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Abstract

The paper explores the application of a lazy functional language, Haskell, to a series of grid-
based scientific problems—solution of the Poisson equation, and Monte Carlo simulation of
two theoretical models from statistical and particle physics. The implementations introduce
certain abstractions of grid topology, making extensive use of the polymorphic features of
Haskell. Updating is expressed naturally through use of infinite lists, exploiting the laziness
of the language. Evolution of systems is represented by arrays of interacting streams.

Capsule Review

A growing body of functional programs provides a basis for important benchmarks, adds to
the library of reusable sofware, and provides a test ground for languages. This test ground is
important because it can provide evidence of the usefulness of existing facilities in languages
and the need for new facilities as languages evolve.

Carpenter and Glaser provide much-needed evidence in a domain with a dearth of well-
composed software, that of computational science. Their code addresses a realistic compua-
tional problem and solves it in an elegant and practical way. Their work can be of substantial
help to future language designers and to application experts building similar software.

1 Introduction

Lazy functional languages have not, to date, made an enormous impact in scientific
computing. Partly, this has to do with performance—codes written in these languages
often run at least an order of magnitude slower than imperative codes, which limits
their appeal for number-crunching production codes. (It seems that this caveat on
functional programming no-longer holds for some non-lazy functional languages—
see Cann, 1993.) Apart from that, there is a suspicion that programming without
assignments or side-effects is difficult, or restrictive. Evidently, this is not the opinion
of functional programmers—but perhaps there are things in scientific computation
which really cannot be done easily without assignments.

This paper gives detailed Haskell implementations of three 'scientific' algorithms.
In order of increasing complexity they are: solution of a partial differential equation
by the relaxation method; Monte Carlo simulation of a statistical mechanics system;
and a similar simulation of a lattice gauge theory. These problems are taken from
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theoretical physics—a strongly mathematical discipline. Functional programming
also has a very mathematical feel to it. So it should not be too surprising that these
problems actually come out rather neatly in a functional language. (Other examples
of scientific functional programming can be found in Liu et al. (1993), Vree (1987(,
Cann (1993), Page and Moe (1993), Grant et al. (1993) and Kozato and Otto (1993).)

Haskell is a relatively new language, put forward as an international standard
for functional programming (Hudak and Fasel, 1992; Hudak et al., 1992; Davie,
1992). It is a lazy, pure functional language. For the most part, the programs given
here could have been expressed just as well in any other lazy functional language.
Having chosen Haskell, however, free use has been made of its more innovative
features, including the array and class systems (the latter for achieving overloading,
or ad hoc polymorphism, in the array manipulation functions we introduce). A fair
understanding of Haskell is probably a prerequisite for reading this paper. By and
large, the 'prelude' functions will be used without much comment, so a language
reference may be necessary.

Full understanding of the problems and algorithms described will require a certain
amount of mathematical knowledge—some familiarity with simple partial differential
equations, complex numbers, and a rough grasp of probability distributions. Section
2 describes the systems involved and the associated algorithms. The problems are
all based on lattices (i.e. grids). They make important use of arrays.

Rather than work directly with standard Haskell arrays, it proved convenient to
introduce a kind of generalised array, with more geometric significance. Section 3
describes the approach taken to lattice geometry, and the arrays defined on these
lattices. The appendices give details of a possible Haskell implementation of the
generalised arrays and operations on them.

The implementations of the main algorithms are given in section 4. The paradigm
used in each case is one of interacting parallel processes, modelled by lazy lists
(streams) representing the output of the processes. Partly this choice can be attributed
to the source of funding for this work—the FAST project aims to provide a parallel
implementation of annotated functional programs written in essentially this style
(Cox et al, 1992). Apart from that, the style comes naturally and is quite efficient in
a lazy language, especially for algorithms with some 'locality of reference'.

Some conclusions are collected in section 5.
We chose to handle the lattices in a rather abstract way. The result is that the

geometry factors out from the problems in an attractive way—the implementations
in section 4 make almost no reference to the details of this geometry. Abstraction
certainly has dividends, but understanding it also requires some investment of effort.
Needless to say, Haskell does not enforce this level of abstraction. It does enable it.

2 Three problems

The choice of problems here reflects an early motivation for this work, which was
to implement some QCD codes in a functional language. Quantum Chromodynamics
is the theory of the strong nuclear force. It has a reputation as a 'grand challenge'
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numerical problem. In the present work (as it turned out) the emphasis is more on
elegant specification of the underlying algorithms than high performance.

Through a series of mathematical tricks (Feynman and Hibbs, 1965; Wilson, 1974;
Creutz, 1983; Kogut, 1979), QCD can be expressed as a lattice gauge theory, in which
form it is amenable to Monte Carlo simulation. In this article, lattice gauge theory
will be introduced from a more algorithmic point of view, assuming no particular
knowledge of the physical systems involved. First two simpler problems which share
some of its features are introduced.

2.1 The 2-dimensional Poisson equation

A fundamental problem in electrostatics is calculating the electric field produced by
a given distribution of charges. The electrostatic potential is obtained by solving the
associated Poisson equation. For simplicity, we describe the two-dimensional case—a
third dimension introduces nothing essentially new. The given charge distribution is
a function c(x, y) of the coordinates. The electrostatic potential u(x, y) is the solution
of the equation

(V2u)(x,y) = -c(x,y). (1)

Having solved for u, the electric field is the gradient F(x,y) = — (Vu)(x,y).
The most simple-minded approach to solving (1), is to replace it by the finite

difference approximation

u(x + l,y) + u(x - 1, y) + u(x, y + l) + u(x, y - 1) - 4u{x, y) = -c(x, y). (2)

The coordinates x, y are now integers—assume that they and c have been rescaled
to eliminate appearance of the grid spacing parameter. Rearranging (2) as

u(x,y) = -(sum neighbouring u values + c(x,y)), (3)

immediately suggests the simplest iterative algorithm for solving this system. In the
relaxation algorithm, starting from some initial guess for u, each iteration replaces
the value of u at a point by the average value of its neighbours (plus an offset
determined by the local charge). Variants differ in whether the u values inserted in
the RHS of (3) are those from the previous sweep of the grid (Jacobi relaxation)
or whether they are the most recent values, which may include some values already
updated in the current sweep (Gauss-Seidel relaxation). The last version has further
variations depending on the order in which the grid is traversed—a popular scheme
is 'red-black relaxation' in which all even sites are visited first, then all odd sites.
Straight relaxation is a slow algorithm, but it does form the core update of more
powerful methods (see, for example, Brandt, 1977).

2.2 The XY model

Statistical physics is largely concerned with the study of phase transitions in complex
systems. Many simplified mathematical models have been introduced which exhibit
transitions similar to those of physical systems. The XY model is an example

https://doi.org/10.1017/S0956796800001787 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001787


422 D. B. Carpenter and H. Glaser

(Kosterlitz and Thouless, 1973). This kind of model can be motivated by referring
back to the Poisson equation. Equations (1) or (2) can be obtained from variational
principles. Solving the system (2) is equivalent to minimising the functional

E(u) = , , 2

c(x,y)u(x,y). (4)

E(u) is the electrostatic energy of the configuration w; the lowest energy state is the
one 'preferred by nature'.

In statistical physics, states with higher energy are also taken into account. The
aim of a simulation is to generate a sequence of configurations of the system, in
which the frequency of appearance of a particular configuration u with energy E(u)
is weighted by the Boltzmann probability distribution:

P(u) oc exp(-£(u)/0).

Here, 6 is the temperature of the system.
In the XY model u(x,y) is a unit-length two-dimensional vector rather than a

simple real number. This vector can be represented as a complex number with unit
magnitude. The electrostatic energy function, (4), is replaced by

£(u) = -9 l JV(x ,>0 t i (x + l,y) + u(x,y)u(x,y + 1), (5)

where w* means complex conjugate of u, and 9? means real part.
Algorithms for generating sequences of configurations with Boltzmann distri-

bution in this type of system resemble relaxation. They are iterative algorithms,
involving repeated sweeps across the grid, and the update of a single site normally
only needs knowledge of the current values at neighbouring sites.

In the Metropolis algorithm (Metropolis et al., 1953) the update of a site is as
follows: choose a candidate new value for the local u by some pseudo-random
procedure. The procedure used for this choice should give equal probabilities for
rotating the vector by +S and —<5, for all angles 5. Also it should be 'ergodic'—by
combining some sequence of allowed updates it must be possible to get from any
state to any other. Calculate the change in energy, A£, which would be produced
by replacing the old value of u by the candidate new one (this depends on the state
of the neighbouring sites). If A£ is negative, accept the candidate update. If A£
is positive, accept the candidate with probability P = exp(—AE/9). An operational
procedure for doing this is to generate a pseudo-random value x uniformly in the
interval [0,1), accepting the candidate if x < P. If the candidate is rejected, retain
the original value of u.

The proof of this algorithm is omitted. The crux is to show that, when the
probability of a system state is given by the Boltzmann formula, the expected
frequency of transitions (produced by the algorithm) from any state A to any other
state B is the same as that from B to A ('detailed balance') so that the Boltzmann
distribution represents equilibrium.
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2.3 Lattice gauge theory

This section describes the so-called C/(l) lattice gauge theory. U(l) is the group of
unit magnitude complex numbers, with complex multiplication as the product. This
is the 'gauge group' of Quantum Electrodynamics rather than QCD, but the two
theories are closely related. The main difference between t/(l) gauge theory and the

Site Link Plaquette

Fig. 1. Some elementary cells of a lattice.

XY model is geometric. In the XY model the variables u are associated with the
sites of the lattice. The energy function (5) is a sum over the links of the lattice—it
involves multiplying together the values of the variables at the ends of each link.

In gauge theory the variables are associated with the links of the lattice, and the
energy function is computed on the next-higher dimension cells of the lattice—the
elementary squares, or plaquettes (figure 1).

We can associate a group element (a unit-magnitude complex number) Up with
any path P in the lattice by multiplying together the link variables along the path.
In particular, we can associate a path with each elementary plaquette—the four-link
path bounding that plaquette. The energy function is now

Peplaquettes

where plaquettes is the set of elementary plaquette-paths in the lattice. (In the XY
model energy, one of the factors in the link product has to be conjugated. In gauge
theory, variables associated with links that have negative incidence on the plaquette
are conjugated. This will be illustrated more fully in the next two sections.)

The Metropolis algorithm can be carried over from the XY model. The local
update is identical. The difference lies in how the neighbouring values that affect the
local contribution to the energy are collected. In the XY model, the local contribution
to the energy was determined by the values of site variables at neighbouring sites.
In gauge theory it is determined by link variables on the 'staples' illustrated (in
the 3-dimensional case) in figure 2. For real physics, the lattice should be four-
dimensional. It is usually taken as a 4d cubic grid, but the theory has sometimes
been formulated on other lattice geometries; the implementations given here will be
largely independent of the details of this geometry.
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Fig. 2. Surrounding links, contributing to the energy of the central one.

3 Generalised arrays

A straightforward way to store the values of, for example, the potential function u
in section 2.1 is in a Haskell array. This works well, provided the lattice is a regular
grid and its extent is rectangular. It works less well in the case of lattice gauge
theory (section 2.3). There the variables naturally live on the links of the lattice. One
can still use an array indexed by lattice sites, with an extra dimension taking values
in l,...,d to access the d links rooted at each site (d is the dimension of the lattice).
This is quite clumsy.

We can think of the sites of a lattice as the O-dimensional cells of the lattice, the
links as the 1-dimensional cells, the plaquettes as 2-dimensional cells, and so on.
Occurrence of variables which naturally live on cells with dimension higher than 0
is more common than one might initially suppose. Even in the Poisson equation the
electric field, which is the gradient of the potential, sits most naturally on the links
of the lattice. The field in the x-direction is associated with links in that direction;
its value is just the difference of the potential at the two ends of its link. In the XY
model there occur certain 'vortex configurations' centred on the plaquettes of the
lattice—one can define a function which counts the density of vortices in a general
configuration, and this function sits naturally on the plaquettes of the lattice. As
explained in section 2.3, the energy function of a gauge theory also 'lives' on the
plaquettes of a lattice.

This suggests that it may be useful to generalise the usual model of an array
so that it is defined on an arbitrary (not necessarily rectangular) lattice, and that
the index space of a particular array can be cells of that lattice of arbitrary (fixed)
dimension. This generalised kind of array will be called a 'form'. The terminology is
motivated by an analogy between this kind of array and the p-forms of differential
geometry (Flanders, 1963).

The lattice itself is no longer thought of just as a set of connected sites, but as a
'cell complex' containing cells of all dimensionality up to that of the lattice itself.

3.1 Cells, lattices and forms

This section assumes some knowledge of the Haskell class system. The standard
prelude defines, for example, the class Ix. All types which can be used as index
types for an array belong to this class. A type specification involving type variables
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may be preceded by an assertion that some of those variables belong to class Ix.
Array operations like the array subscripting operator (!) (which, by the way, is an
ordinary infix function—not special syntax) are overloaded to apply to all instances
of Ix.

We need a Haskell class Cell which parallels the index class Ix associated with
ordinary arrays. Two type constructors Lattice and Form go with this class. They
construct the following types:

(Cell a) => Lattice a

(Cell a) => Form a b

The (Cell a) => prefix asserts that the type a must be an instance of class
Cell. The second type above is directly analogous to the ordinary Haskell Array
constructor—Form a b is the type of a form with cell-type a and elements of type
b. Lattice a is the type of a data structure describing a lattice with cells of type a.
It takes over the role of the bounds pair for an ordinary array.

To make this more concrete, a possible instance of the Cell class, suitable for
handling 2-dimensional rectangular lattices, is

data Cell2d = Cell2dO (Int, Int) |

Cell2dl (Int, Int) Int |

Cell2d2 (Int, Int)

which can represent a site, link or plaquette of the lattice. Form and Lattice
types will be treated, in this section at least, as abstract types. The cell types could
also be made abstract—with the usual advantage of hiding implementation and
leaving room for improving it without changing code that uses the data types. One
would introduce true functions (lower case) for constructing the cell objects, and
a set of access functions for the coordinates, etc. This would probably be sensible
practice—forgone here to save space on definitions.

The numeric fields are the cell coordinates, and in the 1-cell case, the link direction.
The cell type alone does not define the lattice shape. We need at least to know the
size of a rectangular lattice, and besides that, the 'edge conditions' have to be
specified—the lattice may have a boundary at the edges, or be connected cyclically,
etc. We will assume the existence of a predefined function such as

torus2d :: Int -> Int -> Lattice Cell2d

which takes the width and height of the lattice as parameters, and returns an instance
of an abstract data type representing (in this example, let's say) a periodic lattice
of the specified size. A possible implementation of torus2d is given in appendix C.
Now, we can start building forms. The function analogous to the ordinary Haskell
array is

form :: (Cell a) => Lattice a -> Int -> [Assoc a b] -> Form a b

This constructs a form from an 'association list'. The first parameter is the lattice
on which the form is to be defined; the second is the 'rank', r, of the form—that
is, the dimension of the cells on which it is defined; the third is an association
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list completely analogous to the corresponding argument of array—a list of pairs
associating each cell of dimension r in the lattice with a value. As a mundane
example, the expression

form 1 1 [c := 0.0 I c <- cells 1 1]

is 1-form with value 0.0 on each link of lattice 1.

ce l l s :: (Cell a) => Lattice a -> Int -> [a]

is analogous to range, returning a list of all cells of a specified dimension in the
given lattice. Ultimately, the following operations on forms will also be needed

accumForm :: (Cell a) =>

Lattice a -> Int -> [Assoc a b] -> Form a [b]

lattice :: (Cell a) => Form a b -> Lattice a

rank :: (Cell a) => Form a b -> Int

(!#) :: (Cell a) => Form a b -> a -> b

(//#) :: (Cell a) =>

Form a b -> [Assoc a b] -> Form a b

listForm :: (Cell a) =>

(Lattice a) -> Int -> [b] -> Form a b

fassocs : : (Cell a) => Form a b -> [Assoc a b]

findices :: (Cell a) => Form a b -> [a]

felems :: (Cell a) => Form a b -> [b]

fmap :: (Cell a) =>
(b -> c) -> Form a b -> Form a c

fmapi :: (Cell a) =>
(a -> b -> c) -> Form a b -> Form a c

fzipWith :: (Cell a) =>
(b -> c -> d) -> Form a b -> Form a c -> Form a d

Most of these are fairly self-explanatory generalisations of similarly-named Haskell
prelude functions. A possible implementation of them is given in appendix A. Use
of those definitions requires an instance of the cell class. An example instance is
given in appendix B.

(! #) is the infix subscripting operation on a form, so if a is a form and c is a cell
of the right type and dimension, a !# c is the corresponding element of a. l a t t i c e
and rank generalise the standard bounds function, returning the lattice and rank
of a given form. accumForm is similar to form but multiple associations are allowed
for individual cells—the result is a form containing, for each cell, a list of all values
the association list binds to that cell. (//#) is for partial updates—it also resembles
form but takes a form as input. The result is a new form with the same lattice
and rank; any cells unspecified in the association list take their values from the
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input form, fmap is a straightforward mapping function, fmapi is similar, but the
mapping function is passed an extra argument, the cell on which the function map
is being applied, f zipWith is similar to the zipWith function on lists. It takes two
conforming forms and produces a third by applying the zipping function at each
cell.

3.2 Lattice topology

The final and most interesting ingredient is the boundary operation.
A powerful way of representing the topology of a cell complex is through its

incidence function. This is a function / from pairs of cells to the set {—1,0,+1}. Its
value is non-zero only when the cell pair is of the form (cw,c(l'~1)), where c(r) is
an r-dimensional cell, and c( r -1 ) is an (r — l)-dimensional cell, and c^"1' is on the
boundary of c(r). When it is non-zero, its value is +1 or —1 according to whether
c<r-1) is positively or negatively oriented on the boundary of c(r). Orientation is
easier to grasp through pictures than by formal definition—see figure 3. In the figure

H
1{A,B) =

D

+ 1
+1
- 1

-1
-1
+1
0
0

Fig. 3. Example values of the incidence function on a 2d lattice.

the conventions are adopted that the links are directed from left to right or from
bottom to top, and the boundary of a plaquette is oriented anti-clockwise around
the square. So, for example, link B has positive incidence on plaquette A, because
it follows the direction of the boundary path, whereas D has negative incidence
because it is directed left to right while the top boundary of A goes right to left. For
the incidence of a site on a link, the convention is that it is positive if the link is
directed into the site, and negative if it is directed out of the site. Reversing any of
these conventions on orientation may change local signs in the incidence function,
but not the final, scalar results of computations.

Now the boundary function,

boundary (Cell a, Num b) => L a t t i c e a -> a -> [Assoc a b ] ,

applied to an r-cell c returns the list of (r — l)-cells on the boundary of that cell,
paired with the incidence function of the boundary cell on c. Taking examples in
figure 3:
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boundary 1 A = IB := 1, C := 1, D : = - l , E : = - l ]
boundary 1 F = [H := - 1 , G := 1]
boundary 1 H = []

where 1 is the associated lattice data structure. The result for H is empty, because by
convention 0-cells have no boundary. (There is no huge significance in the choice of
Assoc pairs as the result of boundary. In principle, any type capable of representing
a cell and a numeric object would do.) Appendix C shows how a particular lattice
topology can be set up—defining an instance of the boundary function.

The boundary operation probably looks a bit contrived at first sight. The idea
comes from homology (see, for example, Armstrong, 1983). As the examples in the
next section show, it is a convenient practical method of encoding the shape of a
lattice.

To close this section we record a couple more functions which will be used later,
and which occur frequently in other applications of the 'form' technology introduced
above. First, a function which 'contracts' a form on an association list containing
cells and values of the same type:

cntrct :: (Cell a, Num b) => Form a b -> [Assoc a b] -> b
cntrct a c = sum [v * (a !# j ) I j := v <- c]

(This is a sort of scalar product between a form and an association list.)
Second, mltply multiplies all values in an association list by its first argument.

mltply : : (Cell a, Num b) => b -> [Assoc a b] -> [Assoc a b]
mltply m ivs = [i : = m * v I i : = v < - ivs]

4 Form-based implementation of the three algorithms

4.1 Accessing neighbours

Consider the function

neighbours : : (Cell a, Num b) =>
Latt ice a -> Int -> Form a [[Assoc a b]]

neighbours 1 r = accumForm 1 r
[j := mltply v b I b <- [boundary 1 i | i <- cel ls 1 (r + 1)] ,

j := v <- b]

neighbours 1 r is an r-form on the lattice /. We claim that the element of this
form associated with a cell j contains a certain representation of the set of r-cells
neighbouring j .

The above claim will be illustrated in the case where r is zero. The list-
comprehension variable b is instantiated in turn to the boundary of every link
in the lattice. Link B in figure 4 would yield (up to a possible re-ordering of lists)

b = LA : = - 1 , F := 1]

This gives rise to the terms

https://doi.org/10.1017/S0956796800001787 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001787


Lattice-based scientific problems, expressed in Haskell

I(B,A) = -1
l(C,A) = -1
I(D,A) = +1
1(E,A) = +1
I(B,F) = +1
I(C,G) = +1
I(D,H) = -1
/(£,/) = -1

H

D B

429

Fig. 4. Collection of 0-cells neighbouring A.

[ . . . . A := IA := 1, F := -1] ,
F := IA := - 1 , F := 1 ] , . . . ]

in the outer list comprehension (the list in the second association is obtained after
multiplication by —1). After the application of accumForm, the value at site A will
be (again, up to possible re-ordering of lists)

LLA : =
U : =
LA : =

LA : =

1,

1,

1 ,

1,

F
G
H
I

:= -1],
:= -1],
:= -1],

:= -1]]

The form produced by neighbours contains some redundant information (probably
all that was really needed was the identities of F, G, H and /). However, the definition
here is generalised to produce forms of neighbours for arbitrary-dimension lattice
cells. This will be useful later.

Now we define a mapping function for the 0-cell case, which applies a map to
neighbours of each cell

nns :: (Cell a) => (a -> a -> b -> c) -> Form a b -> Form a [c]
nns f a = fmapi ( \ i ivss ->

[f i j (a !# j ) I ivs <- ivss, j := v <- ivs , v < 0])
(neighbours 1 0)

where 1 = lattice a

This exploits the knowledge that neighbours proper appear with a negative value
in the association list, filtering out occurrences of the 'destination' cell itself. The
map function is passed the destination cell, the 'source' cell (a neighbour to the
destination cell) and the value of the original form at the source cell. In the example
above we would get, for 'destination' A,

(nns f a ) !# A = [f A F (a !# F ) , f A G (a !# G),
f A H (a !# H) , f A I (a !# / ) ]
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4.2 Poisson equation relaxation

With the geometry well sorted out, we can turn to our first application. Define a
data type which captures the local state in a relaxation calculation:

type Obs = Float

data State = Inter ior Float Obs | Boundary Obs

siteObs :: State -> Obs
siteObs (Interior _ u) = u
siteObs (Boundary u) = u

siteTrans : : State -> [Obs] -> State
siteTrans (Interior c _) nbs =

Interior c ((sum nbs + c) / fromlntegral (length nbs))
siteTrans b@(Boundary _) _ = b

There are two types of site: normal sites on the 'interior' of the lattice, and those
on some designated boundary (which could be empty). This grid 'boundary' should
not be confused with the cell boundary operation! Sites on the interior have
a local charge density and a potential value. Those on the boundary just have
a potential value, which will remain fixed throughout the iteration. The function
siteObs extracts the 'observable', i.e. the potential, from a State variable. siteTrans
performs the update of equation (3) on the interior sites and leaves boundary sites
unchanged. It is passed the old value of the site and a list of potential values at
neighbouring sites.

The history of a single site can be regarded as a stream of State values. By
definition, a 'stream' is an infinite list. The site evolves through application of a
transition function which depends on the (changing) environment of the site. This
pattern of evolution can be captured through a function with the property

process : : (s -> e -> s) -> s -> [e] -> [s]
process trans st [el , e2, . . . ] =

[s t , trans st e l , t rans (trans st el) e2, . . . ]

s t is the initial value of the state, el is the initial value of the environment, e2 is
the next value of the environment, and so on. This function already exists in the
Haskell prelude; we can set

process = scanl

In the case at hand the current environment is a list of neighbour potential values,
and the last argument to process will be a stream of such lists—the history of the
environment.

The result of the computation will be a 0-form of lists of State values, defining
the history of the whole lattice. Suppose we are given this form and need to calculate
the 0-form of environments from it. This can be done by
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env :: (Cell a) => Form a [State] -> Form a [[Obs]]
env = fmap transpose . nns (\_ _ -> map siteObs)

The application of nns, in which the mapping function extracts a stream of potential
values from the stream of State values, gives a form containing a list of streams
of neighbour histories. Mapping transpose over it turns these into streams of
neighbour lists. These are just what siteTrans needs as its argument. So the
implementation of relaxation is

evolve :: Form Cell2d State -> Form Cell2d [State]
evolve in i t = x where x = fzipWith (process siteTrans) in i t e

e = env x

The argument is a O-form of initial states (fzipWith is denned to pick up the lattice
from its first array parameter).

This code implements Jacobi relaxation. More general schemes, like Gauss-Seidel,
can easily be implemented in the same framework. Suppose a site A has site B as a
neighbour. The scheme above calculates the new value at A in terms of the previous
generation value at B. To calculate the value of A in terms of the latest value of B,
we should look one place forward in the history of B—in other words the B stream
should be tailed before feeding it into the environment of A. To organise this, it is
convenient to attribute a colour to each site. If the colour of B, say, is less than the
colour A, A is updated in terms of the latest value of B. Otherwise, it is updated in
terms of the previous generation value of B. The function env is changed to

env = fmap transpose .
nns ( \ i j -> map siteObs .

if colour j < colour i then t a i l else id)

Red-black Relaxation in 2 dimensions can be implemented by

colour (Cell2dO (x, y)) = (x + y) 'mod' 2

4.3 XY model simulation

To describe the local state in an XY model simulation, the State data type is
changed in the following way:

type Obs = Complex Float

data State = MkStat Float [Float] Obs

siteObs (MkStat s) = s

siteTrans (MkStat theta rans spin) neighbs =

MkStat theta rans" spin'

where

(cand, rans') = metroCand rans spin

eDiff = deltaE neighbs spin cand

(spin', rans") = metroChoice spin cand (eDiff / theta) rans'
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The fields in the State record are respectively the temperature, an infinite list of
random real numbers, and the local value of u (sometimes called the 'spin'). Each
site must hold an independent stream of random numbers. Creating the random
number streams is part of initialisation—we omit details here (see appendix D),
but note that there are various approaches to getting independent streams of
pseudo-random numbers. If the basic generator has a long enough cycle, simply
taking independent seed values, perhaps chosen by a different generator, may be
acceptable. Alternatively, there are various 'leapfrog' schemes available (see, for
example, Aluru et a\., 1992) which are quite elegant. Another attractive approach,
applicable even when the number of streams is not known a priori, is described in
Burton and Page (1992). We actually used a leapfrogged 64-bit linear congruential
generator.

As explained in section 2.2, the Metropolis update has three stages—choose a
candidate update; calculate the change it would make to the system's energy; then
decide on the basis of this whether to accept the candidate or retain the old value
at the site. The details are:

— Energy difference between two spin s t a t es .
deltaE neighbs s s ' =

- realPart (conjugate (sum neighbs) * ( s ' - s))

— Candidate new spin for Metropolis update.
metroCand (r : rans) old = (exp (0 :+ delta) * old, rans)

where de l ta = max_delta * (2 * r - 1)

— Metropolis choice. Inputs are old and candidate new variable,
— energy difference of configurations, and a l i s t of randoms.
metroChoice _ new ediff rans I ediff < 0 = (new, rans)
metroChoice old new ediff (r : r ans ' ) =

(if accept then new else old, r ans ' )
where accept = r < exp (- ediff)

metroCand returns a unit-magnitude 2-vector which differs from the one input
by rotation through a random angle in the range [—max_delta, +max_delta). Here
max_delta is a global variable—that would not be very satisfactory treatment in a
practical program, but it avoids some clutter here.

The remainder of the code is identical to that in the previous section. The Red-
black variant is preferred—in this case the 'Jacobi' version would actually be invalid
because neighbouring sites connected by the energy function would be updated
'concurrently', and localised calculation of the energy change would be erroneous.

In this and the preceding section we have shown how to generate an array
containing the histories of individual sites, without discussing how the initial state
is constructed, or how the output information is typically used. Appendix D fills in
some of these details.
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4.4 Lattice gauge theory simulation

The 1-form analogue of nns is

staples :: (Cell a, Num b) =>
(a -> [(a, b, c)] -> d) -> Form a c -> Form a [d]

staples f a =
fmapi ( \ i ivss ->

[f i [ ( j , v, a !# j )
I j := v <- ivs, j /= i] | ivs <- ivss])

(neighbours 1 r)
where 1 = l a t t i ce a

r = rank a

The mapping function has a more complicated specification here. There are two
reasons for this. First, each adjacent plaquette defines several (in a cubic lattice,
three) neighbours to a given link, whereas an adjacent link only defined a single
neighbour to a given site. Second, orientation information is irrelevant to sites, but
important for links (links are directed; sites are not). The mapping function again
takes the 'destination' cell as its first argument. Its second argument is a list. The
items in this list correspond to the links in a single staple (see figure 2). Each item
is a tuple containing the coordinate (cell) of the link, its orientation relative to
the destination cell (+1 or —1 depending on whether it points in the same or the
opposite direction around the boundary of the plaquette), and the value held at the
link.

Now, the definition of env is changed to

env = fmap transpose .
staples (\ i l ss ->

(map product . transpose)

[((if v == -1 then map conjugate else id) .

map siteObs .

(if colour j < colour i then tail else id)) Is I

(j, v, Is) <- lss])

The list comprehension pre-processes the streams of states associated with the links
on a given staple. In contrast to the previous version, variables are conjugated here if
they have negative orientation relative to the destination link (in the XY model, this
conjugation was also necessary, but was deferred to deltaE). The resulting streams
are zipped together by the transpose, map product pipe, to produce a stream of
products around the staple.

Colouring is slightly more complicated than before. It is necessary to ensure that
no two links lying on the same plaquette have the same colour. For a 4-dimensional
cubic array a suitable definition might be

colour (Cell4dl (t, x, y, z) d) =

4 * ((t + x + y + z) 'mod' 2) + d
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To save space, this article does not define an implementation of 4-dimensional
lattice geometry. The modifications necessary to the 2-dimensional case given in the
appendices are reasonably straightforward.

Finally, the local state and updating can be lifted verbatim from the XY model,
except that deltaE is simplified to

deltaE neighbs s s ' = - realPart (sum neighbs * (s ' - s))

because the conjugation was already done in env. The top-level evolution is un-
changed from section 4.2 (the type specification of evolve has to be altered slightly).
One might want to change some names: the 'site' prefixes ought to become 'link' or,
more generically, 'cell'.

Incidentally, we have been describing a theory with an Abelian gauge group.
Minor changes are needed to neighbours and staples to support non-Abelian
theories (QCD), because the order of the product around the staples becomes
important. Hence, one has to take a little more care to preserve ordering of the
plaquette boundary lists.

5 Discussion

The algorithms described involve state transition in an essential way, but it is
doubtful whether their description would have been any clearer in terms of variables
and assignments. The explicit representation of sequences as infinite lists seems just
as natural. In some ways the list representation is closer to traditional mathematical
notation, where one typically represents state transitions by introducing a subscripted
sequence of states.

The implementations in section 4 create an 'array of streams'. An alternative
approach is to create a 'stream of arrays', in which each update is performed on
the whole lattice to create a new global state. It only involves minor changes to
the implementation to create such a stream of arrays directly. Alternatively one can
feed the results of the given implementation to a pipeline of f elems, transpose and
map (listForm 1 r) to produce a list of arrays. There are some advantages to the
'array of streams' approach (apart from the fact that it models process-parallelism).
Some existing Haskell implementations do not handle array accesses very efficiently,
and in this approach the array operations are confined to an initial stage where
the streams are 'tied together'. In the 'stream of arrays' approach array operations
are needed in all updates. On the other hand it does seem more natural to have
a list of arrays when it comes to processing the data (the set of configurations)
generated by a simulation. Appendix D ends with a simple example of this kind of
data processing.

In any case, once the ideas about lattices and arrays in section 3 are absorbed,
implementation of the three algorithms is very straightforward. It was worth the
effort of doing the geometry carefully, for the level of generality it gave in the
implementations. For example, apart from the definition of colour, the modifications
made to the XY model simulation in section 4.4 to encompass lattice gauge theory
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did not actually invalidate the code as an implementation of the XY simulation—
the final version works for systems with variables defined on arbitrary dimension
cells of an arbitrary dimension lattice (given an appropriate instance of the Cell
class). Achieving this level of abstraction depended on both ordinary (parametric)
polymorphism and overloading, together with use of higher order functions.

The price one pays for this generality is that while all the programs given in this
article are executable (and have been tested), they run too slowly to be regarded as
production simulation programs. For example, the Poisson solver was benchmarked
on some small test cases, and compared to a straightforwardly coded Fortran
equivalent. The Haskell program ran several (> 4) orders of magnitude more slowly
than the Fortran. This does not come as a surprise. Similar relative performances
are reported in Page and Moe (1993). Most of the performance degradation can be
attributed to the deliberate adoption of a very high level of abstraction in the Haskell
programs, with little or no concern for efficient execution. (In our experience Haskell
code written in Fortran-like style is less extremely slow. But adopting a Fortran style
of programming somewhat defeats the object of functional programming.)

Unless compilers for functional languages make very rapid progress, it is difficult
to imagine that the kind of programs given in this article could be competitive in
the role of number-crunching production codes. The programs themselves could be
optimised to gain significant factors in speed (and efficiency of memory utilisation).
Higher order functions could be used more sparingly, and probably 'granularity'
could be increased in various ways. A few efforts were made in this direction,
but these were hindered by difficulty in understanding the behaviour (in terms of
execution speed and memory utilisation) of the lazy programs. Programmers who
need speed are usually happy to invest some effort in optimising their own codes,
which they often do better than compilers, provided they have a reasonably accurate
idea of what goes on during execution. It is relatively difficult to form such a mental
model for a lazy functional language; good profiling tools may make the job easier
(Runciman and Wakeling, 1993).

As they stand, though, the programs capture the essence of the algorithms in
a way that a production Fortran code probably never could. At the very least,
programs like this must have a role in specification or prototyping.

A The 'form' library

module Lattice (Cell (cellEnum, cellArray,

cellAccum, dimension),

Lattice (MkLattice),

Form,

cells, boundary,

form, accumForm, lattice, rank,

listForm, fassocs, findices, felems,

fmap, fmapi, fzipWith) where
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— The underlying technology of lattices and their

— forms... This parallels the 'PreludeArray'

— section for arrays.

infixl 9 !#

infixl 9 //#

— The 'Cell' class is the analogue of the 'Ix'

— class in 'PreludeCore'.

class (Eq a) => Cell a where

cellEnum :: Int -> [a] -> [a]

cellArray :: Int -> [a] -> [Assoc a b] -> a -> b

cellAccum :: Int -> [a] -> [Assoc a b] -> a -> [b]

dimension :: a -> Int

— First field in 'Lattice' defines extent of the

— complex, where required. Second field is the

— 'boundary' function for the complex.

data (Cell a) =>

Lattice a =

MkLattice (Int -> [a]) (a -> [Assoc a Int])

data (Cell a) =>

Form a b = MkForm (Lattice a) Int (a -> b)

cells :: (Cell a) => Lattice a -> Int -> [a]

boundary :: (Cell a, Num b) =>

Lattice a -> a -> [Assoc a b]

form :: (Cell a) =>

Lattice a -> Int -> [Assoc a b] -> Form a b

accumForm :: (Cell a) =>

Lattice a -> Int -> [Assoc a b] -> Form a [b]

lattice :: (Cell a) => Form a b -> Lattice a

rank :: (Cell a) => Form a b -> Int

(!#) :: (Cell a) => Form a b -> a -> b

(//#) :: (Cell a) =>

Form a b -> [Assoc a b] -> Form a b

listForm :: (Cell a) =>
(Lattice a) -> Int -> [b] -> Form a b
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fassocs :: (Cell a) => Form a b -> [Assoc a b]
findices :: (Cell a) => Form a b -> [a]
felems :: (Cell a) => Form a b -> [b]

fmap :: (Cell a) => (b -> c) ->

Form a b -> Form a c

fmapi :: (Cell a) => (a -> b -> c) ->

Form a b -> Form a c

fzipWith :: (Cell a) => (b -> c -> d) -> Form a b ->

Form a c -> Form a d

— 'Lattice' primitives...

cells (MkLattice els _) r = cellEnum r (els r)

boundary (MkLattice _ bdy) i =

[j := fromlntegral s I j := s <- bdy i]

— 'Form' primitives...

form 10(MkLattice els _) r ivs =

MkForm 1 r (cellArray r (els r) ivs)

accumForm 19(MkLattice els _) r ivs =

MkForm 1 r (cellAccum r (els r) ivs)

lattice (MkForm 1 ) = 1

rank (MkForm _ r _) = r

(!#) (MkForm _ _ d) = d

— Higher level operations on Forms...

a //# us = form (lattice a) (rank a)

([i := a !# i

I i <- findices a \\ [i I i := _ <- us]]

++ us)

listForm 1 r vs =

form 1 r (zipWith (:=) (cells 1 r) vs)

fassocs a =

[i := a !# i | i <- cells (lattice a) (rank a)]

findices a = cells (lattice a) (rank a)

felems a = [a !# i I i <- findices a]

fmap f a =

form 1 r [i := f (a !# i) I i <- cells 1 r]

where 1 = lattice a
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r = rank a

fmapi f a =

form 1 r [i := f i (a !# i) I i <- cells 1 r]

where 1 = latt ice a

r = rank a

fzipWith f a b =

form 1 r [i := f (a !# i) (b !# i)

I i <- cells 1 r]

where 1 = latt ice a

r = rank a

B An example instance of the 'Cell' class

module Cell2d (Cell2d (Cell2dO, Cell2dl, Cell2d2)) where

— A 'Cell' instance suitable for representing

— cells in a 2d grid.

import Lattice (Cell (cellEnum, cellArray, cellAccum))

data Cell2d = Cell2dO (Int, Int) I

Cell2dl (Int, Int) Int I

Cell2d2 (Int, Int) deriving (Text)

ixO (Cell2dO i) = i

ixl (Cell2dl (x, y) d) = (x, y, d)

ix2 (Cell2d2 i) = i

bdO [cl, c2] = (ixO cl, ixO c2)

bdl [cl, c2] = (ixl cl , ixl c2)

bd2 [cl, c2] = (ix2 cl , ix2 c2)

cellO i = Cell2dO i

celll (x, y, d) = Cell2dl (x,y) d

cell2 i = Cell2d2 i

instance Cell Cell2d where

cellEnum r els =

case r of

0 -> [cellO i I i <- range (bdO els)]

1 -> [celll i I i <- range (bdl els)]

2 -> [cell2 i I i <- range (bd2 els)]
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cellArray r els ivs =

case r of

0 -> (array (bdO els)

[ixO i := v I i := v <- ivs] !) . ixO

1 -> (array (bdl els)

[ixl i := v I i := v <- ivs] !) . ixl

2 -> (array (bd2 els)

[ix2 i := v | i := v <- ivs] !) . ix2

cellAccum r els ivs =

case r of

0 -> (accumArray (flip (:)) [] (bdO els)

[ixO i := v I i := v <- ivs] !) . ixO

1 -> (accumArray (flip (:)) [] (bdl els)

[ixl i := v I i := v <- ivs] !) . ixl

2 -> (accumArray (flip (:)) [] (bd2 els)

[ix2 i := v I i := v <- ivs] !) . ix2

C Example definition of lattice geometry

module Torus2d (torus2d) where

— ctorus2d' returns an object of type 'Lattice Cell2d'

— implementing a 2 dimensional grid with

— periodic boundary conditions.

import Lattice (Cell (cellEnum, cellArray, cellAccum),

Lattice (MkLattice))

import Cell2d (Cell2d (Cell2dO, Cell2dl, Cell2d2))

torus2d :: Int -> Int -> Lattice Cell2d

torus2d lx ly = MkLattice (els lx ly) (bdy lx ly)

— Lattice bounds, specified by smallest and largest

— cell of each dimension:

els lx ly 0 = [Cell2dO (0, 0),

Cell2dO (lx - 1, ly - 1)]

els lx ly 1 = [Cell2dl (0, 0) 0,

Cell2dl (lx - 1, ly - 1) 1]

els lx ly 2 = [Cell2d2 (0, 0),

Cell2d2 (lx - 1, ly - 1)]
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— Lattice topology (cell boundary):

bdy _ _ (Cell2dO _) = []

bdy lx ly (Cell2dl (x, y) d) =
[Cell2dO (x, y) := -1,
Cell2dO (case d of

0 -> ((x + 1) 'mod' lx, y)
1 -> (x, (y + 1) 'mod' ly)) := 1]

bdy lx ly (Cell2d2 (x, y)) =
[Cell2dl (x, y) 0 := 1,
Cell2dl ((x + 1) 'mod' lx, y) 1 := 1,
Cell2dl (x, (y + 1) 'mod' ly) 0 := -1,
Cell2dl (x, y) 1 := -1]

D Running some of the codes

In the main text detailed code was given for evolving the states of various systems,
but initialisation code was omitted. As an example, this appendix shows how to
prepare an initial state for the XY model simulation of section 4.3. This is not quite
trivial, because the state incorporates an infinite list of pseudorandom numbers at
each site. We also outline how the result of a simulation could be used.

Suppose seed is an integer used as a random number seed, and n is the size of
a square lattice. Also theta is a normalised temperature parameter. In a physicist's
simulation theta might be around unity and n might be somewhere in the range
10-100. Our unoptimised Haskell program would certainly be limited to the bottom
end of this range. To create a lattice with periodic boundary conditions we define

1 = torus2d n n

Then a suitable initial state, fed to evolve, is

in i = listForm 1 0 [MkStat theta r (1.0 :+ 0.0) I
r <- ranStreams nvars seed"]

where nvars = length (felements ini)

In this initial state all the u variables are set to unity, nvars is the number of these
variables. For a square lattice it will just be n2, but for generality it is calculated
as the number of elements of ini . ranStreams nvars seed returns a list of nvars
independent random number streams. Our leapfrogged linear congruential imple-
mentation is given below. Note the use of arbitrary precision Integer arithmetic.
Randoms are scaled to the interval [0,1).

module Random (ranStreams) where

— Random number generation.
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a = 6364136223846793005 :: Integer
b = 1 :: Integer
r = 2*64 :: Integer

next :: (Integer, Integer) -> Integer -> Integer
next (m, c) x = ((m * x) + c) 'mod' r

intRanStream :: Int -> [Integer]
intRanStream seed = i t e ra te (next (a, b)) (tolnteger seed)

leap :: Int -> (Integer, Integer) -> (Integer, Integer)
— Evaluate parameters of n-fold leapfrog generator, given
— parameters (a, b) of simple l inear congruential generator,
leap 0 _ = (1, 0)
leap (n + 1) (a, b) = ((a * m) 'mod' r , (b * m + c) 'mod' r)

where (m, c) = leap n (a, b)

intRanStreams :: Int -> Int -> [[Integer]]
intRanStreams n seed = map ( i tera te (next (leap n (a, b)))) seeds

where seeds = take n (intRanStream seed)

scale :: (Fractional a) => Integer -> a
scale n = (fromlnteger n) / (fromlnteger r)

ranStreams :: Int -> Int -> [[Float]]
ranStreams n = (map (map scale)) . (intRanStreams n)

Typically, in this kind of simulation, the object is to find the mean value of some
'observable' function, averaged over the set of random configurations generated.
For example, the internal energy is the average over configurations of the function
defined in section 2.2, equation (5). This function can be computed from a form of
complex u values by

energy :: (Cell a) => Form a (Complex Float) -> Float
energy u = sum [let [j := _, k := _] = boundary 1 i in

realPart ((u !# j ) * conjugate (u !# k))
I i <- cel ls 1 1]

where 1 = l a t t i c e u

i is instantiated to all links in the lattice, and the two values at sites on the boundary
of a link are multiplied together.

Applying the map

map (listForm 1 0) . transpose . felems

to the result of evolve produces an infinite list of arrays, each array a complete
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configuration. Applying f map siteObs to each such array produces a valid argument
for energy.

A simple-minded approach to estimating the internal energy is to take a large
enough finite list from the front of this stream, preferably drop the first few
configurations, which are probably not sufficiently 'thermalised', map the function
that calculates the energy of a configuration over the truncated list, and sum the
result (then divide by the length of the list).
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