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Summary

The degree of starshape of a genealogy is readily detectable using summary statistics and can be
taken as a surrogate for the effect of past demography and other non-neutral forces. Summary
statistics such as Tajima’s D and related measures are commonly used for this. However, it is well
known that because of their neglect of the genealogy underlying a sample such neutrality tests are
far from ideal. Here, we investigate the properties of two types of summary statistics that are derived
by considering the genealogy: (i) genealogical ratios based on the number of mutations on the
rootward branches, which can be inferred from sequence data using a simple algorithm and
(ii) summary statistics that use properties of a perfectly star-shaped genealogy. The power of these
measures to detect a history of exponential growth is compared with that of standard summary
statistics and a likelihood method for the single and multi-locus case. Statistics that depend on
pairwise measures such as Tajima’s D have comparatively low power, being sensitive to the random
topology of the underlying genealogy. When analysing multi-locus data, we find that the
genealogical measures are most powerful. Provided reliable outgroup information is available they
may constitute a useful alternative to full likelihood estimation and standard tests of neutrality.

1. Introduction

The motivation for studying the impact of past de-
mography on sequence data is two-fold. Firstly,
changes in population size are interesting in their own
right, being intimately linked to processes such as
speciation or geographic range shifts. Secondly, the
standard neutral model (SNM) of a randomly mating
Wright–Fisher population of constant size and dis-
crete generations, hardly ever describes the patterns of
diversity found in natural populations. Thus, studies
aiming to detect loci under selection are faced with the
considerable challenge of fitting realistic demographic
models against which selection can be tested e.g.
Glinka et al. (2003), Hamblin et al. (2004), Haddrill
et al. (2005), Ometto et al. (2005) and Thornton &
Andolfatto (2006). Since the rate of coalescence is in-
versely proportional to the effective population size,
it is clear that demographic changes must leave a de-
tectable signature in genealogies (Felsenstein, 1992).
In general, positive population growth distorts

genealogies towards a starshape with shorter internal
branches, resulting in more low frequency variants
and a unimodal rather than multi-peaked mismatch
distribution (Slatkin & Hudson, 1991; Harpending,
1994; Schneider & Excoffier, 1999). In contrast to
selective processes that act on single genetic variants,
demography affects the whole genome, so one expects
to find a concordant signature across loci (Tajima,
1989; Galtier et al., 2000).

Approaches to demographic inference fall into
three broad categories ; for a review see Emerson et al.
(2001). Firstly, likelihood methods, which are avail-
able for bottleneck and exponential growth models,
make use of all the information in a sample by inte-
grating over a large set of likely genealogies (Griffiths
& Tavaré, 1994; Kuhner et al., 1995). Although opti-
mal in terms of statistical power and accuracy, likeli-
hood estimation is computationally intensive and
requires a fully specified alternative model. Therefore
realistic growth histories often remain analytically in-
tractable. Secondly, there are tree-based methods,
which take the branch length information of a re-
constructed tree as their starting point. Assuming that
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sequence evolution is clock-like, the number of lin-
eages can be plotted against time and the shape of this
trajectory compared with its neutral expectation (Nee
et al., 1995; Pybus et al., 2002). Despite their con-
ceptual appeal, these methods neglect any uncertainty
in tree topology and are thus only as good as the
reconstructed tree they are based on. Furthermore
they cannot deal with recombination by definition.
Finally, there are classical neutrality tests, most of
which do not explicitly consider the genealogy but
instead use more immediate aspects of the data such
as the frequency spectrum of mutations, e.g. Tajima’s
D (Tajima, 1989) and Fu & Li’s D (hereafter referred
to as D2) (Fu & Li, 1993), the haplotype distribution,
e.g. Fu’s FS (Fu, 1996; Innan et al., 2005), or the
mismatch distribution, e.g. the raggedness statistic
(Slatkin & Hudson, 1991). Compared with likelihood
estimation, summary statistics are straightforward
to calculate and their distribution can be simulated
under almost any growth model.

Considering the zoo of statistics available and their
wide use, there are surprisingly few studies that sys-
tematically compare their power, and those that
do mainly consider bottlenecks and single locus data
(Simonsen et al., 1995; Fu, 1996; Ramos-Onsins &
Rozas, 2002; Depaulis et al., 2003; Ramirez-Soriano
et al., 2008). However, joint analysis of multiple loci is
not only necessary to distinguish between selective
and demographic events (Galtier et al., 2000) but also
potentially far more powerful than inferences based
on a single locus. An added advantage of multi-locus
analysis is that both means and variances of summary
statistics can be used for testing. Variance based tests
were first developed for microsatellite data (Di Rienzo
et al., 1998; Reich et al., 1999) but are now routinely
used to analyse sequence data from multiple loci
(Pluzhnikov et al., 2002; Haddrill et al., 2005;
Heuertz et al., 2006) or even species (Hickerson et al.,
2006).

A general conclusion that has emerged from simu-
lation studies is that tests based on the number and
distribution of haplotypes have more power to detect
bottlenecks than statistics based on p, in particular
Tajima’s D (Ramos-Onsins & Rozas, 2002; Innan
et al., 2005; Ramirez-Soriano et al., 2008). Earlier,
Felsenstein made a theoretical argument for the in-
feriority of pairwise measures (Felsenstein, 1992).
Their large variance under neutrality arises both from
their sensitivity to the last coalescence event and the
random genealogical topology (Tajima, 1983). Under
the SNM more symmetric genealogies are on average
associated with higher p and more ragged mismatch
distributions than asymmetric genealogies. It is im-
portant to realize that this topological variance is in-
dependent of the already large variance in coalescence
times inherent in the genealogical process. In other
words ‘despite their aura of robustness ’ (Felsenstein,

1992), statistics based on p suffer from an unnecess-
arily large variance under neutrality, and hence have
comparatively low power. Despite these results, D
and mismatch distributions continue to be the meth-
ods of choice for demographic inferences in popu-
lation genetics and phylogeography, respectively.

Following Felsenstein’s recommendation that
‘ there is much to gain from explicitly taking the
genealogical relationship of a sample into account’
(Felsenstein, 1992), the aim of this study is to consider
how genealogical information can be used for demo-
graphic inference in a summary statistics framework.
Our premise here is that the mutation rate is suf-
ficiently high relative to the per site recombination rate
such that non-recombining blocks of sequences can be
easily identified and treated as independent loci.

Given that there is usually not enough information
in within-species sequences data to infer the full top-
ology unambiguously it seems important to ask which
part of the topology yields most information. The first
part of the paper introduces some simple measures
of starshape, which are based on the properties of a
rooted genealogy. Using simulations, their power to
detect a history of exponential growth is compared
with standard neutrality tests for both the single and
multi-locus cases. We focus on the exponential growth
model for two reasons. Firstly, although it is a fre-
quently used demographic model, the power of sum-
mary statistics to detect exponential growth has been
little investigated. Secondly, likelihood methods are
available, which can be taken as an absolute ‘upper
bound’ of power for comparison. Such a direct com-
parison between summary statistics and the optimal
likelihood methods is lacking so far.

2. Summary statistics

Several neutrality tests compare two different esti-
mators of the scaled mutation rate (Fu & Li, 1993;
Tajima, 1989; Fay & Wu, 2000) h=4Nem, where m is
the mutation rate and Ne the effective population size,
which capture different aspects of the data. Most
prominently, Tajima’s D is defined as the difference
between h estimated as p, and hw=S/an (Watterson’s
h, where an=gnx1

i=1
1
i
, n is the sample size and S the

total number of polymorphic sites in the sample),
normalized by the standard deviation of this differ-
ence. Genealogies from growing populations typically
have relatively more low frequency variants and hence
tend to have a negative D.

While neutrality tests are commonly based on the
frequency spectrum and p, it is instructive to consider
departures from the SNM in terms of their effect
on the genealogy. Such tree-thinking necessarily
underlies summaries that make use of outgroup in-
formation, e.g. D2 has a straightforward genealogical
interpretation. Below two different ways of employing

K. Lohse and J. Kelleher 282

https://doi.org/10.1017/S0016672309990139 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672309990139


genealogical information in the construction of sum-
mary statistics are considered.

(i) Genealogical ratios

The rationale behind D2 is to distinguish between
two classes of mutations : those found on terminal
branches, ge and those on internal branches, gi (Fig. 1)
(Fu & Li, 1993). Suppose that some limited topologi-
cal information can be inferred from the data. In
particular, we will for now assume that the placement
of the root is known. It is then possible to distinguish
mutations found on the two rootward branches,
which we shall denote gR. Under the infinite sites as-
sumption, these are all derived mutations that are
shared by all individuals in either of the two sub-clades
defined by the root. The advantage of considering the
proximity of mutations to the root rather than the tips
is twofold: firstly, rootward branches cover a greater
proportion of the time to the most recent common
ancestor of the sample (TMRCA) and should, in gen-
eral, be more informative about past changes in popu-
lation size. Under the SNM, on average half of the
TMRCA is taken up by the coalescence of the last two
lineages (T2) (Fig. 1), whereas in a growing popu-
lation, the smaller population size in the past forces
the last two lineages to coalescence much more
rapidly. Secondly, the average length of a branch

connected to the root is less dependent on the sample
size than the average length of a terminal branch.

Ideally, one wants to know the total number of
mutations that have occurred during T2, rather than
the number of mutations on both rootward branches,
gR which is larger and depends on the topology,
i.e. the order of the first node on the longer of the two
branches (Uyenoyama, 1997, Appendix).

One possibility is to only consider the shorter of the
two rootward branches that has exactly length T2.
Thus the number of mutations found on this branch,
gRmin, over hw constitutes a very simple measure of
starshape.

X=
gRmin

hw

: (1)

Such genealogical ratios have first been employed
to study the effect of balancing selection on plant in-
compatibility loci (Uyenoyama, 1997). Being based
on a single random event, X clearly neglects much of
the information contained in the genealogy. Its power
is limited by the probability of observing gRmin=0
under neutrality. In other words, X is unlikely to be of
much use in the case of a single locus.

Alternatively, one can ignore the uncertainty in
node order and take the number of mutations found
on both rootward branches relative to hw :

X1=
gR

hw

: (2)

It is possible of course to construct various composite
measures from the number of mutations found on
different parts of the genealogy. Here, we only con-
sider one additional statistic, the relative difference
between rootward and terminal mutations :

X2=
gRxge

hw

: (3)

The X statistics assume some knowledge of the tree
topology that is usually unknown. Of course one
could use some standard method of tree reconstruc-
tion and infer gR and gRmin from the most likely
topology. However, not only is it inefficient to re-
construct the full topology when all that is required
is the placement of the root, conditioning on a single
tree also ignores any topological uncertainty. We have
therefore developed a simple scheme of inferring the
root in a sample of polarized sequences that circum-
vents these problems.

Under the infinite sites assumption, a necessary
criterion for the root-node is that no mutations are
shared between the two subsets on either side. One
can show that if both branches connected to the root
carry mutations, i.e. gRmin>0 there exists exactly one
bipartition of the sample with no mutational overlap.
If however one or both of the rootward branches of

T2

TMRCA

Fig. 1. Random genealogy of a sample of 20 sequences.
The root partitions the sample into two subclades of size
3 and 7. Rootward branches are shown as bold, terminal
branches as dotted lines, mutations are represented as
crosses. The time interval until the last coalescence event,
T2, is shorter than average under the SNM. In this
example S=30, gR=7, gRmin=2 and ge=14.
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the genealogy carry no mutations there may be mul-
tiple bipartitions that meet this criterion. In this case
gRmin=0 and the tree reconstructed from such a
sample would have an unresolved polytomy at its
base. To incorporate the topological uncertainty
about the placement of the root, we compute the
average value of gR over all partitions that are com-
patible with the criterion of no mutational overlap.
Note that in contrast to most tree reconstruction
algorithms that join similar sequences (i.e. start from
the tips down the tree), our scheme is divisive (i.e. it
starts from the root). To avoid having to consider all
possible bipartitions of the sample (2nx1x1), we
make use of the fact that any sequences that share
mutations have to be on the same side of the root.
By first binning sequences that share at least one
mutation, we can directly calculate gR and the num-
ber of possible partitions.

(ii) Starting from the limiting case

A different approach is to construct summaries that
measure departures from the limiting case of a per-
fectly star-shaped genealogy. Star-shaped genealogies
have some convenient properties that can be used for
this. Assuming that outgroup information is available,
one can record the number of terminal mutations in
each sequence i (because lineages are exchangeable,
the labelling is arbitrary), Vi. In a perfectly star-
shaped genealogy, all mutations must fall onto ter-
minal branches by definition. Thus one expects the
number of derived mutations in a sequence to be half
the average pairwise diversity, i.e. E[Vi]=p/2. The
statistic R2E proposed by Ramos-Onsins and Rozas
measures the average departure from this expec-
tation:

R2E=
gn

i=1 Vixp
2

� �2
=n

� �1=2

S
(4)

(Ramos-Onsins & Rozas, 2002, eqn (2)). R2E has
proven superior to a wide range of summary statistics
in detecting histories of bottlenecks (Ramos-Onsins &
Rozas, 2002). However, because of its dependence
on p, one may suspect it to suffer from a large vari-
ance under neutrality. We therefore consider a similar
statistic that uses the observed S rather than p to
assess the degree of starshape. Consider the total
number of derived mutations in each sequence, Di.
Note that gn

i=1 Di=gnx1
i=1 iji, in terms of the unfolded

frequency spectrum, where ji denotes derived mu-
tations that occur i times in the sample. Using the fact
that E[Di]=S/n in a star-shaped genealogy we can
define a new statistic :

RS=
gn

i=1 DixS
n

� �2
=n

� �1=2

S
: (5)

Since under neutrality a large proportion of mu-
tations will be found on inner branches, i.e. be shared
by many sequences, E[Di]=S/n. In other words, RS is
such that smaller values are expected under a history
of growth.

3. Methods

(i) Summary statistics and demographic model

We carried out coalescent simulations in ms (Hudson,
2002) to compare the power of a range of summary
statistics to distinguish between the SNM and a his-
tory of exponential growth. In addition to D, D2, R2E

and the new statistics defined above, FS, (Fu, 1996)
andH (Fay & Wu, 2000) were considered. FS is based
on the number of haplotypes in the sample and has
previously been found to be more powerful than
statistics based on the frequency distribution (Fu,
1996; Ramos-Onsins & Rozas, 2002). H was con-
ceived as a test for the effect of selection on linked
neutral sites (Fay & Wu, 2000) and is not expected to
have power to detect continuous growth. However,
other demographic scenarios such as moderate bottle-
necks may perturb genealogies in ways similar to
genetic hitchhiking resulting in significant values of
H. We assume that the population size has grown
exponentially with rate a to its current size N0 :

N(t)=N0 e
xat: (6)

Following standard practice, this exponential growth
is incorporated through a re-scaling of time (Slatkin &
Hudson, 1991). We define a rescaled time Tcoal rel-
ative to N0 and a :

Tcoal=
Z t

0

eat

2N0
dt=

(eatx1)

2N0a
: (7)

This represents the total amount of genetic drift that
has occurred. It is convenient to define a growth rate
relative to N0 as A=2N0a, which gives :

Tcoal=
eA

t=2N0x1

A
: (8)

(ii) Power test

Critical values of 5% confidence for each statistic
were determined from 10 000 replicate genealogies
simulated under the SNM for each of a wide range of
S values (1–250) (Hudson, 1993; Braverman et al.,
1995; Ramos-Onsins et al., 2007). Genealogies from
growing populations were simulated conditional on h.
For each replicate the alternative hypothesis of posi-
tive growth was tested by comparing the observed
value of a statistic to the critical value given the ob-
served S. Power was estimated as the proportion of
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10 000 replicate genealogies for which a statistic was
below its critical value in a one-tailed test. Power to
reject the SNM was recorded for a large range
of parameter combinations. We compared the per-
formance of statistics for different growth rates,
(0<A<50), sample sizes (n=10, 50) and values of h
(5–50). When varying h, we chose a fixed value of
A=8. This seems compatible with growth rates esti-
mated from empirical data. For example, variation at
silent sites in the Adhr region and X-linked genes in
Drosophila pseudoobscura is consistent with A=7
(Schaeffer, 2002). While h can be arbitrarily high for
mitochondrial data, h=20 may be unrealistic for
nuclear loci in out-crossing species. Therefore, power
was evaluated for a range of h values (5–50) again
keeping the growth rate fixed at A=8.

When using means and variances of summary stat-
istics across loci, power was determined analogously
to the single locus case. Critical values of 5% con-
fidence of means and variances of statistics were
determined from 10 000 replicate sets of loci with the
exact same combination of S values. Although com-
putationally expensive, this avoids making any as-
sumptions about the distribution of mutation rates
between loci. However, given that mutation rates vary
along the genome assuming the same h for all loci
to simulate the alternative history of growth seems
unrealistic and may lead to overestimation of power.
We checked for the influence of heterogeneity in
mutation rates on power by repeating the multilocus
power tests with h values drawn from a gamma dis-
tribution with a=2 (Pluzhnikov et al., 2002) and a
scale parameter equivalent to a mean of h=20. This
combination of growth and mutation rates is roughly
comparable to mutation rate estimates for nuclear
loci in Drosophila melanogaster (Galtier et al., 2000).
As before we assumed no recombination within
loci as well as absence of linkage between loci, i.e.
replicate genealogies were simply treated as multiple
loci.

(iii) Likelihood method

In practice, both h and A are unknown, and their
likelihood should, in principle, be estimated jointly.
However, because of the non-independence of these
two parameters, this is not a practical option. Follow-
ing standard practice we alternated between maxi-
mum likelihood estimation of A and h (Griffiths &
Tavaré, 1994). First a maximum likelihood estimate
(MLE) for h under the SNM was estimated using the
program GENETREE (http://www.stats.ox.ac.uk/
griff/software.htm). In a second step, this MLE for h
was fixed to run a likelihood surface for A. Finally,
the MLE value for A was used to re-evaluate h. This
scheme yields two MLEs for h for each replicate, one
under the assumption of no growth and one given the

most likely growth rate, which were compared in a
likelihood ratio test (LRT). We did not find that the
MLE estimates for A and h improved upon repeated
re-evaluation suggesting that a single round of esti-
mation is sufficient for this moderate growth scenario.
100,000 runs were performed for each likelihood
surface evaluation. Again, the proportion of replicate
genealogies for which the null hypothesis could be
rejected was taken as a measure of statistical power.
Due to the long computing time, 100 replicates per
parameter combination were used.

4. Results

(i) Single locus

In general, both the likelihood method and summary
statistics have low power to detect a history of
moderate (A<8) exponential growth for n=10
(Fig. 2). As expected, the likelihood method is most
powerful overall, although its superiority is sur-
prisingly small. For example, based on the LRT the
SNM is rejected for 30% of genealogies simulated
under exponential growth of A=4. In comparison,RS

and R2E detect this history of growth in 23% of cases
(Fig. 2).

Consistent with previous results, FS, R2E, and the
new measure RS, are considerably more powerful
than both D and D2 (Ramos-Onsins & Rozas, 2002;
Ramirez-Soriano et al., 2008). For h=20, FS is the
most powerful statistic. The new measure RS has
consistently higher power than R2E. As expected,
H and X have no power to distinguish between the
SNM and the growth case (not shown). However, the
other two genealogical ratios perform surprisingly
well. X1 has higher power than D2 and the power of
X2 is between that of R2E and RS (Fig. 2). The com-
plete lack of power of D for n=10 is somewhat sur-
prising. Comparison with the result for n=50 (Fig. 3)
reveals that its performance is strongly dependent on
sample size. We ran additional simulations (not
shown) and found that for n<15 extremely negative
values of D are more likely under neutrality than un-
der growth resulting in a rejection rate of the SNM of
less than 5%. In other words, when n is small, the
variance of D under neutrality is too large to detect
exponential growth.

In general, all statistics have considerably higher
power for n=50 (Fig. 3). Interestingly, it never
reaches 100% even when growth is extreme (A=50).
However, the relative effect of the sample size on
power differs between statistics. For instance, X1 im-
proves relatively little in comparison to other meas-
ures. This is to be expected given that even small
samples are likely to include the deepest split in the
genealogy of the whole population (Saunders et al.,
1984). For n=10, the power of all statistics decreases
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for histories of extreme growth (A>25) (Fig. 2). This
is due to the overall shortening of genealogies under
rapid growth.

The mutation rate has a relatively small influence
on power. In general, the power of all measures
increases with h (Fig. 4). However, the trajectories X1

and FS level off while the power of the other statistics
continues to improve with increasing values of h. The
power of FS is limited by the number of haplotypes
(which cannot exceed n).

To check how statistics are affected by the topo-
logical variance, genealogies simulated under the
alternative history of growth were sorted according to
the bipartition by the root and the proportion of sig-
nificant values determined for each topology class.
Figure 5 clearly shows that the two statistics based on
p, D and R2E as well as D2 are sensitive to asymmetric
topologies. The chance of observing a significant
value increases markedly with topological asymmetry.
This effect is most pronounced for D, which has no

‘power’ to reject the SNM unless genealogies are
very asymmetric and growth is weak. In contrast, the
dependency of X1 on the rootward partition is rela-
tively slight and in the opposite direction, i.e. the
chance of rejecting the SNM is smaller for asymmetric
genealogies (Fig. 5).

(ii) Multiple loci

Compared with the relatively subtle effect both h and
n have on statistical power, increasing the number of
loci improves power dramatically. In the mean-based
test, all statistics apart from D have a power of close
to 100% to detect a history of moderate exponential
growth (A=8) for 10 loci. However, the relative per-
formance of statistics changes slightly compared with
the single locus case. Notably, X2 has higher power
than all other summary statistics (Fig. 6). The power
of X is slightly lower than that of X1 (not shown).
Analogously to the results for a single locus, power

X2

X1

Rs

R2E

Fs

D2

D

1 2 3 4 5 6 7 8

0·1

0·2

0·3

0·4

0·5

A

Power

10 20 30 40 50

0·1

0·2

0·3

0·4

0·5

A

Power

Fig. 2. Power of summary statistics and likelihood method against exponential growth rate A=0–50. n=10, h=20.
Each point is based on 10 000 replicate simulations. The power of the likelihood method was estimated from 100 replicates
(see large filled circles and error bars).
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increases both with more extreme growth scenarios
and larger n (not shown).

As one may suspect, the increase in power with the
number of loci is slower for the variance test. More
importantly, the relative performance of statistics is
very different. By far the most powerful statistic in the
variance test is X1 followed by D and X (Fig. 7). This
indicates a general trade-off. Statistics with a high
variance under the SNM have comparatively low
power in the single-locus case and the mean test, but
high power in the variance test and vice versa.

Allowing for heterogeneity in mutation rates be-
tween loci affects both the relative performance of
summary statistics and their overall power. As one
may expect, heterogeneity in h generally results in a
decrease in power. In the mean-based test, the three X
statistics are most affected. However, in the variance
test the performance of X1 is little affected. This stat-
istic even has slightly higher power when mutation
rates vary between loci. This appears to be due to the

non-normal distribution of X1 under growth.
Genealogies with more than one possible root-
partition generally have a very low value of X1, since
we take an average over all possible partitions most of
which will be associated with X1=0.

5. Discussion

It is important to distinguish between the general
limitations that genealogical and mutational stoch-
asticity impose on demographic inference from gen-
etic data and problems associated with particular
methods. Two main conclusions emerge from com-
paring the performance of the new ‘genealogical
statistics ’ to classical neutrality tests and the LRT.

(i) General limits to demographic inference

The signatures that changes in population size leave in
genealogies are typically subtle compared with the

2 4 6 8

0·1

0·2

0·3

0·4

0·5

0·6

0·7

0·8

0·9

1·0

A

A
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0·4

0·5

0·6
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0·9
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Power

Power

X2

X1
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R2E

Fs

D2

D

Fig. 3. Power of summary statistics against exponential growth rate A=0–50. n=50, h=20. Note the different range
(0–1) on the y-axis compared with Fig. 2.
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randomness of the ancestral process. Thus all meth-
ods have low power to distinguish between the SNM
and histories of moderate growth in the single locus
case. A surprising finding of this study was that the
full likelihood method only works marginally better
than the most powerful summary statistics. Changes
in Ne disproportionally affect the length of the basal
branches of a genealogy. However, because these
rootward branches also contribute most to the vari-
ance in total tree length, inferences based on a single
locus will be weak at best. It is telling that the X stat-
istics which only considers the last coalescence events
in the history, outperform standard neutrality tests
in the variance test when multiple realizations of
this event, i.e. loci, are available. As has been argued
before, most statistical power can be gained by

increasing the number loci, which represent indepen-
dent realizations of the ancestral process, rather than
the sample size or the length of sequence (Felsenstein,
1992; Kliman et al., 2000; Wakeley, 2004).

(ii) Pairwise measures

Independent of the general limits to demographic in-
ference, pairwise measures such asD have particularly
low power to infer demography. This has been found
in previous simulation studies, which consider other
demographic scenarios such as strong bottlenecks and
rapid logistic growth (Fu, 1996; Ramos-Onsins &
Rozas, 2002; Ramirez-Soriano et al., 2008). The
fundamental flaw of pairwise measures can be best
understood in terms of the underlying genealogy.

10 20 30 40 50
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0·5
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PowerPower
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In contrast to selection and population structure,
changes inNe on their ownonly alter the distributionof
branch lengths without affecting the topology, which
can be regarded as a random nuisance parameter.
While the full topology can rarely be reconstructed,
there is potentially a lot of topological information in
sequence data. Thus, the challenge that any efficient
inference method has to meet is to separate this top-
ological information from the relevant branch length
information while taking topological uncertainty into
account. Tree-based methods such as lineage-through
time plots clearly fall short of the latter because they
rely on a fully resolved topology. Pairwise measures
on the other hand simply ignore the confounding ef-
fect of the topology (Felsenstein, 1992). It is thus easy
to see why D has power only when sample sizes are
large. While increasing sample size adds increasingly

shorter external branches and therefore little ad-
ditional information, it does reduce the chance of
extremely asymmetric bipartitions by the root which
are responsible for much of the variance in p and
hence D.

Perhaps worryingly, this sensitivity to the topology
not only translates into a loss of statistical power but
also means that negativeD values may in fact be more
informative about the topological asymmetry of the
genealogy (which may be caused by other non-neutral
forces, e.g. selection) underlying the sample than
about past growth. In order to distinguish between
the effects of selection and demography, topology
needs to be separated from branch length information.
One approach is to explicitly account for the topology
information if possible. For instance, one could de-
termine confidence intervals of statistics conditional
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on the bipartition by the root if this is known. Not
surprisingly, this improves the power of D, but has
little effect on statistics that are not based on p (not
shown). The alternative is to use measures that are
less sensitive to the topology. FS and other haplotype
statistics have previously been shown to be more
powerful than frequency spectrum statistics for this
very reason (Depaulis et al., 2003; Innan et al., 2005).
However, it has also been noted that FS sometimes
behaves erratically (Fu & Li, 1993; Ramos-Onsins &
Rozas, 2002). As mentioned earlier, its power levels
off with increasing h (Fig. 4), because the sample size
sets an upper bound to the number of haplotypes.

(iii) Recombination and topological uncertainty

The X statistics presented here fall somewhere in be-
tween tree-based methods and classical summary stat-
istics. They exploit the fact that changes in population

size disproportionally affect the relative length of the
deepest branches in the genealogy and make use of
topological information, without sacrificing the sim-
plicity of the summary statistics framework. Given
their high power in the multilocus case, how useful are
such genealogical ratios in practice?

Recombination presents a fundamental problem to
tree-based methods like the X statistics, which are de-
fined only for non-recombining sequences. Similarly,
likelihood methods that can deal with recombination
are currently not available. To wrongly reconstruct
trees from recombining data can potentially be
severely misleading especially in the context of demo-
graphic inference. In fact, genealogical ratios similar
to the ones presented here have been used to show
that recombination can mimic the effect population
growth has on the shape of inferred genealogies.
Internal branches will appear relatively shorter and
the tree overall more star-shaped (Schierup & Hein,
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2000; Ramirez-Soriano et al., 2008). Ideally one
would like to model recombination explicitly when
making demographic inferences. However estimates
of recombination rates are usually associated with
a large uncertainty. Furthermore, it is notoriously
difficult to distinguish between recombination and
back-mutations.

One approach to circumvent these problems is to
test for recombination beforehand (e.g. using the four
gamete test) and exclude recombinant regions from
the analysis if necessary. One can then both condition
on there being no within-locus recombination and
afford to use more powerful statistics such as the ones
presented here. This strategy of identifying non-
recombining stretches of sequence is increasingly used
to analyse multilocus data, e.g. Galtier et al. (2000) or
Jennings & Edwards (2005). Fortunately, many or-
ganisms appear to have lower recombination rates
than model species such as Drosophila. For instance
in a recent study on Australian birds only 6 out of 30
loci of intergenic sequence showed evidence for re-
combination (Jennings & Edwards, 2005). How prof-
itable this scheme is ultimately depends on the relative
magnitude and distribution of recombination and
mutation rates. Before the genealogical ratios can be
used on multiple loci, which have been pruned to ex-
clude recombinant stretches, both the potential bias
of such pruning and the effect of undetected re-
combination events on the genealogical ratios need to
be properly evaluated. Interestingly, our method of
inferring the root does in itself constitute a test for
recombination and may help to focus on those re-
combination events that matter to the statistical test.

A related problem concerns the infinite sites as-
sumption. Although the algorithm we have developed
to compute the X statistics takes topological uncer-
tainty into account, ignoring the possibility of back-
mutations may underestimate the length of basal
branches (Baudry & Depaulis, 2003). Although this
source of error has been ignored here it should in
principle be possible to account for back-mutations
considering that they are independent of the assump-
tions of the genealogical process. In fact, any muta-
tional model can be used to define statistics analogous
to the genealogical ratios presented here. The problem
with more complicated mutation models is in esti-
mating the basal topology needed to calculate these
measures.

(iv) Conclusions

In summary, the results confirm that only the most
extreme demographic events leave a sufficient signa-
ture to be detectable in single locus data. Still, instead
of the excessive and often non-quantitative em-
ployment of mismatch distributions, phylogeographic
studies could benefit from using more powerful

statistics such as RS and R2E to test demographic hy-
potheses. Conversely, population genetics studies of
sequence data from multiple, unlinked loci could ben-
efit from using summary statistics that incorporate
genealogical information explicitly. When outgroup
information is available and the assumptions of no
within-locus recombination and infinite sites muta-
tions can be justified, simple genealogical ratios are
potentially more powerful than standard statistics. In
taking the relative number of mutations found on
specific parts of the genealogy as a measure of the
degree of starshape, the demographic signal can be
separated from irrelevant and confounding topologi-
cal information. Extensions of this approach are feas-
ible. For instance, one could consider the covariance
between the number of basal and terminal mutations.
Such simple statistics may be profitable for approxi-
mate likelihood or Bayesian approaches (Thornton &
Andolfatto, 2006). There remains a need to under-
stand the effect of pruning and undetected recom-
bination events on tree reconstruction in general and
tree-based measures such as the X statistics presented
here in particular.
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Griffiths, R. C. & Tavaré, S. (1994). Sampling theory for
neutral alleles in a varying environment. Philosophical
Transactions: Biological Sciences 344, 403–410.

Haddrill, P. R., Thornton, K. R., Charlesworth, B. &
Andolfatto, P. (2005). Multilocus patterns of nucleotide
variability and the demographic and selection history of
Drosophila melanogaster populations. Genome Research
15, 790–799.

Hamblin, M. T., Mitchell, S. E., White, G. M., Gallego, J.,
Kukatla, R.,Wing, R. A., Paterson, A. H.&Kresovich, S.
(2004). Comparative population genetics of the panicoid
grasses: sequence polymorphism, linkage disequilibrium
and selection in a diverse sample of Sorghum bicolor.
Genetics 167, 471–483.

Harpending, H. C. (1994). Signature of ancient population
growth in a low-resolution miitochondrial DNA mis-
match distribution. Human Biology 66, 591–600.

Heuertz, M., De Paoli, E., Kallman, T., Larsson, H.,
Jurman, I., Morgante, M., Lascoux, M. & Gyllenstrand,
N. (2006). Multilocus patterns of nucleotide diversity,
linkage disequilibrium and demographic history of
norway spruce [Picea abies (L.) Karst]. Genetics 174,
2095–2105.

Hickerson, M. J., Dolman, G. & Moritz, C. (2006).
Comparative phylogeographic summary statistics for
testing simultaneous vicariance. Molecular Ecology 15,
209–223.

Hudson, R. R. (1993). The how and why of generating gene
genealogies. In Mechanisms of Molecular Evolution
(Eds. N. Takahata & A. G. Clark), pp. 23–36. Sinauer,
Sunderland, Mass.

Hudson, R. R. (2002). Generating samples under a
Wright–Fisher neutral model of genetic variation.
Bioinformatics 18, 337–338.

Innan, H., Zhang, K., Marjoram, P., Tavaré, S. &
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