2. Nilpotent orbits for GLn correspond to partitions n = n1 + n2 + · · · + nr. For a
partition σ of n, Let Nσ ∈ g be the nilpotent matrix in Jordan canonical form whose blocks (in
order) are of sizes n1, n2, . . . , nr. Clearly Nσ has entries in O and satisfies (3.1).

For symplectic and orthogonal groups, we can produce the desired Nσ using a minor extension
of the classical results known over algebraically closed fields [Jan04, § 1]. Let G = Spm with
m = 2n, or G = Om with m = 2n or m = 2n + 1. We assume n > 2. Recall that Spm and Om

are defined using standard pairings on a free O-module M of rank m. For m = 2n, the standard
alternating pairing ϕstd on Om is the one given by the block matrix(

0 I ′n
−I ′n 0

)
,

where I ′n denotes the anti-diagonal matrix with 1s on the diagonal. The standard symmetric
pairing ϕstd on Om is the one given by the matrix I ′m.

Remark 3.3. We chose to work with Om instead of SOm, as the classification is cleaner for
Om. The nilpotent orbits are almost the same for SOm, except that certain nilpotent orbits of
Om (the ones where the partition contains only even parts) split into two SOm-orbits [Jan04,
Proposition 1.12] (conjugation by an element of Om with determinant −1 carries one such orbit
into the other).

Definition 3.4. Let σ denote a partition m = m1 +m2 + · · ·+mr of m. It is admissible if

8
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• every even mi appears an even number of times when G = Om;
• every odd mi appears an even number of times when G = Spm.

The admissible partitions of m are in bijection with nilpotent orbits of Spm or Om over any
algebraically closed field of good characteristic [Jan04, Theorem 1.6]. The corresponding orbit is
the intersection of g ⊂ glm with the GLm-orbit corresponding to that partition of m. Note that
GLm-orbit representatives in Jordan canonical form need not lie in g.

We will construct nilpotents together with a pairing, and then show how to relate the
constructed pairing to the standard pairings used to define G. Let ε = 1 in the case of Om,
and ε = −1 in the case of Spm.

Definition 3.5. Let d > 2 be an integer. Define M(d) = Od, with basis v1, . . . , vd and a perfect
pairing ϕd such that

ϕd(vi, vj) =

{
(−1)i i+ j = d+ 1,

0 otherwise

(alternating for even d, symmetric for odd d). Define a nilpotent Nd ∈ End(M(d)) by Ndvi = vi−1

for 1 < i 6 d and Ndv1 = 0.
Similarly, define M(d, d) = O2d with basis v1, . . . , vd, v

′
1, . . . , v

′
d and a perfect ε-symmetric

pairing ϕd,d by extending

ϕd,d(vi, vj) = ϕd,d(v
′
i, v
′
j) = 0 and ϕd,d(vi, v

′
j) =

{
(−1)i i+ j = d+ 1,

0 otherwise.

Define a nilpotent Nd,d ∈ End(M(d, d)) by Nd,dvi = vi−1 and Nd,dv
′
i = v′i−1 for 1 < i 6 d, and

Nd,dv1 = Nd,dv
′
1 = 0.

Note that the pairing ϕd,d can be symmetric or alternating depending on the parity of d. It
is straightforward to verify the pairings are perfect and that Nd (respectively Nd,d) is skew with
respect to ϕd (respectively ϕd, d) in the sense that for v, w ∈M(d) we have

ϕd(Ndv, w) = −ϕd(v,Ndw).

Given an admissible partition σ : m = m1 +m2 + · · ·+mr, we will construct a free O-module
of rank m with an ε-symmetric perfect pairing and a nilpotent endomorphism that is skew
with respect to the pairing such that the Jordan block structure of nilpotent endomorphism in
geometric fibers is given by σ. Let ni(σ) = #{j : mj = i}.
• If G = Om, then ni(σ) is even for even i, so we can define

Mσ =
⊕
i odd

M(i)⊕ni(σ) ⊕
⊕
i even

M(i, i)⊕ni(σ)/2.

• If G = Spm, then ni(σ) is even for odd i, so we can define

Mσ =
⊕
i odd

M(i, i)⊕ni(σ)/2 ⊕
⊕
i even

M(i)⊕ni(σ).

Let ϕσ and Nσ denote the pairing and nilpotent endomorphism defined by the pairing and
nilpotent endomorphism on each piece using Definition 3.5. In all cases, Mσ is a free O-module
of rank m. For each σ, let Gσ be the automorphism scheme Aut(Mσ, ϕσ), so for an algebraically
closed field F over O we have an isomorphism (Gσ)F ' GF well defined up to G(F )-conjugation
by using F -linear isomorphisms (Mσ, ϕσ)F ' (Fm, ϕstd).
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Lemma 3.6. For all admissible partitions of m, the specializations of the Nσ at geometric points ξ

of SpecO constitute a set of representatives for the nilpotent orbits of Gξ, and the specializations

lie in the orbit corresponding to σ.

Proof. The set of admissible partitions of m is in bijection with the set of nilpotent orbits over

any algebraically closed field. The Nσ we constructed are integral versions of the representatives

constructed in [Jan04, § 1.7]. 2

Let e1, e2, . . . , em be the standard basis for Om. The elements ei and em+1−i pair non-trivially

under the standard pairing. When m = 2n + 1, en+1 pairs non-trivially with itself under the

standard pairing. We now relate the standard pairings to the pairings ϕσ.

Proposition 3.7. Suppose that
√
−1,
√

2 ∈ O×. Then ϕσ is equivalent to the standard pairing

over O. There exists an O-basis {vi} of Om with respect to which the pairing is given by ϕσ and

Nσ satisfies the condition in (3.1) for G = Spm or G = Om.

Proof. The standard pairings are very similar to ϕσ. In the case of Spm, each basis vector pairs

trivially against all but one other basis vector, with which it pairs as ±1. So after reordering

the basis, ϕσ is the standard pairing. The case of Om is slightly more complicated. Let σ : m =

m1 +m2 + · · ·+mr be an admissible partition. The construction of Mσ and ϕσ gives a basis {vi,j}
where 1 6 i 6 r and 1 6 j 6 mi. From the construction of ϕσ, we see that vi,j pairs trivially

against all basis vectors except for vi,mi+1−j . So as long as 2j 6= mi + 1, we obtain a pair of basis

vectors which are orthogonal to all others and which pair to ±1. For each odd mi, the vector

vi,(mi+1)/2 pairs non-trivially with itself. The standard pairing with respect to the basis ei has

such a vector only when m = 2n+ 1 and then only for one ei.

We must change the basis over O so that ϕσ becomes the standard symmetric pairing.

Let v = vi,(mi+1)/2 and v′ = vj,(mj+1)/2 be two distinct vectors which pair non-trivially with

themselves. In particular, ϕσ(v, v) = (−1)(mi+1)/2 := η and ϕσ(v′, v′) = (−1)(mj+1)/2 := η′. Define

w =

√
ηv −

√
−η′v′

√
2

and w′ =

√
ηv +

√
−η′v′

√
2

.

Then we see that ϕσ(w,w) = 0 = ϕσ(w′, w′) and ϕσ(w,w′) = 1. Making this change of variable

over O (which requires
√
−1,
√

2 ∈ O×), we have reduced the number of basis vectors which

pair non-trivially with themselves by two, and produced a new pair of basis vectors orthogonal

to the others and which pair to 1. By induction, we may therefore pick a basis v′1, . . . , v
′
m for

which at most one basis vector pairs non-trivially with itself under ϕσ. After re-ordering, we may

further assume that ϕσ(v′i, v
′
j) = 0 unless i+ j = m+ 1, in which case ϕσ(v′i, v

′
j) = ±1. Suppose

j = m + 1 − i. If i 6= j, by scaling v′i we may assume that ϕσ(v′i, v
′
j) = 1. If i = j, we already

know that ϕσ(v′i, v
′
j) = 1. With respect to this basis, ϕσ is the standard pairing.

The last statement immediately follows from Lemma 3.6. 2

3.2 Pure nilpotent lifts

For a nilpotent element N ∈ gk of type σ ∈ C, we will define the notion of a pure nilpotent lift

of N in gk and study the space of such lifts, assuming there exists Nσ ∈ g lifting N such that

(Nσ)K ∈ OK,σ and such that ZG(Nσ) is smooth over O.
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Remark 3.8. Section 3.1 shows that for any nilpotent N ∈ gk, there exists N ′σ ∈ g such that
(N ′σ)k ∈ Ok,σ and such that (N ′σ)k and N are G(k)-conjugate. We will address the O-smoothness

of ZG(Nσ) in § 4, especially Proposition 4.17. Then (N ′σ)k and N are conjugate by g ∈ G(k′) for
some finite extension k′/k. Lift g to an element g ∈ G(O′) for a Henselian discrete valuation ring
local over O and having residue field k′. The element Nσ := gN ′σg

−1 ∈ gO′ reduces to Nk′ and
has the required properties. So the above hypothesis is satisfied after a finite flat local extension
of O.

Definition 3.9. Fix an Nσ ∈ g lifting N such that (Nσ)K ∈ OK,σ and such that ZG(Nσ) is
smooth over O. Define the functor NilN : CO → Sets by

NilN (R) = {N ∈ gR : AdG(g)(Nσ) = N for some g ∈ Ĝ(R)}.

Call these N ∈ NilN (R) the pure nilpotents lifting N .

This is obviously a subfunctor of the formal neighborhood of N in the affine space g over
O attached to g. The key to analyzing NilN is that ZGR(N) is smooth over R since ZG(Nσ)
is O-smooth and N is in the G-orbit of (Nσ)R. To ease notation below, we shall write gNg−1

rather than AdG(g)(N) for g ∈ Ĝ(R).

Lemma 3.10. Assuming ZG(Nσ) is O-smooth, the functor NilN is pro-representable.

Proof. We will use Schlessinger’s criterion to check pro-representability. As NilN is a subfunctor
of the formal neighborhood of the scheme g at N , the only condition to check is the analogue of
Definition 2.3(ii): given a Cartesian diagram in CO

R1 ×R0 R2
π2 //

π1
��

R2

��
R1

// R0

and Ni ∈ NilN (Ri) such that N1 and N2 reduce to N0, we want to check that N1 × N2 ∈
NilN (R1×R0R2). By definition, there exists g1 ∈ Ĝ(R1) and g2 ∈ Ĝ(R2) such that N1 = g1Nσg

−1
1

and N2 = g2Nσg
−1
2 . Consider the element g1g

−1
2 ∈ Ĝ(R0). Observe that

g1g
−1
2 Nσg2g

−1
1 = g1N0g

−1
1 = Nσ ∈ gR0 .

In particular, g1g
−1
2 ∈ ZG(Nσ)(R0). The extension R2→ R0 has nilpotent kernel, so as ZG(Nσ)

is smooth over O there exists h ∈ ZG(Nσ)(R2) lifting g1g
−1
2 . The element

(g1, hg2) ∈ R1 ×R0 R2

conjugates N1 ×N2 to Nσ. Hence N1 ×N2 ∈ NilN (R1 ×R0 R2). 2

Lemma 3.11. The functor NilN is formally smooth, in the sense that for a small surjection
R2→ R1 of coefficient O-algebras the map

NilN (R2)→ NilN (R1)

is surjective. Moreover, when ZG(Nσ) is O-smooth and NilN is representable, it has relative
dimension dimGk − dimZGk(Nk) over O.
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Proof. Given N ∈ NilN (R1), there exists g ∈ Ĝ(R1) such that gNg−1 = Nσ. As G is smooth over

O, we may find g′ ∈ Ĝ(R2) lifting g. Then (g′)−1Nσg
′ is a lift of N to R2. From its definition,

the tangent space to NilN is gk/zg(Nk), so the formally smooth NilN has relative dimension
dimGk − dimZGk(Nk) since ZG(N) is O-smooth. 2

Lemma 3.12. Suppose that A is a complete local Noetherian O-algebra with residue field k.
Under the assumption that ZG(Nσ) is O-smooth, the inverse limit lim

←−NilN (A/mn
A) equals {N ∈

gA : N = gNσg
−1 for some g ∈ G(A)}.

Proof. This is immediate since A is complete and NilN is representable by an affine scheme. 2

Remark 3.13. If we had defined NilN on the larger category ĈO in the obvious way, Lemma 3.12
would say that NilN is continuous.

Remark 3.14. There is no problem generalizing Definition 3.9 to any almost-reductive group,
using a construction of Nσ using root data as discussed in Remark 3.1. However, we only establish
the smoothness of ZG(Nσ) for classical groups.

Remark 3.15. One can define a scheme-theoretic ‘nilpotent cone’ over O as the vanishing locus
of the ideal of non-constant homogeneous G-invariant polynomials on g. The arguments in this
section could be rephrased as constructing a formal scheme of pure nilpotents inside the formal
neighborhood of N in g. A natural question is whether there is a broader notion of pure nilpotents
that gives a locally closed subscheme of the scheme-theoretic nilpotent cone. For instance, for
N,N ′ ∈ g, if their images in gK and gk are nilpotent in orbits with the same combinatorial
parameters, are N and N ′ conjugate under G over a discrete valuation ring local over O?

When G = GLn, this has been explored by Taylor in the course of constructing local
deformation conditions [Tay08, Lemma 2.5]. The method uses the explicit description of the
orbit closures given by specifying the Jordan canonical form to define an analogue of the orbit
closures over O. It would be interesting to find a way to do so more generally.

4. Smoothness of centralizers of pure nilpotents

In order for the functor NilN to be representable, we need that ZG(Nσ) is O-smooth. Recall that
for N ∈ g, the scheme-theoretic centralizer ZG(N) represents the functor

R 7→ {g ∈ G(R) : AdG(g)NR = NR}

for O-algebras R. We will study the centralizer ZG(Nσ) in more detail where Nσ ∈ g is an
element satisfying (3.1). In particular, this centralizer will be shown to be smooth when G is
symplectic or orthogonal. We first review the known theory over fields, and then develop and
apply a technique to deduce smoothness over O (i.e. O-flatness) from the known smoothness in
the field case.

4.1 Centralizers over fields
In this section, let k be an algebraically closed field, G be a connected reductive group over k,
and N a nilpotent element of g = LieG. As the formation of the scheme-theoretic centralizer
commutes with base change, smoothness results for ZG(N) over k will imply such results over
general fields (not necessarily algebraically closed).
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The group scheme ZG(N) is the fiber over 0 ∈ g of the composition

G
AdG−→ GL(g)

T 7→TN−N−→ g.

Hence LieZG(N) is the kernel of

g
adg−→ End(g)

T 7→TN−→ g

which is the Lie algebra centralizer zg(N).

Remark 4.1. In references using the language of varieties rather than schemes (such as [Jan04]),
ZG(N) is usually defined via its geometric points and hence is reduced and smooth, so the
condition that the scheme ZG(N) is smooth becomes the condition that the variety ZG(N) has
Lie algebra zg(N).

In a wide range of situations, all nilpotent centralizers are smooth. A direct calculation
shows that this holds for G = GLn (see [Jan04, § 2.3]), and a criterion of Richardson [Jan04,
Theorem 2.5] can be applied to show to following.

Fact 4.2. If G is an orthogonal or symplectic (similitude) group, any nilpotent centralizer is
smooth over k.

Remark 4.3. Suppose ZG(N) is smooth over k and p is good for G. The classification of nilpotent
orbits is independent of p, as are their dimensions, so the dimension of ZG(N) is independent of
p as well.

4.2 Checking flatness over a Dedekind base
We want to analyze smoothness of centralizers in the relative setting (especially over SpecO). If
ZG(Nσ)→ SpecO is flat and the special and generic fibers are smooth, then ZG(N) is smooth
over O. The following lemma gives a way to check that a morphism to a Dedekind scheme is flat.

Lemma 4.4. Let f : X → S be finite type for a connected Dedekind scheme S. Then f is flat
provided the following all hold.

(i) For each s ∈ S, Xs is reduced and non-empty.

(ii) For each s ∈ S, Xs is equidimensional with dimension independent of s.

(iii) There are sections {σi ∈ X(S)} to f such that for every irreducible component of a fiber
above a closed point, there is a section σi which meets the fiber only in that component.

Remark 4.5. This lemma is a modification of [GY03, Proposition 6.1] to allow multiple
irreducible components in the fibers.

Proof. It suffices to prove the result when S = Spec(A) for A a discrete valuation ring with
uniformizer π. Let Xη be the generic fiber and Xs the special fiber. Consider the schematic
closure ı : X ′ ↪→ X of the generic fiber. The scheme X ′ is flat over Spec(A) since flatness is
equivalent to being torsion-free over a discrete valuation ring, and there is an exact sequence

0→ J → OX → ı∗OX′ → 0, (4.1)

where J is a coherent sheaf killed by a power of π. We will show that ı is an isomorphism by
analyzing the special fiber.
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First, we claim that the dimension of each irreducible component on the special fiber of X ′ is
the same as the dimension of the equidimensional Xη. We will get this from flatness of X ′. The
generic fiber of X ′ is Xη, which is equidimensional and non-empty by hypothesis. Furthermore,
X ′ is the union of the closures Zi of the reduced irreducible components Xη,i of Xη, and each Zi is
A-flat with integral η-fiber, hence integral. We just need to analyze the dimension of irreducible
components of (Zi)s when (Zi)s 6= ∅. Since Zi is integral, we can apply [Mat89, Theorem 15.1,
15.5] to such Zi to conclude that the dimension of each irreducible component of the special fiber
of X ′ is the same as the dimension of the generic fiber.

Observe that the sections σi factor through the closed subscheme X ′ ⊂ X, as we can check
this on the generic fiber since X ′ is A-flat. Thus X ′ meets every irreducible component of
Xs away from the other irreducible components of Xs. We would have that |X ′s| = |Xs| if
X ′s is equidimensional of the same dimension as the equidimensional Xs. We have shown the
dimension of any irreducible component in X ′s is the same dimension as the common dimension
of irreducible components of the generic fiber Xη of X ′. By hypothesis, the dimension of any
irreducible component of the generic fiber of X is the same as the dimension of any irreducible
component of the special fiber of X. Thus the dimension of any irreducible component of X ′s is
the same as the dimension of each irreducible component of Xs, giving that |X ′s| = |Xs|. As Xs

is reduced, this forces ıs : X ′s ↪→ Xs to be an isomorphism.
Now tensoring (4.1) with the residue field of A gives an exact sequence

0→ J/πJ → OX,s→ ı∗OX′,s→ 0

because OX′ is A-flat. But J/πJ = 0 as ıs is an isomorphism. Hence J = πJ = π2J = · · · =
πnJ = 0 for n large, so X = X ′ is flat over A. 2

Corollary 4.6. In the situation of the lemma, if the fibers are also smooth, then X is smooth.

Proof. For a flat morphism of finite type between Noetherian schemes, smoothness of all fibers
is equivalent to smoothness of the morphism. 2

4.3 Centralizers for orthogonal and symplectic groups
To apply Corollary 4.6, we need information about the component group of centralizers of
nilpotents. For GLn over a field, all such centralizers are connected. For symplectic and orthogonal
groups, there is an explicit description of Z(Nσ) where Nσ is the nilpotent constructed in § 3.
We continue the notation of that section: G is Spm or Om (with m > 4) over a discrete valuation
ring O with a residue field k of good characteristic p 6= 2.

Let σ : m1 + · · ·+mr be an admissible partition of m. We assume that O is large enough so
that Proposition 3.7 holds, and take N := Nσ. Then there exists elements v1, . . . , vr ∈M := Om
such that

v1, Nv1, . . . , N
m1−1v1, v2, Nv2, . . . , N

mr−1vr

is a basis for M . Furthermore, Nmivi = 0 for i = 1, . . . r, and the pairing between basis elements
is given by ϕ := ϕσ. In particular, each vi pairs non-trivially with only one other basis element
Xdi−1vi∗ , for some i∗ ∈ {1, . . . , r}.

To understand the G-centralizer of N , we construct an associated grading of M as in [Jan04,
§ 3.3,3.4]. This is motivated by the Jacobson–Morosov theory of sl2-triples over a field of
sufficiently large characteristic, but for symplectic and orthogonal groups it is constructed by
hand in characteristic p 6= 2 below.
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Remark 4.7. Let Mk = M ⊗O k = km. Every nilpotent X ∈ End(Mk) gives a filtration (and
grading) of Mk defined by Fili = ker(Xi). For GLn, this is a nice filtration and is used in [CHT08]
to define the minimally ramified deformation condition for GLn. However, this filtration need
not be isotropic with respect to the pairing, so we will construct a nicer grading associated to X.

Definition 4.8. Let M(s) be the span of N jvi for all i and j such that s = 2j+ 1−mi. We set
M (s) =

⊕
t>sM(t), and also define L(s) to be the span of {vi : vi ∈M(s)}.

We now record some elementary properties of the preceding construction; all are routine
to check, and the analogous proofs over a field may be found in [Jan04, § 3.4]. We have that
M =

⊕
sM(s), and

vi ∈M(−(di − 1)), Nvi ∈M(−(di − 1) + 2), . . . , Ndi−1vr ∈M(dr − 1).

Furthermore, we know N ·M(s) ⊂M(s+ 2) and M(s) = N ·M(s− 2)⊕ L(s) for s 6 0.
The dimension of M(s) is ms(σ) := #{j : dj−1 > |s|}. The dimension of L(s) equals ls(σ) :=

ms+1(σ)−ms(σ). Furthermore, the pairing ϕ interacts well with the grading: a computation with
basis elements gives that ϕ(M(s),M(t)) 6= 0 implies s+ t = 0.

The above grading on M corresponds to the one-parameter subgroup λ : Gm→ G for which
the action of t ∈ Gm on M(s) is given by scaling by ts. The dynamic method (see [CGP15,
§ 2.1]) associates to λ a parabolic subgroup PG(λ) with Levi ZG(λ). Define CN and UN to be
the scheme-theoretic intersections

CN = ZG(N) ∩ ZG(λ) = {g ∈ ZG(N) : gM(i) = M(i) for all i},
UN = ZG(N) ∩ UG(λ) = {g ∈ ZG(N) : (g − 1)M (i) ⊂M (i+1) for all i}.

Fact 4.9. The group-scheme ZG(N)k is a semidirect product of (CN )k and the smooth connected
unipotent subgroup (UN )k. In particular, the connected components of ZG(N)k are the same as
the connected components of (CN )k.

Remark 4.10. This is [Jan04, Proposition 3.12]. The existence of λ and this decomposition is not
specific to symplectic and orthogonal groups [Jan04, Proposition 5.10].

We finally give a concrete description of CN . We first define a pairing on L(s). Recall that
the space L(s) of ‘lowest weight vectors’ in M(s) has basis {vi : 1− di = s}. We define a pairing
on L(s) by

ψs(v, w) = ϕ(v,N−sw).

A direct calculation shows that ψs is non-degenerate and that ψs is symmetric if (−1)s = ε and
is alternating if (−1)s = −ε [Jan04, § 3.7].

A point of CN preserves the grading on M , and since it commutes with the ‘raising operator’
N its action on M is determined by its action on the space L(s) of ‘lowest weight vectors’ in
M(s). So the following fact is no surprise.

Proposition 4.11. There is an isomorphism of algebraic groups

CN '
∏
s60

Aut(L(s), ψs).

The corresponding statement over a field is [Jan04, § 3.8 Propositions 2, 3]: the proof is the
same.
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Example 4.12. Let G = Spm. Unraveling when ψs is symmetric or alternating, we see that

CN '
∏

s60;s odd

O(L(s), ψs)×
∏

s60;s even

Sp(L(s), ψs).

The special fibers of the symplectic factors are connected, while the orthogonal factors have two
connected components in the special fiber. Thus there are 2t connected components, where t is
the number of odd s for which L(s) 6= 0. For each component, there is a section g ∈ CN (O)
meeting that component corresponding to a choice of ± Id ∈ O(L(s), ψs) for each odd s with
L(s) 6= 0. The connected components of ZG(N) are the same as those for CN by Fact 4.9.

Example 4.13. Let G = Om. We likewise see that

CN '
∏

s60;s even

O(L(s), ψs)×
∏

s60;s odd

Sp(L(s), ψs).

Again there are 2t connected components of ZG(N), where t is the number of even s for which
L(s) 6= 0.

Now suppose that G= SOm. The elements N we considered in this section are representatives
for some of the nilpotent orbits of SOm. The group CN has the same structure as for G =
Om, except we require that the overall determinant be 1; this has 2t−1 connected components.
Though SOm has more nilpotent orbits than Om, according to Remark 3.3 their representatives
are conjugate by an element Om(k) with determinant −1 to the representatives constructed in
Proposition 3.7. This shows that there are sections g ∈ CN (O) meeting each component.

Remark 4.14. Suppose q is a square in O×. For use in the proof of Proposition 5.6, we need the
existence of an element Φ ∈ G(O) such that adG(Φ)Nσ = qNσ. If α2 = q, taking Φ = λ(α) would
work: Φ would scale N j

σvi ∈M(s) by αs, and Nσ increases the degree by 2.
This Φ is a version for symplectic and orthogonal groups of the diagonal matrix denoted Φ(σ,

a, q) whose diagonal entries are increasing powers of q used in [Tay08, § 2.3]. There it is checked
that adG(Φ(σ, a, q))Nσ = qNσ where Nσ is the nilpotent representative in Jordan canonical form
considered in Example 3.2 for the partition σ of m.

4.4 Smoothness of centralizers
We now return the case when G is an almost-reductive group over a discrete valuation ringO with
residue field k of very good characteristic p > 0. Suppose we are given an integral representative
N = Nσ ∈ g := LieG for the nilpotent orbit on geometric fibers corresponding to σ ∈ C as in
(3.1): that is, an element such that

Nk ∈ Ok,σ and NK ∈ OK,σ.

Proposition 3.7 provides such N in symplectic and orthogonal cases when
√
−1,
√

2 ∈ O×. We
wish to check that the ZG(N) is smooth over O. This N satisfies

ZGK (NK) and ZGk(Nk) are smooth of the same dimension. (4.2)

Remark 4.15. Some assumption on N is essential. Otherwise NK and Nk can lie in different
nilpotent orbits (in terms of the combinatorial characteristic-free classification of geometric
orbits), and so ZGK (NK) and ZGk(Nk) could have different dimensions, in which case ZG(N)
cannot be O-flat. An example of this is the element N2 in Example 1.4.
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Now we wish to check the conditions necessary to apply Corollary 4.6. We define

A(N) = ZGk(Nk)(k)/ZGk(Nk)
◦(k),

and study when the following holds:

each element of A(N) arises from some s ∈ ZG(N)(O). (4.3)

Note that this checks the criterion in Corollary 4.6 as

ZGk(Nk)(k)/ZGk(Nk)
◦(k) = (ZGk(Nk)/ZGk(Nk)

◦)(k)

by Lang’s theorem, and since the irreducible components of ZGk(NK) are the same as connected
components by smoothness.

We are free to make a local flat extension of O, as it suffices to check flatness after such
an extension. In particular, it suffices to check (4.3) when O is Henselian and k is algebraically
closed, and

√
−1,
√

2 ∈ O. Examples 4.12 and 4.13 give such sections when G = Spm or G = SOm.
We will use these cases to get a result for similitude groups.

Let π : G̃′→ G′ be the simply connected central cover of the derived group G′ over O. As p
is very good, G̃′ and G′ have isomorphic Lie algebras via π and LieG′ is a direct factor of LieG
with complement Lie(ZG), so we may abuse notation and view N as an element of all of these
Lie algebras over O.

Let S be a (split) maximal central torus in G. Consider the isogeny S × G̃′→ G. As S acts
trivially on N , we see that S × Z

G̃′
(N) is the preimage of ZG′(N) under this isogeny. As p is

very good for G, we obtain finite étale surjections

Z
G̃′

(N)→ ZG′(N) and S × Z
G̃′

(N)→ ZG(N)

over O.

Lemma 4.16. The condition (4.3) holds for G̃′ if and only if (4.3) holds for G.

Proof. Assume G̃′ satisfies (4.3). Pick a connected component C of ZGk(Nk). The preimage of
C under S × Z

G̃′
(N)→ ZG(N) is a union of k-fiber components of the form Sk × C ′ where C ′

is a connected component of Z
G̃′k

(Nk). By assumption, there exists s ∈ Z
G̃′

(N)(O) meeting any

such C ′. The image of (1, s) is a point of ZG(N)(O) meeting C.
Conversely, assume G satisfies (4.3). Pick a connected component C ′ of Z

G̃′k
(Nk). Under

S×Z
G̃′

(N)→ ZG(N), Sk×C ′ maps onto a connected component C of ZGk(Nk). By assumption,
there exists s ∈ ZG(N)(O) such that sk ∈ C. As k is algebraically closed, there is s′k ∈ (S ×
Z
G̃′

(N))(k) lifting sk and lying in C ′. As S × Z
G̃′

(N)→ ZG(N) is a finite étale cover and O is
Henselian, there exists s′ ∈ (S × Z

G̃′
(N))(O) lifting s and reducing to s′k. 2

For example, this lets us pass between Sp2n and GSp2n by way of the projective symplectic
group.

Proposition 4.17. For G a symplectic or orthogonal similitude group, and N = Nσ ∈ g the
element satisfying (3.1) given by Proposition 3.7 for an admissible partition σ, the centralizer
ZG(N) is smooth over O.
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Proof. By Fact 4.2, ZGk(Nk) and ZGK (NK) are smooth. By the classification of nilpotent orbits
over algebraically closed fields, the dimension of the orbit only depends on the combinatorial
classification for the orbit in very good characteristic and in characteristic 0, so these fibers
are equidimensional of the same dimension. By Corollary 4.6, it suffices to find s ∈ ZG(N)(O)
meeting any connected component of ZGk(Nk).

Using Lemma 4.16, we reduce checking (4.3) to the cases of Spm and SOm, covered by
Examples 4.12 and 4.13. 2

Remark 4.18. Consider a nilpotent orbit of GLn with representative N given in Example 3.2.
As ZGk(Nk) is connected [Jan04, Proposition 3.10], the identity section shows (4.3) holds. This
shows ZG(N) is smooth.

Remark 4.19. It is not hard to extend the above argument to work for groups such that all the
irreducible factors of the root system are of classical type. For the exceptional groups, one could
find N as in Remark 3.1 and attempt to check (4.3) holds by hand (there are finitely many
cases). A conceptual approach would be preferable.

Remark 4.20. McNinch analyzes the centralizer of an ‘equidimensional nilpotent’ in [McN08].
An equidimensional nilpotent is an element N ∈ g such that NK is nilpotent and the dimension
of the special and generic fibers of ZG(N) are the same. [McN08, § 5.2] claims that such ZG(N)
are O-smooth because the fibers are smooth of the same dimension. This deduction is incorrect:
it relies on [McN08, 2.3.2] which uses the wrong definition of an equidimensional morphism and
thereby incorrectly applies [SGA1, Exp. II, Proposition 2.3].

According to [SGA1, Exp. II, Proposition 2.3] (or [EGAIV3, §§ 13.3, 14.4.6, 15.2.3]), for a
Noetherian scheme Y , a morphism f : X → Y locally of finite type, and points x ∈ X and
y = f(x) with Oy normal, f is smooth at x if and only if f is equidimensional at x and f−1(y) is
smooth over k(y) at x. But by definition in [EGAIV3, 13.3.2], an equidimensional morphism is
more than just a morphism all of whose fibers are of the same dimension (the condition checked
in [McN08, 2.3.2]): a locally finite type morphism f is called equidimensional of dimension d at
x ∈ X when there exists an open neighborhood U of x such that for every irreducible component
Z of U through x, f(Z) is dense in some irreducible component of Y containing y and for all
x′ ∈ U the fiber f−1(f(x′)) ∩ U has all irreducible components of dimension d.

This is much stronger than the fibers simply being of the same dimension. To see the
importance of the extra conditions, consider a discrete valuation ring O with field of fractions
K and residue field k, and the morphism from X, the disjoint union of SpecK and Spec k, to
Y = SpecO. The fibers are of the same dimension (zero) and smooth but the morphism is not
flat. This morphism is also not equidimensional at Spec k: the only irreducible component of X
containing Spec k is the point itself, with image the closed point of SpecO. This is not dense
in SpecO, the only irreducible component of the only open set containing the closed point of
SpecO.

The smoothness of centralizers of an equidimensional pure nilpotent is important to proving
the main results of [McN08]. In particular, the results in [McN08, §§ 6 and 7] crucially rely on
the smoothness of the centralizers of such nilpotents, leaving a gap in the proof of Theorem B
in [McN08] concerning the component group of centralizers. The method we have discussed here
reverses this, understanding the geometric component group well enough to produce sufficiently
many O-valued points in order to deduce smoothness of the centralizer in classical cases in very
good characteristic via Lemma 4.4.
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5. Minimally ramified deformations: tame case

In this section, we will generalize the tamely ramified case of the minimally ramified deformation
condition introduced in [CHT08, § 2.4.4] for GLn to symplectic and orthogonal groups. We also
explain why another more immediate notion based on parabolic subgroups, giving the same
deformation condition for GLn, is not liftable in general (even for GSp4).

5.1 Passing between unipotents and nilpotents
As before, G is either GSpm or GOm (or GLm to recover the results of [CHT08, § 2.4.4]) over
the ring of integers O in a p-adic field with residue field k of characteristic p > 0. As always, we
assume that p is very good for Gk (i.e. p 6= 2). Let g = Lie(G).

As in § 3.2, we work with a pure nilpotent Nσ ∈ g for which ZG(Nσ) is O-smooth, (Nσ)K ∈
OK,σ, and (Nσ)k ∈ Ok,σ. Define N := (Nσ)k. We studied deformations of N in § 3.2, but will
ultimately want to analyze deformations of Galois representations which take on unipotent values
at certain elements of a local Galois group. Thus, we need a way to pass between unipotent and
nilpotent elements. For classical groups, we can use a truncated version of the exponential and
logarithm maps as follows.

Fact 5.1. Suppose that p > m and that R is an O-algebra. If A ∈ Matm(R) has characteristic
polynomial xm, then

exp(A) := 1 +A+A2/2 + · · ·+Am−1/(m− 1)!

has characteristic polynomial (x− 1)m. If B ∈Matm(R) has characteristic polynomial (x− 1)m,
then

log(B) := (B − 1)− (B − 1)2/2 + · · ·+ (−1)m(B − 1)m−1/(m− 1)

has characteristic polynomial xm. Furthermore for C ∈ GLm(R) and an integer q, we have

• exp(CAC−1) = C exp(A)C−1 • exp(log(B)) = B

• log(CBC−1) = C log(B)C−1 • exp(qA) = exp(A)q

• log(exp(A)) = A • log(Bq) = q log(B).

This is [Tay08, Lemma 2.4]. The key idea is that because all the higher powers of A and
B−1 vanish and all of the denominators appearing are invertible as p >m, we can deduce these
facts from results about the exponential and logarithm in characteristic zero.

Suppose J is the matrix for a perfect symmetric or alternating pairing over R.

Corollary 5.2. For A and B as in Fact 5.1 with exp(A) = B, ATJ + JA = 0 if and only if
BTJB = J .

Proof. Directly from the definitions we see that exp(AT ) = exp(A)T . Observe that

exp(JAJ−1) = JBJ−1 and exp(−AT ) = (BT )−1.

Thus JAJ−1 = −AT if and only if (BT )−1 = JBJ−1. 2

We shall use this exponential map to convert pure nilpotents into unipotent elements. Let R
be a coefficient ring over O. By Definition 3.9, any pure nilpotent N ∈ NilN (R) is G(R)-conjugate
to Nσ, so it has characteristic polynomial xm. Denoting the derived group of G by G′, any
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nilpotent element of g lies in (g′) = (LieG′), so NJ + JN = 0 (and not just NJ + JN = λJ for

some λ ∈ O). Thus, Corollary 5.2 shows that exp(N) ∈ G(R). This gives an exponential map

exp : NilN → G (5.1)

such that for g ∈ Ĝ(R), N ∈ NilN (R), and q ∈ Z we have exp(qN) = exp(N)q and g exp(N)g−1 =

exp(AdG(g)N).

Remark 5.3. This is a realization over O of a special case of the Springer isomorphism identifying

the nilpotent and unipotent varieties in very good characteristic. For later purposes, we will need

that the identification is compatible with the multiplication in the sense that exp(qA) = exp(A)q.

In the case of GLm, a Springer isomorphism that works in any characteristic is given by X →

1 +X for nilpotent X, but this is not compatible with multiplication.

5.2 Minimally ramified deformations

As before, G is GSpm, GOm or GLm over the ring of integers O of a p-adic field with residue

field k with p > m. Let L be a finite extension of Q` (with ` 6= p), and denote its absolute

Galois group by ΓL. Consider a representation ρ : ΓL → G(k). We wish to define a (large)

smooth deformation condition for ρ generalizing the minimally ramified deformation condition

for GLn defined in [CHT08, § 2.4.4]. In this section we do so for a special class of tamely ramified

representations. This requires making an étale local extension of O, which will be harmless for

our purposes.

Recall that Γt
L, the Galois group of the maximal tamely ramified extension of L, is isomorphic

to the semidirect product

Ẑ n
∏
p′ 6=`

Zp′ ,

where Ẑ is generated by a Frobenius φ and the conjugation action by φ on the direct product is

given by the cyclotomic character. We consider representations of Γt
L which factor through the

quotient Ẑ n Zp. Picking a topological generator τ for Zp, the action is explicitly given by

φτφ−1 = qτ,

where q is the size of the residue field of L. Note q is a power of `, so it is relatively prime to p.

This leads us to study representations of the group Tq := Ẑ n Zp.

Let ρ : Tq → G(k) be such a representation. We first claim that ρ(τ) ∈ G(k) is unipotent.

This element decomposes as a commuting product of semisimple and unipotent elements of G(k).

The order of a semisimple element in G(k) is prime to p, while by continuity there is an r > 0

such that τp
r ∈ ker(ρ). Thus ρ(τ) is unipotent.

Informally, a deformation ρ : Tq → G(R) will be minimally ramified if ρ(τ) lies in the ‘same’

unipotent orbit as ρ(τ). To make this meaningful over an infinitesimal thickening of k, we shall

use the notion of pure nilpotents as in Definition 3.9 since unipotence and unipotent orbits are

not good notions when not over a field. As N := log(ρ(τ)) is nilpotent, by Remark 3.8 after

making an étale local extension of O we may assume that there exists a pure nilpotent Nσ ∈ g

lifting N for which ZG(Nσ) is smooth. Making a further extension if necessary, we may also

assume that the unit q ∈ O× is a square. We obtain an exponential map exp : NilN → G as

in (5.1).
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Definition 5.4. Under our standing assumptions (collected as (A1)–(A4) in § 1.2), for a
coefficient ring R over O, a continuous lift ρ : Tq → G(R) of ρ is minimally ramified if
ρ(τ) = exp(N) for some N ∈ NilN (R).

Example 5.5. Take G = GLm. Then X 7→ 1m + X gives an identification of nilpotents and
unipotents. Up to conjugacy, over algebraically closed fields parabolic subgroups correspond
to partitions of m and every nilpotent orbit is the Richardson orbit of such a parabolic. Let
ρ(τ) − 1m =: N correspond to the partition σ = n1 + n2 + · · · + nr. By Example 3.2, the lift
Nσ of N is conjugate to a block nilpotent matrix with blocks of size n1, n2, . . . , nr. The points
N ∈ NilN (R) are the Ĝ(R)-conjugates of Nσ. It is clear (since p > m) that if ρ(τ) ∈ NilN (R),
then

ker(ρ(τ)− 1m)i ⊗R k→ ker(ρ(τ)− 1m)i (5.2)

is an isomorphism for all i. Conversely, repeated applications of [CHT08, Lemma 2.4.15] show
that any ρ(τ) satisfying this collection of isomorphism conditions is Ĝ(R)-conjugate to Nσ.
Thus the minimally ramified deformation condition for GLm defined in [CHT08] agrees with our
definition. Note that the identification X 7→ 1m +X does not satisfy qX → (1 +X)q, so it will
not work in our argument. The proof of [CHT08, Lemma 2.4.19] uses a different method for
which this non-homomorphic identification suffices.

The functor of minimally ramified lifts is pro-representable by a ring Rm.r.�
ρ as it suffices to

specify images of τ and φ subject to constraints that ρ(τ) = exp(N) and ρ(φ)ρ(τ)ρ(φ)−1 = ρ(τ)q.

Proposition 5.6. Under assumptions (A1)–(A4), the lifting ring Rm.r.�
ρ is formally smooth over

O of relative dimension dimGk.

Proof. Let Φ = ρ(φ) ∈ G(k) and let ĜΦ be the formal completion of G at Φ. Using the relation

ρ(φ)ρ(τ)ρ(φ)−1 = ρ(τ)q,

we deduce that ΦN Φ
−1

= qN . Therefore we study the functor MN on ĈO defined by

MN (R) = {(Φ, N) : N ∈ NilN (R), Φ ∈ ĜΦ(R), ΦNΦ−1 = qN} ⊂ NilN (R)× ĜΦ(R).

Any such lift (Φ, N) to a coefficient ring R determines a homomorphism Tq → G(R) lifting ρ
via φ 7→ Φ and τ 7→ exp(N): it is continuous because exp(N) is unipotent. We will analyze MN

through the composition
MN → NilN → Spf O.

First, observe that MN → NilN is relatively representable as ‘ΦN = qNΦ’ is a formal closed

condition on points Φ of (ĜΦ)R for each N ∈ NilN (R).
From Lemma 3.11, we know that NilN is formally smooth over O, and the universal nilpotent

is gNσg
−1 for some g ∈ Ĝ(NilN ). To check formal smoothness of the map MN → NilN , it therefore

suffices to check the formal smoothness of the fiber of MN over the O-point Nσ of NilN .
We have written down Φσ ∈ G(O) satisfying ΦσNσΦ−1

σ = qNσ in Remark 4.14. Observe that

Φ Φ
−1
σ ∈ ZG(Nσ)(k). By smoothness, we may lift Φ Φ

−1
σ to an element s ∈ ZG(Nσ)(O). Then sΦσ

reduces to Φ and satisfies (sΦσ)Nσ(sΦσ)−1 = qNσ, so the fiber of MN over Nσ has an O-point.
The relative dimension of the formally smooth NilN is dimGk − dimZGk(N) by Lemma 3.11,

and MN → NilN is a ẐG(Nσ)-torsor since it has an O-point over Nσ. As ZG(Nσ) is smooth it
follows that MN is formally smooth over Spf O of relative dimension dimGk. 2
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Example 5.7. This recovers [CHT08, Lemma 2.4.19] in the case G = GLm.

Let S be the (torus) quotient of G by its derived group G′, and µ : G→ S the quotient map.
For use later, we now study a variant where we fix a lift ν : Tq → S(O) of µ ◦ ρ : Tq → S(k), as
follows.

Corollary 5.8. Under assumptions (A1)–(A4), the deformation condition of minimally
ramified lifts ρ : Tq → G(R) satisfying µ ◦ ρ = ν is a liftable deformation condition. The lifting

ring Rm.r.,ν,�
ρ is of relative dimension dimGk − 1, and the tangent space to the deformation

functor has dimension dimkH
0(Tq, ad(ρ))− 1.

Proof. The last claim about the dimension of the tangent space to the deformation functor
follows from the claim about the dimension of the lifting ring and Remark 2.2.

The quotient torus S = G/G′ is split of rank 1, so the subscheme Rm.r.,ν,�
ρ ⊂ Rm.r.�

ρ is

the vanishing of locus of a single function. As Rm.r.�
ρ is formally smooth over O with relative

dimension dimGk, it suffices to check that the tangent space of Rm.r.,ν,�
ρ over k (in the sense

of [Maz97, § 15]) is a proper subspace of the tangent space of Rm.r.�
ρ : this will establish formal

smoothness and the dimension claim.
Let Z be the maximal central torus of G. On the level of Lie algebras, we know that LieG

splits over O as a direct sum of LieG′ and LieS ' LieZ as p is very good for G. We can modify a
lift ρ0 over R = k[ε]/(ε2) by multiplying against an unramified non-trivial character Tq → Z(R)

with trivial reduction, changing µ ◦ ρ0. Thus the tangent space of Rm.r.,ν,�
ρ is a proper subspace

of that of Rm.r.�
ρ . 2

5.3 Deformation conditions based on parabolic subgroups
The use of nilpotent orbits is not the only approach to defining a deformation condition at
ramified places not above p. As discussed in the introduction, the method used to prove [CHT08,
Lemma 2.4.19] suggests a generalization from GLn to other groups G based on deformations lying
in certain parabolic subgroups of G. This deformation condition is not smooth for algebraic
groups beyond GLn, so it does not work in Ramakrishna’s method. In this section we give a
conceptual explanation for this phenomenon.

Let P ⊂ G be a parabolic O-subgroup. The Richardson orbit for Pk intersects (LieRuP )k in a
dense open set which is a single geometric orbit under Pk. Suppose that ρ(τ) is the exponential of
a k-point N in the Richardson orbit, and consider deformations ρ : Tq→ G(O) of ρ ramified with
respect to P in the sense that ρ(τ) ∈ P (compare with Definition 1.2). This requires specifying a
lift of N that lies in LieP . One could hope that such lifts would automatically be G(O)-conjugate
to the fixed lift Nσ defined in Proposition 3.7, reminiscent of the definition we gave for NilN , a
situation in which the associated deformation (or lifting) ring is smooth.

We now show that often smoothness fails if N does not lie in the Richardson orbit of Pk.
Lifts of N can ‘change nilpotent type’ yet still lie in a parabolic lifting Pk, such as the example
of the standard Borel subgroup in GL3 with

N =

0 1 0
0 0 p
0 0 0

 lifting N =

0 1 0
0 0 0
0 0 0

 .

In particular, we easily obtain non-pure nilpotents. This is very bad: the nilpotent orbits over a
field are smooth but the nilpotent cone is not smooth, so the deformation problem of deforming
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with respect to P should not be smooth because ‘it sees multiple orbits’. Furthermore, even if we

could lift ρ(τ) appropriately, there would still be problems lifting ρ(φ) because the centralizer of

a non-pure nilpotent is not smooth over O (the special and generic fiber typically have different

dimensions). So it is crucial to choose a parabolic such that N lies in the Richardson orbit of Pk.

For GLn, all nilpotent orbits are Richardson orbits. This is not true in general. In particular,

we should not expect the deformation condition of being ramified with respect to a parabolic to

be liftable. Example 1.3 illustrates this phenomenon for GSp4, which we now revisit in a more

conceptual manner.

Example 5.9. Take G = GSp4. Parabolic subgroups correspond to isotropic flags. Up to
conjugacy, these subgroups are stabilizers of the flags

0 ⊂ Span(v1) ⊂ Span(v1, v2) ⊂ Span(v1, v2, v3) ⊂ k4, 0 ⊂ k4

0 ⊂ Span(v1) ⊂ Span(v1, v2, v3) ⊂ k4, 0 ⊂ Span(v1, v2) ⊂ k4,

where {v1, v2, v2, v4} is a basis of k4. Their Richardson orbits correspond to the nilpotent orbits

indexed respectively by the partitions 1+1+1+1, 4, 4, and 2+2. In particular, the same nilpotent

orbit is associated with two flags, and the nilpotent orbit corresponding to the partition 2+1+1

does not appear. This corresponds to a nilpotent orbit that is not a Richardson orbit; for the

representation in Example 1.3, log(ρ(τ)) is in this nilpotent orbit.

6. Minimally ramified deformations in general

We continue the notation of the previous section. We have defined the minimally ramified

deformation condition for representations factoring through the quotient Tq = Ẑ n Zp of the

tame Galois group Γt
L at a place away from p. In this section, we will adapt the matrix-theoretic

methods in [CHT08, § 2.4.4], making use of more conceptual module-theoretic arguments, to

define the minimally ramified deformation condition for any representation when G = GSpm or

G = GOm. (Minor variants of this method work for Spm and SOm, and the original method

of [CHT08, § 2.4.4] works for GLm.) We naturally embed G into GL(M) for a free O-module M

of rank m, and let V denote the reduction of M , a vector space over the residue field k.

We consider a representation ρ : ΓL → G(k) ⊂ GL(V )(k) which may be wildly ramified

(with L an `-adic field for ` 6= p). We will define a deformation condition for ρ in terms of the

minimally ramified deformation condition for certain associated tamely ramified representations,

after possibly extending O. In § 6.1, we analyze ρ as being built out of two pieces of data:

representations of a closed normal subgroup ΛL of ΓL whose pro-order is prime to p, and tamely

ramified representations of ΓL/ΛL. The representation theory of ΛL is manageable since its

pro-order is prime to p, and representations of ΓL/ΛL can be understood using the results of the

previous section.

6.1 Decomposing representations

We begin with a few preliminaries about representations over rings. Let Λ′ be a profinite group

and R be an Artinian coefficient ring with residue field k. If Λ′ has pro-order prime to p, the

representation theory of Λ′ over k is nice: every finite-dimensional continuous representation is

a direct sum of irreducibles, and every such representation is projective over k[Λ] for any finite

discrete quotient Λ of Λ′ through which the representation factors. We are also interested in

corresponding statements over an Artinian coefficient ring R.
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Fact 6.1. Let R be an Artinian coefficient ring with residue field k. Suppose the pro-order of Λ′

is prime to p. Let P and P ′ be R[Λ′]-modules that are finitely generated over R with continuous
action of Λ′, and F be a k[Λ′]-module that is finite dimensional over k with continuous action of
Λ′. Let Λ be a finite discrete quotient of Λ′ through which the Λ′-actions on P , P ′, and F factor.

(i) If P is free as an R-module, it is projective as a R[Λ]-module.

(ii) If P and P ′ are projective over R[Λ], they are isomorphic if and only if P and P ′ are
isomorphic.

(iii) There exists a projective R[Λ]-module (unique up to isomorphism) whose reduction is F .

These statements are special cases of results in [Ser77, § 14.4]. We now record two lemmas
which do not need the assumption that the pro-order of Λ′ is prime to p. Here and elsewhere, we
use HomΛ′ to denote homomorphisms as representations of Λ′ (equivalently as R[Λ′]-modules).

Lemma 6.2. Let P and P ′ be R[Λ′]-modules, finitely generated over R with continuous action
of Λ′ factoring through a finite discrete quotient Λ of Λ′. Assume P and P ′ are R[Λ]-projective.
The natural map gives an isomorphism

HomΛ′(P, P
′)⊗R k→ HomΛ′(P , P ′).

Proof. We may replace HomΛ′ with HomΛ. Note that mP ′ = m ⊗R P ′, so HomΛ(P,mP ′) =
HomΛ(P, P ′)⊗Rm as P and P ′ areR[Λ]-projective. Then apply HomΛ(P,−) to the exact sequence
0→ mP ′→ P ′→ P ′/mP ′→ 0. 2

Lemma 6.3. Let Λ be a finite group and let M and M ′ be finite R[Λ]-modules whose reductions

M and M
′

are non-isomorphic irreducible k[Λ]-modules. Then HomR[Λ](M,M ′) = 0.

Proof. Filter M ′ by the composition series {miM ′}, and consider the surjection

mi/mi+1 ⊗M ′ � miM ′/mi+1M ′.

Now Λ acts on mi/mi+1 ⊗ M ′ via its action on M
′
, so as a k[Λ]-module miM ′/mi+1M ′ is

isomorphic to a direct sum of copies of M
′
. Thus

HomR[Λ](M,miM ′/mi+1M ′) = Homk[Λ](M,miM ′/mi+1M ′) = 0

as M and M
′

are non-isomorphic k[Λ]-modules.
By descending induction on i, we shall show that

HomR[Λ](M,miM ′) = 0.

For large i, miM ′ = 0. Consider the exact sequence

0→ mi+1M ′→ miM ′→ miM ′/mi+1M ′→ 0.

Applying HomR[Λ](M,−), we obtain a left exact sequence

0→ HomR[Λ](M,mi+1M ′)→ HomR[Λ](M,miM ′)→ HomR[Λ](M,miM ′/mi+1M ′).

The left term is 0 by induction, and the right term is 0 by the above calculation. This completes
the induction. 2
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Given ρ : ΓL→ G(k) ⊂ GL(V )(k) and a lift ρ : ΓL→ G(R) ⊂ GL(M)(R) for some R ∈ CO,
we now turn to decomposing the R[ΓL]-module M . Let IL ⊂ ΓL be the inertia group, and pick
a surjection IL → Zp. Define ΛL to be the kernel of this surjection (normal in ΓL). This is a
pro-finite group with pro-order prime to p, and is independent of the choice of surjection. Define
the quotient

TL := ΓL/ΛL,

which is a quotient of the tamely ramified Galois group Γt
L and of the form Tq = Ẑ n Zp as in

§ 5. We wish to compatibly decompose V and M as ΛL-modules and then understand the action
of ΓL on the decomposition.

We first make a finite extension of k (and of O) so that all of the (finitely many) irreducible
representations of ΛL over k occurring in V are absolutely irreducible over k.

Because ΛL has order prime to p, ResΓL
ΛL

(V ) is completely reducible and we can write

ResΓL
ΛL

(V ) =
⊕
τ

Vτ ,

where τ runs through the set of isomorphism classes of irreducible representations of ΛL over
k occurring in V , and each Vτ is the τ -isotypic component. We will obtain an analogous
decomposition for M .

Let Γ be a finite discrete quotient of ΓL through which ρ factors, and let Λ be the image of ΛL
in Γ. Using Fact 6.1(iii) we can lift τ to a projective R[Λ]-module τ̃ unique up to isomorphism.
We will eventually want this lift to have additional properties (see § 6.2), but this is not yet
necessary. We set Wτ := HomΛL(τ̃ ,M) and consider the natural morphism⊕

τ

τ̃ ⊗RWτ →M.

Note that M is R[Λ]-projective by Fact 6.1(i).

Lemma 6.4. This map is an isomorphism of R[ΛL]-modules.

Proof. It suffices to check the map is an isomorphism ofR[Λ]-modules. WhenR= k, EndΛ(τ) = k
as we extended k so that all of the irreducible representations of Λ over k occurring inside V
are absolutely irreducible. Splitting up V as a direct sum of irreducibles, we obtain the desired
isomorphism.

In the general case, the map is an isomorphism after reducing modulo m (use Lemma 6.2).
Thus by Nakayama’s lemma it is surjective. Since M is R-projective, the formation of the kernel
commutes with reduction modulo m. Thus, again using Nakayama’s lemma, the kernel is zero. 2

We define Mτ to be the image of τ̃ ⊗R HomΛL(τ̃ ,M) in M . It is the largest R[ΛL]-direct
summand whose reduction is a direct sum of copies of τ .

We next seek to understand the action of ΓL on this canonical decomposition of M . For
g ∈ ΓL, consider the R[ΛL]-module gMτ : it is a direct summand of M over R whose reduction
is a direct sum of copies of the representation τ g defined by τ g(h) = τ(g−1hg) for h ∈ ΛL. Thus
we see that gMτ = Mτg inside M , and ΓL permutes the modules Mτ . The orbits corresponds to
sets of conjugate representations.

Consider the stabilizer of Vτ :

ΓL,τ = {g ∈ ΓL : gVτ = Vτ inside V } = {g ∈ ΓL : τ g ' τ} ⊂ ΓL
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with corresponding image

Γτ = {g ∈ Γ : gVτ = Vτ inside V } = {g ∈ Γ : τ g ' τ} ⊂ Γ.

Then the k-span of the ΓL-orbit of Vτ is exactly the representation IndΓL
ΓL,τ

Vτ = IndΓ
Γτ Vτ . Letting

[τ ] denote the set of R[Λ]-isomorphism classes of Λ-representations Γ-conjugate to τ , by taking
into account the action of Γτ the isomorphism in Lemma 6.4 becomes an isomorphism of R[ΓL]-
modules ⊕

[τ ]

IndΓL
ΓL,τ

Mτ
∼−→M (6.1)

using one representative τ per ΓL-conjugacy class [τ ].
For orthogonal or symplectic representations, we will make precise the notion that this

decomposition is ‘compatible with duality’. Denote the similitude character by µ, and let
ν := µ ◦ ρ : ΓL → k×. Let N be a free O-module of rank 1 on which ΓL acts by a specified
continuous O×-valued lift ν of ν, and let N be its reduction modulo m. For an R-module M ,
define M∨ = HomR(M,NR) with the evident ΓL-action.

Now suppose we have chosen ν so that ν = µ ◦ ρ (viewed as maps ΓL → R×). The perfect
pairing on the M corresponding to ρ gives an isomorphism of R[ΓL]-modules ψ : M ' M∨. In
particular, using Lemma 6.4 we see that⊕

τ

Mτ = M
ψ
'M∨ =

⊕
τ

(Mτ )∨.

To simplify notation, we will write M∨τ for (Mτ )∨. Note that the right side is also an isotypic
decomposition, with M∨τ the maximal direct whose direct sum is a direct sum of copies of τ∨.
By comparing isotypic pieces, we obtain a natural isomorphism (of R[ΛL]-modules)

ψτ : M∨τ 'Mτ∗

for some irreducible representation τ∗ of ΛL occurring in V . Note that τ∗ ' τ∨ as k[ΛL]-modules,
but that τ∗ is not necessarily the dual of τ as k[ΓL]-modules. There are three cases.
• Case 1: τ is not ΓL-conjugate to τ∗.
• Case 2: τ is isomorphic to τ∗ as ΓL-modules.
• Case 3: τ is ΓL-conjugate to τ∗ but not isomorphic.

In the second case, we claim that the isomorphism of k[ΛL]-modules ı : τ ' τ∨ gives a
sign-symmetric (for some fixed sign ετ ) perfect pairing on τ . Note that W τ = HomΛ(τ, V ) by
Lemma 6.2, and that

W τ = HomΛ(τ, V )
ψ
' HomΛ(τ, V ∨)

ı' HomΛ(τ∨, V ∨) 'W∨τ .

Denote this isomorphism by ϕτ : it defines a pairing 〈 , 〉W τ
on W τ via

〈w1, w2〉W τ
:= ϕτ (w1)(w2).

We can also define 〈v1, v2〉τ := ı(v1)(v2) for v1, v2 ∈ τ . We have a commutative diagram of
isomorphisms.

τ ⊗W τ
id⊗ϕτ //

eval

��

τ ⊗W∨τ
ı⊗id // τ∨ ⊗W∨τ

eval∨

��
Vτ

ψτ // V ∨τ
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The commutativity says that for elementary tensors mi = vi ⊗ wi ∈ Vτ = τ ⊗W τ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1))(v2 ⊗ w2)

= ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ 〈w1, w2〉W τ
. (6.2)

Remember that the pairing on V is ε-symmetric.

Lemma 6.5. The pairing 〈 , 〉τ is a sign-symmetric (for fixed sign ετ ).

Proof. Suppose there exists v ∈ τ such that ı(v)(v) 6= 0. For w1, w2 ∈W τ , (6.2) gives

ı(v)(v)ϕτ (w1)(w2) = 〈v ⊗ w1, v ⊗ w2〉V = ε〈v ⊗ w2, v ⊗ w1〉V = εı(v)(v)ϕτ (w2)(w1).

Canceling ı(v)(v), we conclude that 〈w1, w2〉W τ
= ε〈w2, w1〉W τ

. Using (6.2), we conclude that

εı(v2)(v1) · ϕτ (w2)(w1) = ε〈m2,m1〉V = 〈m1,m2〉V
= ı(v1)(v2) · ϕτ (w1)(w2) = εı(v1)(v2) · ϕτ (w2)(w1).

Choosing w1 and w2 with 〈w2, w1〉W τ
6= 0 (possible as 〈 , 〉V is perfect), we then conclude that

〈v1, v2〉τ̃ = 〈v2, v1〉τ̃ .
Otherwise ı(v)(v) = 0 for all v ∈ τ , in which case 〈 , 〉τ̃ is alternating. 2

In § 6.2 we will see that the action of ΛL on the module underlying τ̃ can be extended to an
action of ΓL,τ factoring through Γτ . Therefore, Wτ = HomΛL(τ̃ ,M) is naturally a representation
of TL,τ := ΓL,τ/ΛL, and of Tτ := Γτ/Λ (a finite quotient of TL,τ ). In § 6.4, we will use the
minimally ramified deformation condition of § 5 to specify which deformations Wτ are allowed.
Together with the decomposition (6.1)⊕

[τ ]

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )→M

this defines a deformation condition for ρ. Some care is needed to ensure compatibility of the
lifts with the pairing on M , which will require breaking into cases in the next sections based on
the relationship between τ and τ∗.

6.2 Extension of representations
We continue the notation of the previous section, where τ is an absolutely irreducible
representation of ΛL over k. We need to lift this to a representation over O and extend it
to a representation of ΓL,τ . We will have to do something extra for the representation to be
compatible with a pairing, depending on how τ and τ∗ are related.

In Case 1, we ignore the pairing. Lemma 2.4.11 of [CHT08] lets us pick a O[ΓL,τ ]-module τ̃
that is a free O-module and reduces to τ . In this case, τ̃∨ is a free O-module reducing to τ∗.

In Case 2, from Lemma 6.5 it follows that τ is a symplectic or orthogonal representation.
We will adapt the GLn-technique of [CHT08] to produce a symplectic or orthogonal extension τ̃ .
Letting n = dim τ , the representation τ gives a homomorphism τ : ΛL→ G(k) where G is GSpn
or GOn.

First, we claim that there is a continuous lift τ̃ : ΛL → G(W (k)): without the pairing, this
would be Fact 6.1(iii). To also take into account the pairing, consider deformation theory for
the residual representation τ . This is a smooth deformation condition as H2(ΛL, ad τ) = 0: ΛL
has pro-order prime to p and ad τ has order a power of p. Therefore the desired lift exists. It is
unique (up to conjugation by an element of Ĝ(O)) because the tangent space is zero dimensional
as H1(ΛL, ad τ) = 0. By considering representations of the group ΛL/ker(τ), we may and do
assume that ker(τ̃) = ker(τ) as subgroups of ΛL.
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Remark 6.6. For g ∈ ΓL,τ , the k[ΛL]-modules τ g ' τ are isomorphic. By uniqueness of the lift,
this means that there is A ∈ G(O) such that τ̃ g(γ) = Aτ̃(γ)A−1 for all γ ∈ ΓL. Furthermore,
ΓL,τ = {g ∈ ΓL : τ̃ g ' τ̃}.

We will now show how to continuously extend τ̃ to ΓL,τ . The first step in constructing the
extension is to understand the structure of ΓL,τ and IL ∩ ΓL,τ , where IL is the inertia group.

Recall that TL = ΓL/ΛL is the semidirect product of Ẑ and Zp, where Ẑ is generated by a
lift of Frobenius φ and Zp is generated by an element σ, with φσφ−1 = σq where q = `a is the
size of the residue field of L.

Fact 6.7. The exact sequence
1→ ΛL→ ΓL→ TL→ 1

is topologically split, so ΓL is a semidirect product.

Proof. This is [CHT08, 2.4.10]. 2

For TL,τ := ΓL,τ/ΛL, this gives a topological splitting of

1→ ΛL→ ΓL,τ → TL,τ → 1.

As ΓL,τ is an open subgroup of ΓL, we observe that TL,τ is an open subgroup of TL. Note that
TL,τ is normal and topologically generated by some powers of φ and σ which will be denoted by
φτ and στ (since any open subgroup of a semidirect product CnC ′ for pro-cyclic C and C ′ is of
the form C0 nC ′0 for open subgroups C0 ⊂ C and C ′0 ⊂ C ′). In particular, using the notation of
§ 5.2 TL,τ is itself isomorphic to Tq′ for some q′. The element στ and ΛL together topologically
generate ΓL,τ ∩ IL.

Before extending τ̃ , we need several technical lemmas.

Lemma 6.8. We have that EndΛL(τ̃) = O.

Proof. As τ is absolutely irreducible, EndΛL(τ) = k. By Lemma 6.2, we see that the reduction
of EndΛL(τ̃) modulo the maximal ideal of O is k, so the map O ↪→ EndΛL(τ̃) is surjective by
Nakayama’s lemma. 2

Lemma 6.9. The dimension of τ is not divisible by p.

Proof. As τ is continuous and ΛL has pro-order prime to p, the representation τ factors through a
finite discrete quotient Λ of ΛL whose order is prime to p. Such a representation is the reduction
of a projective O[Λ]-module by Fact 6.1(iii). Inverting p, we obtain a representation of Λ in
characteristic zero that is absolutely irreducible since the ‘reduction’ τ is absolutely irreducible
over k. By [Ser77, § 6.5 Corollary 2], the dimension of this representation (equal to the dimension
of τ) divides the order of Λ. 2

We will now extend τ̃ from ΛL ⊂ IL to ΓL,τ by defining it on the topological generators στ
and φτ . We say that such an extension has tame determinant if det(τ̃(στ )) has finite order which
is prime to p. Lemmas 6.10 and 6.11 adapt [CHT08, Lemma 2.4.11] and fill in some details.

Lemma 6.10. There is a unique continuous extension τ̃ : ΓL,τ ∩ IL → G(O) with tame
determinant.
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Proof. A continuous extension of τ̃ to ΓL,τ ∩ IL is determined by its value on στ . As στ ∈ ΓL,τ ,
in light of Remark 6.6 there is an A ∈ G(O) such that for g ∈ ΛL we have

τ̃(στgσ
−1
τ ) = Aτ̃(g)A−1.

We would like to send στ to the element A. For an appropriate modification of A (still lying in
G(O)), this will produce a continuous extension with tame determinant. As στ is a topological
generator for a group isomorphic to Zp, the continuity of the extension with στ 7→ A is equivalent
to some p-power of A having trivial reduction. We wish to show that there is a unique choice of
such A that also makes the extension have tame determinant.

We will first show that some power Ap
b

lies in the centralizer of the image τ̃(ΛL). Consider
the conjugation action of 〈στ 〉 on ΛL. As ker τ̃ = ker τ is a normal subgroup of ΓL,τ (if g ∈ ΓL,τ
and τ(h) = 1, then τ g(h) is conjugate to τ(h) = 1 by Remark 6.6) we get an action of 〈στ 〉 on
ΛL/ker τ ' τ(ΛL). The action is continuous, so there is a power pb such that for all g ∈ ΛL we
have

τ(σp
b

τ gσ
−pb
τ ) = τ(g).

As ker τ̃ = ker τ , we see that

Ap
b
τ̃(g)A−p

b
= τ̃(σp

b

τ gσ
−pb
τ ) = τ̃(g).

Therefore Ap
b

lies in the centralizer of τ̃(ΛL) in G(O).
By Lemma 6.8, this centralizer is isomorphic to O×. We claim that by multiplying A by some

unit in O, we can arrange for the continuous extension τ̃ to exist and have tame determinant.
We will use the fact that an element of O× is the product of a 1-unit and a Teichmuller lift of an
element of k×. As Ap

b ∈ O× and the pth power map is an automorphism of k×, we may multiply
A by a unit scalar so that Ap

b
reduces to the identity matrix. By Lemma 6.9, the dimension n

of τ is prime to p so we may multiply A by a 1-unit so that det(A) has finite order prime to p.
Sending στ to this particular A gives a continuous extension with tame determinant.

Let us show this extension is unique. Any extension must send στ to an element of the form
wA for w ∈ O× (the centralizer of the image τ̃(ΛL)). By continuity, there is a power pb such

that (wA)p
b

reduces to the identity. This means that wp
b

reduces to the identity, and hence that
w reduces to the identity. On the other hand, det(wA) det(A)−1 = wn. The left side has finite
order that is relatively prime to p, so wn does too. This forces wn = 1 since its reduction is 1.
But as n is prime to p (Lemma 6.9), the only nth roots of unity in O× are Teichmuller lifts.
Therefore w = 1. 2

Lemma 6.11. There is a continuous extension τ̃ : ΓL,τ → G(O).

Proof. We extend τ̃ in Lemma 6.10 continuously to ΓL,τ by defining it on φτ . As φτ ∈ ΓL,τ , by
Remark 6.6 there is an element A ∈ G(O) conjugating τ̃ : ΛL→ G(O) to τ̃φτ : ΛL→ G(O). Each
has a unique extension to a continuous morphism from IL∩ΓL,τ to G(O) with tame determinant.
Therefore for g ∈ IL ∩ ΓL,τ we have

τ̃(φτgφ
−1
τ ) = Aτ̃(g)A−1

since the right side has the same (tame) determinant as τ̃ on IL ∩ Tτ . We can continuously
extend τ̃ : IL ∩ ΓL,τ → G(O) by sending φτ to A since A has reduction with finite order. 2
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This gives the desired lift and extension of τ in the case that τ ' τ∗.
In Case 3, τ is conjugate to τ∗ but not isomorphic. The argument follows the same structure

as the previous case, but we make a few modifications to treat τ ⊕ τ∗ together. In particular, we
can pick a copy of the k[ΛL]-module τ inside V and a copy of τ∗ ' τ∨ inside V such that the
pairing restricted to τ ⊕ τ∗ is perfect. It is sign-symmetric with sign ετ⊕τ∗ .

Define ΓL,τ⊕τ∗ = {g ∈ ΓL : (τ ⊕ τ∗)g ' τ ⊕ τ∗}. It contains ΓL,τ with index 2, as conjugation
either preserves τ and τ∗ or swaps them. Arguing as in the paragraph after Fact 6.7, we obtain
a split exact sequence

0→ ΛL→ ΓL,τ⊕τ∗ → TL,τ⊕τ∗ → 1,

where TL,τ⊕τ∗ is an open normal subgroup of TL topologically generated by some powers of φ
and σ which we denote by φτ⊕τ∗ and στ⊕τ∗ . We may arrange that either:
• Case 3a: φ2

τ⊕τ∗ = φτ and στ⊕τ∗ = στ ; or
• Case 3b: φτ⊕τ∗ = φτ and σ2

τ⊕τ∗ = στ .
In Case 3a, we begin by lifting τ to O as a representation of ΛL: as before, we do this using

the fact that the pro-order of ΛL is prime to p, and obtain a lift τ̃ unique up to isomorphism.
We extend τ̃ to be a representation of ΓL,τ ∩ IL by defining it on στ using the GLn-version of
Lemma 6.10, [CHT08, Lemma 2.4.11]. There it is shown all such extensions are unique up to
equivalence. In particular, τ̃ and (τ̃φτ⊕τ∗ )∨ are isomorphic O[ΓL,τ ∩IL]-modules. We can use this
to define a sign-symmetric perfect pairing on τ̃ ⊕ τ̃φτ⊕τ∗ that is compatible with the action of
ΓL,τ ∩ IL and φτ⊕τ∗ , hence of ΓL,τ⊕τ∗ .

In Case 3b, as τ∨ and τστ⊕τ∗ are isomorphic k[ΛL]-modules it follows that τ̃∨ and τ̃στ⊕τ∗

are isomorphic O[ΛL]-modules. In particular, this isomorphism gives a natural way to define
a sign-symmetric perfect pairing on M = τ̃ ⊕ τ̃στ⊕τ∗ lifting the residual one. This pairing is
compatible with the action of ΓL,τ⊕τ∗ ∩ IL (which is generated by ΛL and στ⊕τ∗). Finally,
we claim that M and Mφτ are isomorphic. As φτ ∈ ΓL,τ preserves τ , acting by φτ gives an

isomorphism ψ : M ' M
φτ

of k[ΛL]-modules such that ψ(τ) = τφτ . By uniqueness of the lift
of τ as a O[ΛL]-module, we obtain an isomorphism ψτ of τ̃ and τ̃φτ and hence an isomorphism
ψ : M 'Mφτ via the identifications

τ̃στ⊕τ∗ ' τ̃∨
ψ−1
τ' (τ̃φ

−1
τ )∨ ' (τ̃∨)φτ ' (τ̃στ⊕τ∗ )φτ .

This isomorphism is compatible with the pairing. The key observation is that for m ∈ τ̃ and
f ∈ τ̃∨ ' τ̃στ⊕τ∗ , we have that

〈ψ(m), ψ(f)〉M = 〈ψτ (m), f ◦ ψ−1
τ 〉M = f(ψ−1

τ (ψτ (m))) = f(m) = 〈m, f〉M .
Then proceed as in the proof of Lemma 6.11, defining an image of φτ using the isomorphism ψ.

In conclusion, we have shown the following.

Lemma 6.12. In Case 3, there exists an O[ΓL,τ⊕τ∗ ]-module τ̃ ⊕ τ∗ with pairing lifting τ ⊕ τ∗
together with its pairing.

6.3 Lifts with pairings
We continue the notation of § 6.1, and analyze how the duality pairing interacts with the
decomposition (6.1). Recall that we obtained an isomorphism M 'M∨ of R[ΓL]-modules which
gave isomorphisms Mτ 'M∨τ∗ of R[ΓL,τ ]-modules. The key point is that for any lift and extension
τ ′ of τ , the isomorphism of R[ΛL]-modules

τ ′ ⊗HomΛL(τ ′,M)→Mτ

is compatible with the ΓL,τ -action.
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To do this, it is convenient to break into the cases introduced at the end of § 6.1. For an
irreducible k[Λ]-module τ occurring in V , note that (τ g)∨ = (τ∨)g for any g ∈ ΓL, so if τ ' τ∗

then τ g ' (τ g)∗. We let
• Σn denote the set of ΓL-conjugacy classes of such τ for which τ is not conjugate to τ∗;
• Σe denote the set of ΓL-conjugacy classes of such τ for which τ ' τ∗;
• Σc denote the set of ΓL-conjugacy classes of such τ for which τ∗ is conjugate to τ but
τ 6' τ∗.

From (6.1), we obtain a decomposition

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ ′ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ ′ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ

(τ ′ ⊗Wτ ) (6.3)

where τ ′ is any lift and extension of τ to Γτ and Wτ = HomΛ(τ ′,M) is a representation of TL,τ .
Note that Wτ is free as an R-module (since M and τ ′ are, with τ ′ 6= 0 and R local), and hence
that Wτ is tamely ramified of the type considered in § 5.

We may rewrite this to make use of the special extensions constructed in § 6.2. In particular,
for τ ∈ Σc we rewrite

IndΓL
ΓL,τ

(τ ′ ⊗Wτ ) = IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗).

This uses the notation and results from Case 3 in § 6.2, in particular the fact that τ ⊕ τ∗ is an
irreducible representation of the group Λ′L generated by ΛL and a g ∈ ΓL with τ∗ ' τ g, and the

definition Wτ⊕τ∗ := HomΛ′L
(τ̃ ⊕ τ∗,M). Note that Wτ⊕τ∗ is a representation of TL,τ⊕τ∗ , which

is a subgroup of TL = ΓL/ΛL, hence of the form Tq as considered in § 5. Using the extensions τ̃

and τ̃ ⊕ τ∗ from Cases 1 and 2 from § 6.2, we obtain a decomposition

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗). (6.4)

Now let M ′ be another R[ΓL]-module that is finite free over R such that the irreducible
representations of ΛL occurring in V ′ := M ′/mM ′ are among the irreducible representations
occurring in V = M/mM , so

M ′ =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗W ′τ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗W ′τ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗).

Lemma 6.13. The natural map⊕
τ∈Σn

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σe

HomTL,τ (Wτ ,W
′
τ )⊕

⊕
τ∈Σc

HomTL,τ⊕τ∗ (Wτ⊕τ∗ ,W
′
τ⊕τ∗)

→ HomΓL(M,M ′)

is an isomorphism.

Proof. We may immediately pass to working with representations of the finite discrete groups Γ
and Λ. Notice that

HomΓ(IndΓ
Γτ (Mτ ), IndΓ

Γτ (M ′τ )) ' HomΓτ (IndΓ
Γτ (Mτ ),M ′τ ) ' HomΓτ (Mτ ,M

′
τ ),

where the second isomorphism uses that HomΓτ (Mτg ,M
′
τ ) = 0 by Lemma 6.3 when τ and τ g are

non-isomorphic. Furthermore, if τ1 and τ2 are not Γ-conjugate, then

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) ' HomΓτ (IndΓ
Γτ1

(Mτ1),Mτ2) = 0
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using Lemma 6.3 as τ g1 is not isomorphic to τ2 for any g ∈ Γ. Then using (6.1) we see that

HomΓ(M,M ′) =
⊕

[τ1],[τ2]

HomΓ(IndΓ
Γτ1

(Mτ1), IndΓ
Γτ2

(M ′τ2)) =
⊕
[τ ]

HomΓτ (Mτ ,M
′
τ ).

All the irreducible finite-dimensional representations of Λ occurring in V and V ′ are

absolutely irreducible over k by design. For τ ∈ Σn ∪ Σe, consider the natural inclusion

HomR(Wτ ,W
′
τ ) ↪→ HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ ) = HomΛ(τ̃ , τ̃)⊗R HomR(Wτ ,W

′
τ ), (6.5)

using that Wτ and W ′τ are R-free of finite rank and Λ acts trivially. But R ↪→ HomΛ(τ̃ , τ̃) is an
isomorphism because EndΛ(τ) = k and because surjectivity can be checked modulo mR using
Lemma 6.2. As Mτ ' τ̃ ⊗Wτ , this implies that

HomΓτ (Mτ ,M
′
τ ) = HomΛ(Mτ ,M

′
τ )Tτ = HomΛ(τ̃ ⊗Wτ , τ̃ ⊗W ′τ )Tτ

= HomR(Wτ ,Wτ )Tτ = HomTτ (Wτ ,W
′
τ ),

where Tτ is the image of TL,τ in Γτ . An analogous computation in the case τ ∈ Σc completes the

proof. 2

We can now consider the duality isomorphism M 'M∨. By Lemma 6.13, this is equivalent

to a collection of isomorphisms of R[TL,τ ]-modules ϕτ : Wτ ' W∨τ∗ for τ ∈ Σe ∪ Σn and an

isomorphism of R[TL,τ⊕τ∗ ]-modules ϕτ : Wτ⊕τ∗ ' W∨τ⊕τ∗ for τ ∈ Σc. We analyze the cases

separately.

In Case 1 (when τ is not conjugate to τ∗), note that IndΓL
ΓL,τ

Mτ is an isotropic subspace of M .

In particular, the perfect sign-symmetric pairing on IndΓL
ΓL,τ

Mτ ⊕ IndΓL
ΓL,τ∗

Mτ∗ is equivalent to

an isomorphism of R[ΓL]-modules

IndΓL
ΓL,τ

Mτ ' (IndΓL
ΓL,τ∗

Mτ∗)
∨,

which is equivalent to the isomorphism of R[TL,τ ]-modules ϕτ : Wτ ' W∨τ∗ . (Note that the

similitude character ν is present in the use of the dual.)

In Case 2 (when τ is isomorphic to τ∗), the perfect sign-symmetric pairing on IndΓL
ΓL,τ

Mτ is

equivalent to an isomorphism Wτ ' W∨τ of R[TL,τ ]-modules. Thus it gives a pairing 〈 , 〉Wτ on

Wτ via

〈w1, w2〉Wτ := ϕτ (w1)(w2).

We claim this pairing is sign-symmetric.

From § 6.2 we have an isomorphism ı : τ̃ ' τ̃∨ of R[ΓL,τ ]-modules. As at the end of § 6.1,

let ψ : M → M∨ be the isomorphism of R[ΓL]-modules given by m 7→ 〈m,−〉M , and define

〈v1, v2〉τ̃ := ı(v1)(v2). We have a commutative diagram as follows.

τ̃ ⊗Wτ
id⊗ϕτ //

��

τ̃ ⊗W∨τ
ı⊗id // τ̃∨ ⊗W∨τ

��
Mτ

ψ //M∨τ
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The commutativity says that for elementary tensors mi = vi ⊗ wi ∈Mτ = τ̃ ⊗Wτ we have

〈m1,m2〉M = ψ(m1)(m2) = (ı(v1)⊗ ϕτ (w1))(v2 ⊗ w2)

= ı(v1)(v2) · ϕτ (w1)(w2) = 〈v1, v2〉τ 〈w1, w2〉Wτ . (6.6)

The pairings are perfect and 〈·, ·〉τ is ετ -symmetric, so the pairing on Wτ is εWτ -symmetric if
and only if the pairing on Mτ is ε-symmetric. We have that ε = εWτ ετ .

In Case 3 (τ ∈ Σc), an analogous argument using the isomorphism τ̃ ⊕ τ∗ ' τ̃ ⊕ τ∗
∨

of

R[ΓL,τ⊕τ∗ ]-modules (which define the εWτ⊕τ∗ -symmetric pairing on τ̃ ⊕ τ∗) shows that the pairing
induced by ϕτ : Wτ⊕τ∗ 'W∨τ⊕τ∗ is ετ⊕τ∗-symmetric if and only if the pairing on

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗W ′τ⊕τ∗)

induced from the pairing on M is sign-symmetric with sign ε = ετ⊕τ∗εWτ⊕τ∗ .

6.4 Minimally ramified deformations
We can now define the minimally ramified deformation condition for ρ : ΓL → G(k), under the
continuing assumption that we have extended k so all irreducible representations of ΛL occurring
in V are absolutely irreducible over k. From (6.4), we obtain a decomposition

V =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗W τ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗W τ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗W τ⊕τ∗), (6.7)

where W τ is a representation of TL,τ over k and W τ⊕τ∗ is a representation of TL,τ⊕τ∗ .
If τ ∈ Σn, define Gτ := Aut(W τ ). If τ ∈ Σe, there is a sign-symmetric perfect pairing 〈·, ·〉W τ

on W τ ; in that case define Gτ := GAut(W τ , 〈·, ·〉W τ
). (The notation GAut means automorphisms

preserving the pairing up to scalar.) If τ ∈ Σc, there is a sign-symmetric perfect pairing on W τ⊕τ∗ ;
in that case define Gτ := GAut(W τ⊕τ∗ , 〈·, ·〉W τ⊕τ∗

). Make a finite extension of k so that all the

pairings are split. Lift Gτ to a split reductive group Gτ over O by lifting the split linear algebra
data.

Definition 6.14. Let ρ : ΓL → G(R) be a continuous Galois representation lifting ρ as above,
with associated R[Γ]-module

M =
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗).

We say that ρ is minimally ramified with similitude character ν if each Wτ and Wτ⊕τ∗ is
minimally ramified in the sense of Definition 5.4 as a representation of TL,τ or TL,τ⊕τ∗ valued
in the group Gτ with specified similitude character. (Note that defining the minimally ramified
deformation condition as in § 5 may require an additional étale local extension of O, which as
always is harmless for applications.)

Let Dm.r.,ν
ρ denote the deformation functor for ρ with specified similitude character ν,

and Dm.r.
Gτ

(respectively Dm.r.,ν
Gτ

) denote the deformation functor for W τ or W τ⊕τ∗ viewed as
a representation valued in Gτ (respectively with specified similitude character ν). In particular,
letting r = dimW τ (or dimW τ⊕τ∗ when τ ∈ Σc), we have that the adjoint representation adW τ

is the Lie algebra of Gτ , which is the Lie algebra of GSpr or GOr when τ ∈ Σe or Σc, and the Lie
algebra of GLr when τ ∈ Σn. Let Σ′n consist of one representative for each pair of representations
τ, τ∗ ∈ Σn.
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Proposition 6.15. There is a natural isomorphism of functors

Dm.r.,ν
ρ →

∏
τ∈Σ′n

Dm.r.
Gτ ×

∏
τ∈Σe

Dm.r.,ν
Gτ

×
∏
τ∈Σc

Dm.r.,ν
Gτ

.

Proof. This expresses the decomposition obtained in this section: given a lift ρ of ρ, we obtain a
decomposition of M as in Definition 6.14. Our analysis with pairings shows that when τ ∈ Σe, Wτ

is a deformation of W τ together with its εWτ -symmetric perfect pairing. Likewise, when τ ∈ Σc

we know that Wτ⊕τ∗ is a deformation of W τ⊕τ∗ together with its εWτ⊕τ∗ -symmetric pairing.

When τ ∈ Σn, we know Wτ ' W∨τ∗ . This gives the natural map: to ρ ∈ Dm.r.,ν
ρ (R) associate the

collection of the Wτ for τ ∈ Σe ∪ Σc ∪ Σ′n.
Conversely, given Wτ for τ ∈ Σe∪Σc∪Σ′n, and defining Wτ∗ := W∨τ for τ ∈ Σ′n we can define

a lift

M :=
⊕
τ∈Σn

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σe

IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
⊕
τ∈Σc

IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗ ⊗Wτ⊕τ∗)

as in (6.1). (Note that the groups ΓL,τ depend only on the fixed residual representation V .) For
τ ∈ Σe, the perfect pairing on the lift Wτ gives an isomorphism ϕτ :Wτ 'W∨τ of R[TL,τ ]-modules,

which gives a sign-symmetric pairing (with sign εWτ ετ = ε) on IndΓL
ΓL,τ

(τ̃ ⊗Wτ ) (using equation

(6.6)). Likewise, for τ ∈ Σc the sign-symmetric pairing on Wτ⊕τ∗ gives one on IndΓL
ΓL,τ⊕τ∗

(τ̃ ⊕ τ∗⊗
Wτ⊕τ∗). For τ ∈ Σn, we obtain an isomorphism ϕτ : Wτ ' W∨τ∗ of R[TL,τ ]-modules and hence

an ε-symmetric perfect pairing on (τ̃ ⊗Wτ )⊕ (τ̃∨ ⊗Wτ∗) which gives one on IndΓL
ΓL,τ

(τ̃ ⊗Wτ )⊕
IndΓL

ΓL,τ
(τ̃∨⊗Wτ∗). Putting these together, we obtain a sign-symmetric pairing on M ; the action

of ΓL preserves it up to scalar, giving a continuous homomorphism ρ : ΓL→ G(R).
Finally, we claim that these constructions are compatible with strict equivalence of lifts,

giving an identification of the deformation functors. For g ∈ Ĝ(R), decompose the g-conjugate
ΓL-representation Mg according to (6.4). As g reduces to the identity, it must respect
the decomposition into τ -isotypic pieces, so gives automorphisms gτ ∈ Aut(Wτ ) and gτ ∈
Aut(Wτ⊕τ∗). If τ ∈ Σe or Σc, as g is compatible with the pairing on M we see gτ is compatible
with the pairing as well. For τ ∈ Σe, the gτ -conjugate TL,τ -representation W gτ

τ is minimally
ramified as minimally ramified lifts of W τ for the group TL,τ are a deformation condition, and
likewise for τ ∈ Σc and τ ∈ Σ′n.

Conversely, given gτ ∈ Aut(Wτ ) reducing to the identity (compatible with the pairing on Wτ

or Wτ⊕τ∗ if there is one), using (6.1) and acting on each piece we obtain a lift of the form Mg

for g ∈ Ĝ(R). Thus the identification is compatible with strict equivalence. 2

Corollary 6.16. Under the assumptions (A1)–(A4) needed to analyze the tame case, and our
standing assumption that all the irreducible representations of ΛL appearing in V are absolutely
irreducible over k, the minimally ramified deformation condition with fixed similitude character
is liftable. The dimension of the tangent space is h0(ΓL, ad0(ρ)).

Proof. Liftability is a consequence of Proposition 6.15 and the smoothness of the minimally
ramified lifting ring for representations of TL,τ (Proposition 5.6 and Corollary 5.8). By
Corollary 5.8, for τ ∈ Σe the dimension of the tangent space of Dm.r.,ν

Gτ
is h0(TL,τ , adW τ )− 1 =

h0(TL,τ , ad0W τ ), and for τ ∈ Σc the dimension is h0(TL,τ⊕τ∗ , adW τ⊕τ∗) − 1 = h0(TL,τ⊕τ∗ ,
ad0W τ⊕τ∗). For τ ∈ Σ′n, by Proposition 5.6 the dimension of the tangent space of Dm.r.

Gτ
is
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h0(TL,τ , adW τ ). Using Proposition 6.15, we see that the dimension of the tangent space of the

minimally ramified deformation condition is∑
τ∈Σe

h0(TL,τ , ad0W τ ) +
∑
τ∈Σc

h0(TL,τ⊕τ∗ , ad0W τ⊕τ∗) +
∑
τ∈Σ′n

h0(TL,τ , adW τ ).

It remains to identify this quantity with h0(ΓL, ad0(ρ)). Using Lemma 6.13

H0(ΓL,End(V )) = Homk[ΓL](V, V )

=
⊕

τ∈Σe∪Σn

HomTL,τ (W τ ,W τ )⊕
⊕
τ∈Σc

HomTL,τ⊕τ∗ (W τ⊕τ∗ ,W τ⊕τ∗)

=
⊕

τ∈Σe∪Σn

H0(TL,τ ,End(W τ ))⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗)).

We are interested in H0(ΓL, ad0(ρ)): the elements ψ ∈ H0(ΓL,End(V )) compatible with the

pairing on V in the sense that for v, v′ ∈ V

〈ψv, ψv′〉 = 〈v, v′〉.

The pairing on Vτ = τ⊗W τ is induced by the pairings on W τ and τ when τ ∈ Σe, and is induced

by the pairings on W τ⊕τ∗ and τ ⊕ τ∗ when τ ∈ Σc. When τ ∈ Σ′n, the pairing on Vτ ⊕Vτ∗ comes

from the ΓL,τ -isomorphism Vτ ' V ∨τ∗ which in turn comes from the TL,τ -isomorphism W τ 'W
∨
τ∗ .

So ψ is compatible with the pairing if and only if the following hold.

• When τ ∈ Σe, the associated ψτ ∈ H0(TL,τ ,End(W τ )) is compatible with the pairing on

W τ .

• When τ ∈ Σc, the associated ψτ ∈ H0(TL,τ⊕τ∗ ,End(W τ⊕τ∗)) is compatible with the pairing

on W τ⊕τ∗ .

• When τ ∈ Σ′n, the associated ψτ and ψτ∗ are identified by duality and the isomorphism

W τ 'W
∨
τ∗ .

In the first two cases, ad0W τ and ad0W τ⊕τ∗ are the symplectic or orthogonal Lie algebra,

consisting exactly of endomorphisms compatible with the pairing on W τ . In the third, we just

choose one of ψτ and ψτ∗ without restriction, which determines the other. Thus we see

H0(ΓL, ad0(ρ)) =
⊕
τ∈Σe

H0(TL,τ , ad0W τ )⊕
⊕
τ∈Σc

H0(TL,τ⊕τ∗ , ad0W τ⊕τ∗)⊕
⊕
τ∈Σ′n

H0(TL,τ , adW τ ).

2

The Corollary is a more precise version of Theorem 1.1.
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