A NOTE ON SKEW-SYMMETRIC DETERMINANTS

by WALTER LEDERMANN

(Received 9th August 1991)

Abstract

A short proof, based on the Schur complement, is given of the classical result that the determinant of a skew-symmetric matrix of even order is the square of a polynomial in its coefficients.

1991 Mathematics subject classification: 15A15

Let

$$
A=\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & \ldots & a_{1 n} \\
-a_{12} & 0 & a_{23} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & & \ldots \\
-a_{1 n} & -a_{2 n} & -a_{3 n} & \ldots & 0
\end{array}\right)
$$

be an n by n skew-symmetric matrix $\left\{A^{T}=-A\right.$), in which the $n(n-1) / 2$ elements

$$
\begin{equation*}
a_{i j}(1 \leqq i \leqq j \leqq n) \tag{1}
\end{equation*}
$$

above the diagonal are indeterminates.
There are two classical results about a skew-symmetric matrix A :
(I) When n is odd, then $\operatorname{det} A=0$.
(II) When n is even, then $\operatorname{det} A=\left(p_{n}(A)\right)^{2}$, where $p_{n}(A)$ is a polynomial of degree $n / 2$ in the indeterminates (1); $p_{n}(A)$ is determined up to a factor ± 1.

The statement (I) follows at once from the observation that

$$
\operatorname{det} A=\operatorname{det} A^{T}=\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A .
$$

Theorem (II) is more difficult to establish. It is traditionally proved by means of Jacobi's theorem on the adjugate determinant ([4, pp. 105-107]); a direct demonstration can be given which, however, involves somewhat complicated manipulations with permutations ([3, pp. 125-128]). P. M. Cohn [1, p. 209] uses an argument based on the canonical form.

The proof presented in this note uses only some simple facts about triangular block matrices, in particular the result that

$$
\operatorname{det}\left(\begin{array}{ll}
X & 0 \tag{2}\\
Z & Y
\end{array}\right)=(\operatorname{det} X)(\operatorname{det} Y)
$$

where X and Y are square matrices, not necessarily of the same order.
When $n=2$, the truth of Theorem (II) is evident. For in this case

$$
A=\left(\begin{array}{rr}
0 & v \tag{3}\\
-v & 0
\end{array}\right)
$$

Hence $\operatorname{det} A=v^{2}=\left(p_{2}(A)\right)^{2}$, where we have defined

$$
p_{2}(A)=v
$$

Using induction on the set of even integers we assume that (II) holds for skewsymmetric matrices of order $n-2$.

An arbitrary skew-symmetric matrix of even order $n(>2)$ can be partitioned thus:

$$
A=\left(\begin{array}{cc}
B & C \tag{4}\\
-C^{T} & V
\end{array}\right)
$$

where

$$
B=\left(\begin{array}{cccc}
0 & a_{12} & \ldots & a_{1, n-2} \\
-a_{12} & 0 & \ldots & a_{2, n-2} \\
\ldots & \ldots & \ldots & \ldots \\
-a_{1, n-2} & -a_{2, n-2} & \ldots & 0
\end{array}\right)
$$

is a skew-symmetric matrix of order $n-2$, and

$$
C=\left(\begin{array}{lc}
a_{1, n-1} & a_{1 n} \\
a_{2, n-1} & a_{2 n} \\
\ldots & \ldots \\
a_{n-2, n-1} & a_{n-2, n}
\end{array}\right) \quad V=\left(\begin{array}{rr}
0 & v \\
-v & 0
\end{array}\right)
$$

are of orders $n-2 \times 2$ and 2×2 respectively, and we have used the abbreviation

$$
v=a_{n-1, n} .
$$

Let

$$
P=\left(\begin{array}{cc}
I_{n-2} & C V^{-1} \\
0 & I_{2}
\end{array}\right)
$$

A straightforward calculation shows that

$$
P A=\left(\begin{array}{cc}
B-C V^{-1} C & 0 \tag{5}\\
-C^{T} & V
\end{array}\right) .
$$

Since V^{-1} is skew-symmetric, so are $C V^{-1} C^{T}$ and

$$
B-C V^{-1} C^{T}
$$

which is known as the Schur complement of V in $A[2$, p. 22]. By the inductive hypothesis we have that

$$
\begin{equation*}
\operatorname{det}\left(B-C V^{-1} C^{T}\right)=\left[p_{n-2}\left(B-C V^{-1} C^{T}\right)\right]^{2} . \tag{6}
\end{equation*}
$$

Since $\operatorname{det} P=1$, we deduce from (5) that

$$
\operatorname{det} A=\operatorname{det} V \operatorname{det}\left(B-C V^{-1} C^{T}\right)
$$

whence by (3) and (6)

$$
\begin{equation*}
\operatorname{det} A=\left[v p_{n-2}\left(B-C V^{-1} C^{T}\right)\right]^{2} . \tag{7}
\end{equation*}
$$

Although p_{m-2} is a polynomial in its arguments, the presence of V^{-1} in the argument leaves it open that

$$
v p_{n-2}\left(B-C V^{-1} C^{T}\right)
$$

may be a rational function of the indeterminates (1) whose denominator is, at worst, a power of v. More precisely, let

$$
\begin{equation*}
v p_{n-2}\left(B-C V^{-1} C^{T}\right)=v^{-m} f_{0}+v^{-m+1} f_{1}+\cdots+f_{m}+v f_{m+1}, \tag{8}
\end{equation*}
$$

where f_{0}, f_{1}, \ldots are polynomials in the indeterminates $a_{i j}$ other than $v\left(=a_{n-1, n}\right)$, and where $f_{0} \neq 0$. From first principles, $\operatorname{det} A$ is a polynomial in all the indeterminates, including v; so no negative power of v appear in (7).

Therefore on substituting (8) in (7) and comparing powers of v on both sides of the equation we conclude that $m=0$. Thus $v p_{n-2}\left(B-C V^{-1} C^{T}\right)$ is, after all, a polynomial in the $a_{i j}$, and we may define

$$
p_{n}(A)=v p_{n-2}\left(B-C V^{-1} C^{T}\right)
$$

This concludes the proof.

REFERENCES

1. P. M. Сонл, Algebra I (J. Wiley \& Sons, 1974).
2. R. H. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1990).
3. G. Kowalewski, Einführung in die Determinantentheorie (W. de Gruyter, 1925).
4. H. H. Turnbull, The Theory of Determinants, Matrices and Invariants (Blackie \& Son, 1929).

School of Mathematical and Physical Sciences
University of Sussex
Falmer
Brighton, Sussex
United Kingdom

