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1. Introduction. In a recent paper [2] one of the authors has introduced the concept of
module type of a ring, for rings with unit. The object of this paper is to generalize this con-
cept to arbitrary rings, without assuming the existence of a unit. This is easily accomplished
for rings with one-sided unit, and we shall define the type of such a ring. Theorem 2.5 gives a
relation between this type and the module type of [2], and permits the immediate extension
of all results in [2] to rings with one-sided unit.

We then define the maximal image type of a ring (to be called the maxit) as the l.u.b. of the
types of those images of the ring having right units. Dually, the minimal image type (the minit)
is the g.l.b. of the types of such images. Several of the properties of the maxit and minit are
established, such as the fact that for rings with unit the module type and the maxit coincide.

All modules over a ring A are assumed to be left ^4-modules, and are assumed to have a
finite basis (if they have any at all).

2. The type of a ring. An A -module M is defined to be a finitely based module if it contains
a finite set {a,} in terms of which each a e M is uniquely representable.

THEOREM 2.1. A ring A admits a finitely based module M if and only if it has right units.

Proof. Let M be a finitely based /4-module and {aj (i = 1, ..., n) a basis for M. Then
for any basis element a,-,

For 0 # a e A, we have

act, =

Since {a,} is a basis, axj = a and axx = 0 (/ #y) . Thus Xj is a right unit and the xt (1 / y ) are
right annihilators of A. Conversely, if A has right units, it clearly admits a finitely based
,4-module, namely the ring A as a module over itself.

We shall say that a module M has dimension n if all its bases have n elements. Call such a
module dimensional. A ring A is said to be dimensional if all finitely based modules over A
are dimensional.

THEOREM 2.2. For any non-dimensional ring A, with right units, there exist positive integers
(n, k) such that (i) any finitely based module, with basis of length < n, has dimension; (ii) for
any finitely based module M with basis of length ^ n, there exists an integer h, with n £h <n+k,
such that M has a basis of length r if and only if r = h + mk, with m ^ 0. Moreover such a
module exists for arbitrary h.

Proof. This follows with small modifications the proof of [2, Theorem 1, p. 114].

https://doi.org/10.1017/S2040618500035310 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035310


THE MAXIT AND MINIT OF A RING 129

Define the type of a ring A with right units (designated t(A)) as follows: t (A) = d if A is
dimensional; t(A) = (n, k) as defined in Theorem 2.2 if A is nondimensional; t(A) = 0 if A is
the zero ring. We remark that a dual r/g/rt fype could have been defined using right modules.
A ring with both left and right types would necessarily have a two-sided unit, and so would
have a module type (as in [2]).

The matrix criterion of [2, p. 115] becomes in our context

THEOREM 2.3. A necessary and sufficient condition for the existence of an A-module with
bases of length n and n + k is that there exist n by n + k and n + k by n matrices B and C over A
such that

XBC = X and YCB = Y (2.2)

for arbitrary vectors X and Y (of appropriate dimension) over A.

Proof. Let {a,} ( /= 1, ..., n) and {/?,} (J = 1, ..., n+k) be bases for an y4-module M.
Then

n + k n

<*; = Z bijPj and /?, = Z coa j -

Thus from the uniqueness of the representation of M in terms of the bases it follows that

if i=j,

and
if' = ; ,

for any x and y in A. Thus B and C, the matrices of coefficients given above, clearly satisfy
relations (2.2). Conversely, relations (2.2) furnish an ^-module, namely the module of all n-
tuples, with bases of length n and n+k.

Call a mapping from A to A' a rurap mapping if right units are mapped into right units and
if the image of a right annihilator is also a right annihilator. (A similar mapping with right
changed to left everywhere is called a lulap mapping.) We remark that any onto mapping is a
rurap mapping. Using the partial ordering 0 < («, k) < d and («', k') ^ (n, k) if and only if
ri 5 « and k' \ k, we may prove

THEOREM 2.4. If A -* A' is a rurap homomorphism, then t(A') g t(A).

Proof. If A is a zero ring, so is A'. Thus the theorem is clear if either t(A) = 0 or t(A') = 0,
and is also clear if t(A) = d. The case t(A') = d will be settled in what is to follow. Thus let
t(A') = {n', k'). By Theorem 2.3, if t(A) = (n, k), there exist matrices B and C satisfying (2.2)
whose images B' and C" under the rurap homomorphism A ->• A' also satisfy (2.2). Hence, by
Theorem 2.3, t(A') = d implies t(A) = d. It also follows, when t(A) = in, k), that A' admits a
module with bases of length n and n+k. Thus, by Theorem 2.2, n' ^ n and, for some h,
n = h + m^k' and n+k = h + m2k'. Hence k' \ k and so («', k') ^ (n, fc).

The following theorem shows that there is a close connection between the concepts of type
and the module type of [2].
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THEOREM 2.5. Let Abe a ring with right units; then there exists a homomorphic image A of
A, with unit, such that the module type ofA — t{A).

Proof. Let e be a right unit of A. The set / = {ex—x : x e A) is a two-sided ideal of A.
If/ = 0, then e is the unique two-sided unit of A, and we can choose A = A. Thus assume that
A has no two-sided unit, so that there exists a right u n i t / ( / # e) in A. If/ = A, then ex-x = /
for some xeA, and, for all ze A, z = z /= z(ex—x) = 0; a contradiction. Hence J i= A. This
shows that AjJ is a non-zero ring with unit e = e+J. Let A\J=A. Since ,4 ->/[ is a rurap
homomorphism (being an onto mapping), by Theorem 2.4,

module type of A = t{A) g r(^). (2.3)

Thus, if the module type of A = d, we have t(A) = d. We remark that, by the above, if A # 0,
then A # 0. Thus the module type of A = 0 if and only if t (A) = 0.

Assume that the module type of A — (n, k). Then, by the matrix criterion in [2, p. 115],
there exist n by n + k and n + k by n matrices B and C over A such that EC — In = 0 and
OS - In+k = 0, where /„ and 7n+t are identity matrices over A. Thus, if B -»5 and C -• O, then
BC—In eJn and CB — In+k eJn+k, where /„ and /n+k are diagonal matrices with e the diagonal
entry, while /„ and Jn+k are matrices over /. But since AJ = 0, it follows that XBC = XIn = X
and YCB = YIn+k= Y for any n-dimensional vector X and («+ A;)-dimensional vector Y.
Hence, by Theorem 2.3, t(A) ^ (n, k) and thus equation (2.3) implies that t(A) = module type
of A.

By virtue of this theorem all results of [2] apply immediately to rings with right units.

3. The maxit of a ring. Throughout this section and the next section, rings will not
necessarily possess one-sided units. We shall also assume that any ring considered has at least
one homomorphic image which is a non-zero ring with right units. Let A be a ring and
a,: A -> A, (/e /, an index set) be homomorphisms from A onto rings with right units At. By
the results in the previous section, t(At) is meaningful. Let *?(A) represent the set of all such
homomorphic images of A. With J(A) we associate the set {t(Ai)} and we let

M(A)= U t(Ad [= sup t(Ad\
AteS(A) L Ate J(A) J

We note that, if all t(At) = 0, then M(A) = 0; if all t(A,) = («,-, kt) or 0 and if max {n,} and
l.c.m. {kj} exist, then M(A) = (n, k) = (max {/ij, l.c.m. {/cj); otherwise M(A) = d. We
shall call M(A) the maximal image type of A, abbreviated as the maxit of (A).

If A has right units, then, since a(: A -»At are onto homomorphisms, they are rurap
homomorphisms and, by Theorem 2.4, t(At) g t(A). Since A e <?(A), we have M(A) = t(A).
Thus for rings with right units the concept of maxit and type are the same. Hence this is a
proper generalization of module type of a ring defined in [2]. Also note that we can use the
same partial ordering for maxits as for types (see preceding section).

THEOREM 3.1. If A -»A' is an onto homomorphism, then M(A') ^ M(A).

Proof. If M(A) = dor M(A') = 0, the theorem is trivial. If A\ e J (A1), then A\ e J(A).
Hence J{A')^J{A). But M(A') = \Jt(A,) over all A, e S(A') and M(A) = U/(/*,) over all
At e S(A). Hence M(A') ^ M(A).
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COROLLARY 1. M(A) = d if and only if there exists an onto homomorphism from A to a
ring A' such that M(A') = d.

COROLLARY 2. Let Abe a commutative ring; then M(A) = d.

Proof. Let / be a maximal modular ideal of A. Then A/1 is a field, and A -> Ajl is an
onto homomorphism.

COROLLARY 3. Let {xj (i e /, an index set) be a set of symbols, B the polynomial ring in
symbols {x{} (commuting or not) over A; then M(A) ^ M(B).

Proof. Map polynomials to their constant term.
We remark that the maxits form a distributive lattice using the partial ordering defined

above and defining u and n as follows:

(n, jfc)u(n', k') = (max {«, «'}, l.c.m. {k, k%

and

(n, k)n(n', k') = (min {n, «'}, g.c.d. {k, k%

(n, k)nd = («, k), (n, k)nO = 0.

THEOREM 3.2. IfA = At © A2is a ring direct sum, then M(A) =

Proof. The projections A -* At (i = 1,2) are onto homomorphisms, and so, by Theorem
3.1, M(A,) ^ M(A) (i = l, 2). Therefore, if either M(A,) or M(A2) equals d, then

M(Al)KjM(A2) = d and M(A) = d.

Also, if either M(A,) = 0, say M{AX) = 0, then M(A) = M(A2). Let a : ̂  -»fi be an onto
homomorphism with Be^(A). The restriction of a to At ( /= 1, 2) induces onto homo-
morphisms a, onto B, (i.e. Bt = Ap) and B = Bt © B2 is a ring direct sum. 5 is a ring with
right units and, by Theorem 3 of [2, p. 116], t(B) = t(Bx)Kjt(B2). Hence for £J' e ./(/*) we
have t(BJ) = t(B{)KJt(BJ

2), where BJ = 5{ © B{. Hence

M(/4) = U t(BJ) =

Let {A:,} be a (possibly infinite) set of positive integers and let m be a fixed integer. Define

k = l.c.m. {£,}, 0j = g.c.d. (k,, m), g = g.c.d. (k, m), k' «= l.c.m.

assuming that these exist.

Then we can prove

LEMMA 3.1. The following relations hold for the above integers:

(i) k/g = l.c.m. {kjg,} and (ii) fc'/ff = g.c.d. {kjg,}.
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Proof. We shall prove (i); (ii) can be proved similarly. We shall use the prime de-
compositions

/c,= r b r («y^0); m = Up"jJ (*, £ 0).
Then

_ FT min(mnx{aij},l>j) £ i _ FT max{aij} -min(max{aij), bj)

We have to show that, for each prime pj,

max {a,-y} — min(max {fly}, 6,-) = max {a,; — min (afj-, 6,)}. (3.1)

Let asj = max {ai}}. If aSJ- ^ fy, then the left- and right-hand sides of (3.1) are equal to asj-bj.
If bj ^ asJ, then both sides are zero.

THEOREM 3.3. Let Am be the complete matrix ring over A. Then

(i)M(Am) = difM(A) = d and (ii) if M(A) = («, fc), M(AJZ((n+r)lm,klg),

where r is the least non-negative integer such that m \ (n + r) and g = g.c.d. (k, m).

Proof. The homomorphisms a f : A-> At (At e J(A)) induce homomorphisms from Am

onto (Aj)m, the matrix ring over A-v Hence, by Theorem 3.1,

M[G4,.)mJ ^ M(Am). (3.2)

Since At is a ring with right units, M(At) = r(^,). Thus if t(At) = («,, kt), then by [2, Theorem
5, p. 116], M[(^j)m] = ((nj + /-j)/w, fc./g,), where /•( is the least non-negative integer such that
m I ("(+''i) a n d 9i = g-cd. (kt, mf). If n - max {«,} exists, then n + r ^ «, + r,- for all i and for
some r ^ 0; so (n+r)jm = max {(«, + >•()//«}. Also, if fc = l.c.m. {£,-} exists, then, by Lemma
3.1, l.c.m. {kjgi} = k/g, where g{ and g are denned as in the lemma. But

U M[(A,)J = U
i

and by (3.2)

Now, if M(A) = d, because t(Ai) - d for some A{ e J(A), then M[(/4,)m] = d, and thus, by
(3.2), M(Am) = d. Also, if either max {«,} or l.c.m. {A:,} do not exist, then either max ((«, + r,)/w}
or l.c.m. {ktlg(} fails to exist and again d £ M(Am); so M(An) = d.

THEOREM 3.4. If A is Noetherian (Artinian), then M(A) = d.

Proof. For A-,e<?(A), Ax is also Noetherian (Artinian) and hence [2, p. 114] t(A{) = d.
Thus M(A) = d.

4. The minit of a ring. In this section we shall define a concept" dual " to the one defined
in §3. Let ct,:A-*Ai be homomorphisms from A onto non-zero rings with right units
(assuming that A is not the zero ring). As before, let J (A) denote the set of all such homo-
morphic images of A. Define

mO4)= D t(At) \= inf t(A()
J

https://doi.org/10.1017/S2040618500035310 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035310


THE MAXIT AND MINIT OF A RING 133

and call m (A) the minimal image type of A (abbreviated the minit). Note that m (A) = d if and
only if all t(A,) = d. If any t(At) = («,, A:,), then, since no member of J(A) is zero,

m(A) = (min {«J, g.c.d. {£,}).

In the case which A is the zero ring, define m{A) — 0.
If A is itself a ring with right units, then A e -/(/4). Hence m(A) g f (,4). Equality can

hold, as for example in the case of a commutative ring whose minit will be shown (see Theorem
4.2) to be d. That strict inequality is also possible is seen from the example constructed in
[2, p. 118]. In this example, R is a ring of polynomials (free algebra) and so by [2, Corollary
4, p. 116] t(R) = d. But it is shown [2, pp. 118-130] that there exists an ideal H such that
t(RIH) = (1, k) for any k ̂  2. Since R\HzJ(A), we have m(R) ^(l,k)<d.

We remark that under the same partial ordering as for types and maxits, and with the
same definitions of n and u , the minits also form a distributive lattice.

THEOREM 4.1. If A -* A' is an onto homomorphism, then m(A) ^ m(A').

Proof. This is clear since J(A')^J{A).

COROLLARY 1. m(A) = d if and only if A is the homomorphic image of a ring with minit d.

COROLLARY 2. Let {xt} be a set of symbols and B the ring of polynomials in {x J {com-
muting or not) over A. Then m(B) ^ m(A).

Proof. Map polynomials to their constant terms.
We remark that for the example mentioned above m(R) < m{Z2) = d (where Z2 is the

field of integers modulo 2); so strict inequality can hold.

THEOREM 4.2. Let A be a commutative ring; then m(A) = d.

Proof. If At G J{A), then At is a commutative ring with right units and hence [2,
Corollary 3, p. 115] t(Ad = d. Thus m(A) = d.

THEOREM 4.3. Let A = A1 © A2, the ring direct sum; then m(A) = m(Ai)nm(A2).

Proof. The projection mappings from A to A, (i = 1, 2) are onto homomorphisms. By
Theorem 4.1, m(A) ^ m(At) (i = 1,2). Hence m(A) ^ m(Ai)nm(A2). Now suppose a : A-fB
such that BeS(A); then B = Bl © B2, where Bt = Afa. Thus by [2, Theorem 3, p. 115]
t(B) = /(5j)u/(52). Hence for B e J{A), there exists an image Bt of^ such that t(B,) £t(B).
Hence m{Ax) ^ m(A) and similarly m{A2) ^ m(A). Thus m{Ax)r\m(A2) ^ m(A). It follows
that m{A) = m(Ai)nm(A2).

It is an open question whether an algebraic construction exists by which, from two
given rings Ax, A2, a ring may be obtained whose minit equals m(Al)Kjm(A2).

THEOREM 4.4. Let A^ and A2 be rings all of whose homomorphic images are rings with right
units, and let A = At ® A2 be their tensor product. Then m(A) ^ m(A1)rim(A2).

Proof. It is easily shown that B e ^(A) if and only if B = Bt (g) B2, where Bt e
and B2 e Jr(A2). Since [2, Theorem 4, p. 116] t{B) g t(B^r>t(B2) for all such rings B, it is
clear that m(A) ^ m{A^)(Mn{A.2).
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THEOREM 4.5. Let As be the complete matrix ring over A; then (i) m(As) = d implies
m(A) = d, and(ii) ifm{A) = (n, k), then m(As) ^ ((n + r)/s, kjg), where r is the least non-negative
integer such that m \ (n + r) and g = g.c.d. (k, s).

Proof. Let m(A) = (n, k); then there exist onto homomorphisms a,: A -> At such that
t(Aj) = (nt, kj) and m(A) — r)t(A,). The homomorphisms af induce homomorphisms from
As onto {A j)s. Hence, by Theorem 4.1, m (As) ^ m[(A ,)J. Since (A j)s is a ring with right units,

where r, is the least non-negative integer such that s | («, + r,) and gt = g.c.d. (k;, s). Since
n = min {n,}, n + r ^ n.+Tj for all /. Hence min {{ni + r^/s} = {(n + r)ls}. By Lemma 3.1,
g.c.d. {kjg,} = klg. Hence m(As) ^ f1ifi[(^OJ ^ n((n, + rdls, kjgd = ((«+r)/*, fc/«).

Now if w(/4s) = J, then all t[(A,)s] = rf and, by [2, Theorem 5, p. 117], t(At) = d. Thus
m(A) = d.

THEOREM 4.6. If A is a Noetherian (Artiniari), then m(A) = d.

Proof. A,eS(A) implies that At is Noetherian (Artinian). Hence all t(At) = d and
m(A) = d.

5. Applications. A ring A is called strongly dimensional if t(A) = M(A) = m(A) = d.
(i.e. if all its homomorphic images have type d.) In § 4 we gave an example, the ring R, such
that t(R) = d but m(R) < d. Hence there are dimensional rings that are not strongly dimen-
sional. Commutative rings, Noetherian and Artinian rings are examples of strongly dimen-
sional rings.

A ring A possessing property P is said to be homomorphically P if all non-zero homo-
morphic images of A have property P. Every Noetherian ring is homomorphically-Noetherian,
but there are semisimple rings (for example the integers) which are semisimple but not
homomorphically-semisimple.

LEMMA 5.1. A Jacobson semi-primary ring [3, p. 56] is homomorphically semi-primary.

Proof. Let a : A -»A' be an onto homomorphism and J(A), J(A'), the respective Jacobson
radicals of A, A'. Clearly J(A)<x s J(A') and hence a induces the mapping A/J(A) -* A'IJ(A').
Thus AIJ(A) Artinian implies A'IJ(A') Artinian; so A' is semi-primary.

THEOREM 5.1. A semi-primary ring A is strongly dimensional.

Proof. Let A' e S(A). Then, by Lemma 5.1, A' is a semi-primary ring with right units.
But A'IJ(A') is Artinian; hence t(A'lJ{A')) — d. A'-* A'IJ(A') is an onto homomorphism; so,
by Theorem 2.4, t(A') = d. Therefore m(A) = M(A) = t(A) = d.

COROLLARY 1. Jacobson primary rings and completely primary rings [3, p. 56] are strongly
dimensional.

R. E. Blair in [1] examined a ring satisfying condition Dr; its lattice of right ideals is
distributive.
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LEMMA (Blair) A non-zero semisimple ring that satisfies Dr is isomorphic to a subdirect sum
of division rings.

Proof. See [1, p. 148].

THEOREM 5.2. A semisimple ring that is homomorphically semisimple and satisfies Dr is
strongly dimensional.

Proof. By Blair's lemma A = S+ Dh a subdirect sum of division rings. Hence there exist
ideals lt in A (with zero intersection) such that Ajlt is isomorphic to Dt. Since t(Dt) = d,
t(AIIi) = d. The natural homomorphism A -* A/I, is onto, and so, by Theorem 2.4, t(A) = d.
If A' e J*{A), then A' is semisimple by hypothesis. Also A' satisfies Dr, since if B is an ideal
of A, the sublattice of right ideals between A and B is distributive and clearly order isomorphic
to the right ideal lattice of A\B. Thus t(A') = d, and M(A) = m(A) = t(A) = d.

Note that from the above proof t(A) = d for any semisimple ring satisfying Dr.
Other rings which are easily shown to be strongly dimensional include (i) simple rings

with unit having minimal one-sided ideals, (ii) regular (von Neumann) rings with non-zero
nilpotents, and (iii) local rings.
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