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A NOTE ON SKEW-SYMMETRIC DETERMINANTS

by WALTER LEDERMANN

(Received 9th August 1991)

A short proof, based on the Schur complement, is given of the classical result that the determinant of a
skew-symmetric matrix of even order is the square of a polynomial in its coefficients.

1991 Mathematics subject classification: 15A15

Let

( 0 a12 a13 ... ala

-al2 0 a 2 3 ... a2n
-Ol» -«2n ~a3n ••• 0

be an n by n skew-symmetric matrix {AT= —A), in which the n(n —1)/2 elements
I (1)

above the diagonal are indeterminates.
There are two classical results about a skew-symmetric matrix A:
(I) When n is odd, then deM = 0.

(II) When n is even, then det A = (pn(A))2, where pn(A) is a polynomial of degree n/2 in
the indeterminates (1); pn(A) is determined up to a factor ± 1.

The statement (I) follows at once from the observation that

det A = det AT = det ( - A) = ( -1)" det A.

Theorem (II) is more difficult to establish. It is traditionally proved by means of
Jacobi's theorem on the adjugate determinant ([4, pp. 105-107]); a direct demonstration
can be given which, however, involves somewhat complicated manipulations with
permutations ([3, pp. 125-128]). P. M. Cohn [1, p. 209] uses an argument based on the
canonical form.

The proof presented in this note uses only some simple facts about triangular block
matrices, in particular the result that

335

https://doi.org/10.1017/S0013091500018423 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018423


336 WALTER LEDERMANN

!)-<*

where X and Y are square matrices, not necessarily of the same order.
When n — 2, the truth of Theorem (II) is evident. For in this case

(3)

Hence det/4 = u2 = (p2(>4))2, where we have defined

p2(A)=v.

Using induction on the set of even integers we assume that (II) holds for skew-
symmetric matrices of order n — 2.

An arbitrary skew-symmetric matrix of even order n (> 2) can be partitioned thus:

A = (_Cr V} <4>
where

a12

0

-«2,n-2 •• 0

is a skew-symmetric matrix of order n — 2, and

-1 «n-2,n
I

are of orders n—2 x 2 and 2 x 2 respectively, and we have used the abbreviation

Let

V 0 /, I
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A straightforward calculation shows that

"iB-cSc I)
Since V~y is skew-symmetric, so are CV~lCT and

B-CV~lCT,

which is known as the Schur complement of V in A [2, p. 22]. By the inductive
hypothesis we have that

Cr)]2. (6)

Since detP= 1, we deduce from (5) that

det A = det V det (B- CV~' CT),

whence by (3) and (6)

. (7)

Although pm-2 is a polynomial in its arguments, the presence of V~l in the argument
leaves it open that

vpn.2(B-CV-1CT)

may be a rational function of the indeterminates (1) whose denominator is, at worst, a
power of v. More precisely, let

vpn-2(B-CV-1CT) = v-mf0 + v-m+1f1 + --+fm + vfm+u (8)

where fo,fi,... are polynomials in the indeterminates atJ other than v ( = an_! „), and
where fo¥=0. From first principles, det A is a polynomial in all the indeterminates,
including v; so no negative power of v appear in (7).

Therefore on substituting (8) in (7) and comparing powers of v on both sides of the
equation we conclude that m = 0. Thus ypn_2(B—CV~lCT) is, after all, a polynomial in
the fly, and we may define

This concludes the proof.
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