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The universal Euler characteristic for

varieties of characteristic zero

Franziska Bittner

Abstract

Using the weak factorization theorem, we give a simple presentation for the value group of
the universal Euler characteristic with compact support for varieties of characteristic zero
and describe the value group of the universal Euler characteristic of pairs. This gives a new
proof for the existence of natural Euler characteristics with values in the Grothendieck
group of Chow motives. A generalization of the presentation to the relative setting allows
us to define duality and the six operations.

1. Introduction

Let k be a field of characteristic zero. For A an abelian group, an A-valued Euler characteristic
with compact support for varieties over k assigns to every such variety X an element e(X) ∈ A only
depending on the isomorphism class of X such that e(X) = e(X − Y ) + e(Y ) for Y ⊂ X a closed
subvariety. There is an evident universal Euler characteristic for varieties. It takes values in the
naive Grothendieck group of varieties over k, denoted by K0(Vark), which is the free abelian group
on isomorphism classes [X] of varieties X over k modulo the relations [X] = [X−Y ]+[Y ] for Y ⊂ X
a closed subvariety. It can be given a ring structure by taking products of varieties. This group and
its relative and equivariant analogues (to be more precise, certain localizations and completions)
are the natural value groups for motivic integrals, as explained, e.g., by Looijenga in [Loo02] and
by Denef and Loeser in [DL01].

In this note we give a simple presentation of this group in terms of smooth projective varieties.
In fact we show that K0(Vark) is the free abelian group on isomorphism classes of smooth projective
varieties modulo the relations [∅] = 0 and [X] − [Y ] = [BlY X] − [E], where Y ⊂ X is a smooth
closed subvariety, BlY X denotes the blow-up of X along Y and E denotes the exceptional divisor of
this blow-up. The key ingredient is the factorization theorem proven by W�lodarczyk in [W�lo03] and
Abramovich et al. in [AKMW02]: Any proper birational map between smooth irreducible varieties
over k can be factored into a sequence of blow-ups and blow-downs with smooth centers. It follows
that there is a unique Euler characteristic with compact support for k-varieties with values in the
Grothendieck group of Chow motives over k which assigns to a smooth projective variety the class
of its Chow motive. This has already been proven by Gillet and Soulé in [GS96] and by Guillen and
Navarro Aznar in [GNA02]. Also a result by Larsen and Lunts in [LL03] follows.

There is a similar, though somewhat more involved, definition of an Euler characteristic of pairs
of varieties. We show that the universal Euler characteristic for pairs has the same value ring as the
universal Euler characteristic with compact support, hence for every pair (X,Y ) we get an element
〈X,Y 〉 in K0(Vark). In these terms [X] corresponds to 〈X,X −X〉, where X ⊂ X is a completion
of X.
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We are then in a position to show that there is a unique Euler characteristic for pairs of k-varieties
with values in the Grothendieck group of Chow motives which for a smooth projective variety X
assigns to the pair (X, ∅) the Chow motive of X. This gives a new proof for a result by Guillen and
Navarro Aznar in [GNA02].

We also develop simple presentations for the Grothendieck group of varieties over a base variety
since this will make the theory much more effective. For instance, we are then able to bring in
the operations f∗, f!, f

∗, f !, tensor product, internal homomorphisms and duality familiar from
Grothendieck’s duality theory and derive some expected formulae.

Furthermore we generalize the presentations and operations to an equivariant setting.

Conventions. In the following, k denotes a field of characteristic zero. By a variety over k we mean
a reduced separated scheme of finite type over k, not necessarily irreducible.

2. The weak factorization theorem

The weak factorization theorem for varieties over a (not necessarily algebraically closed) field k
of characteristic zero is proven by W�lodarczyk in [W�lo03] and Abramovich et al. in [AKMW02].
For convenience we recall parts of Theorem 0.3.1 in [AKMW02] and the subsequent Remark 2.

Theorem 2.1. Let φ : X1 ��� X2 be a birational map between complete smooth connected varieties
over k, and let U ⊂ X1 be an open set where φ is an isomorphism. Then φ can be factored into a
sequence of blow-ups and blow-downs with smooth centers disjoint from U : there exists a sequence
of birational maps

X1 = V0
φ1��� V1

φ2��� · · · φi��� Vi
φi+1��� Vi+1

φi+2��� · · · φl−1��� Vl−1
φl��� Vl = X2,

where φ = φl◦φl−1◦· · ·φ2◦φ1, such that each factor φi is an isomorphism over U , and φi : Vi ��� Vi+1

or φ−1
i : Vi+1 ��� Vi is a morphism obtained by blowing up a smooth center disjoint from U (here

U is identified with an open subset of Vi).

Moreover, there is an index i0 such that for all i � i0 the map Vi ��� X1 is defined everywhere
and projective, and for all i � i0 the map Vi ��� X2 is defined everywhere and projective.

If X1 − U (respectively, X2 − U) is a simple normal crossings divisor, then the factorization
can be chosen such that the inverse images of this divisor under Vi → X1 (respectively, Vi → X2)
are also simple normal crossings divisors, and the centers of blowing up have normal crossings with
these divisors.

If φ is equivariant under the action of a finite group (i.e. the graph of φ is invariant under the
diagonal G-action), then the factorization can be chosen equivariantly.

We make some remarks on this theorem.

Remark 2.2. It is not explicitly stated in Theorem 0.3.1 of [AKMW02] that, in the case of X1 − U
(respectively, X2 − U) a simple normal crossings divisor, the inverse images of this divisor under
Vi → X1 (respectively, Vi → X2) are also simple normal crossings divisors, but it can be read off
from the proof (see 5.9 and 5.10 in [AKMW02]).

Remark 2.3. The completeness of the varieties X1 and X2 is not necessary as has already been
pointed out by Bonavero in [Bon02]. It suffices that φ is a proper birational map X1 ��� X2

between smooth connected varieties which is an isomorphism on an open subset U ⊂ X1. This
means that the projections to X1 and X2 from the graph of φ are proper, which gives back usual
properness for an everywhere defined φ.
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Remark 2.4. We note that the theorem implies that if X1 and X2 are varieties over a base variety
S and φ is a map of S-varieties then the factorization is a factorization over S. If X1 and X2 are
projective over S then so are the Vi.

Definition 2.5. An action of a finite group on a variety is said to be good if every orbit is contained
in an affine open set.

Remark 2.6. Note that on a quasi-projective variety every action of a finite group is good. More
generally, if X −→ S is equivariant and X is quasi-projective over S, then the action on X is good
if the action on S is. In particular, in the case of an equivariant factorization with respect to a
good action of a finite group on X1 and X2 the action on the Vi is automatically good as they are
projective over X1, or X2 respectively.

Remark 2.7. If X is a not necessarily connected variety with a (good) G-action such that G acts
transitively on the connected components of X, one can identify X with the induced variety G×G0

X0 = (G ×X0)/G0, where X0 is a connected component of X and G0 is the stabilizer of X0. Here
the action of G0 is given by h(g, x) = (gh−1, hx).

This, together with the equivariant version of the factorization theorem for connected smooth
varieties, also yields an equivariant factorization for smooth, not necessarily connected varieties,
provided G acts transitively on the connected components.

3. The universal Euler characteristic with compact support

Let K0(Vark) be the free abelian group on isomorphism classes [X] of varieties X over k where we
impose the relation [X] = [X − Y ] + [Y ] for Y ⊂ X a closed subvariety (so in particular [∅] = 0).
This group is also called the (naive) Grothendieck group of k-varieties. It is the value group of the
universal Euler characteristic with compact support. It is a commutative ring for the multiplication
induced by the product of k-varieties, because the subgroup divided out actually is an ideal with
respect to this multiplication.

Theorem 3.1. The Grothendieck group of k-varieties has the following alternative presentations:

sm) as the abelian group generated by the isomorphism classes of smooth varieties over k subject
to the relations [X] = [X − Y ] + [Y ], where X is smooth and Y ⊂ X is a smooth closed
subvariety;

bl) as the abelian group generated by the isomorphism classes of smooth complete k-varieties
subject to the relations [∅] = 0 and [BlY X] − [E] = [X] − [Y ], where X is smooth and
complete, Y ⊂ X is a closed smooth subvariety, BlY X is the blow-up of X along Y and E is
the exceptional divisor of this blow-up.

Moreover, we get the same group if in case (sm) we restrict to quasi-projective varieties or if in
case (bl) we restrict to projective varieties. We can also restrict to connected varieties in both
presentations.

Remark 3.2. The subgroups divided out are again ideals with respect to the product of k-varieties.

Definition 3.3. Let L = [A1] denote the class of the affine line. Define the naive motivic ring of
k-varieties, Mk, as the localization K0(Vark)[L−1].

Corollary 3.4. We have a ring involution Dk of Mk that sends L to L
−1 and is characterized by

the property that it sends the class of a complete connected smooth variety X to L
− dimX [X].

We call this involution the duality map.
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We first deduce Corollary 3.4 from Theorem 3.1.
A vector bundle V −→ X of rank n on a variety X is locally trivial by definition and hence

its class [V ] in K0(Vark) is equal to L
n[X]. Similarly the class of its projectivization [P(V )] equals

[Pn−1][X] = (1 + L + · · · + L
n−1)[X].

Lemma 3.5. Let X be a smooth connected variety and Y ⊂ X a smooth connected subvariety, and
let d denote the codimension of Y in X. Let E be the exceptional divisor of the blow-up BlY X of
X along Y . Then [BlY X] − L[E] = [X] − L

d[Y ] in K0(Vark).

Proof. In K0(Vark) we have the fundamental relation [BlY X] − [E] = [X] − [Y ]. Furthermore
[E] = (1 + L + · · · + L

d−1)[Y ], thus (1 − L)[E] = (1 − L
d)[Y ]. Adding this to the fundamental

relation finishes the proof.

Proof of Corollary 3.4. Using the presentation (bl) and Lemma 3.5 we can define a group homo-
morphism K0(Vark) −→ Mk by sending the class of a smooth connected complete variety X to
L
−dimX [X]. This morphism is multiplicative and maps L to L

−1, hence it can be extended uniquely
to a ring endomorphism Dk of Mk. Obviously DkDk = idMk

.

We now deduce the presentation (sm) of Theorem 3.1. For this purpose let us provisionally
introduce the group Ksm

0 (Vark), defined as the free abelian group on isomorphism classes [X]sm of
smooth varieties modulo the relations for smooth closed subvarieties Y of smooth varieties X. It is
a commutative ring with respect to the product of varieties.

Step 1. The ring homomorphism Ksm
0 (Vark) −→ K0(Vark), [X]sm �→ [X] is an isomorphism.

Proof. To construct an inverse for any variety X we stratify X =
⊔

N∈N N such that N is smooth
and equidimensional and N is a union of strata for all N ∈ N . Consider the expression

∑
N∈N [N ]sm

in Ksm
0 (Vark). If X is smooth itself

∑
N∈N [N ]sm equals [X]sm as can be seen by induction on

the number of elements of N : Let N ∈ N be an element of minimal dimension, then [X]sm =
[X −N ]sm + [N ]sm, and by the induction hypothesis [X −N ]sm =

∑
N ′∈N−{N}[N

′]sm.

For two stratifications N and N ′ of X we can always find a common refinement L. The above
argument shows that for N ∈ N we get

∑
N⊃L∈L[L]sm = [N ]sm. Hence

∑
L∈L[L]sm is equal to∑

N∈N [N ]sm and analogously it equals
∑

N∈N ′ [N ]sm, therefore
∑

N∈N [N ]sm is independent of the
choice of the stratification. Thus we can set e(X) :=

∑
N∈N [N ]sm.

If Y ⊂ X is a closed subvariety we can find a stratification for which Y is a union of strata
which yields e(X) = e(X − Y ) + e(Y ), hence e is an Euler characteristic with compact support and
factors through K0(Vark). The induced map on K0(Vark) obviously is an inverse for Ksm

0 (Vark) −→
K0(Vark).

Decomposing into connected components, and noting that instead of cutting a smooth closed
subvariety Y out of a smooth connected variety X we can also take out the connected components
of Y one by one, shows that we can restrict to smooth connected varieties in the presentation (sm).

Stratifying by smooth quasi-projective varieties shows that we can restrict to smooth (connected)
quasi-projective varieties.

In the rest of this section we establish the presentation (bl) of Theorem 3.1.
Again we introduce an auxiliary group: Let Kbl

0 (Vark) be the free abelian group on isomorphism
classes [X]bl of smooth complete varieties X over k modulo the relations for blow-ups of smooth
complete varieties X along smooth closed subvarieties Y and the relation [∅]bl = 0 (then [X	Y ]bl =
[X]bl + [Y ]bl, which can be seen by blowing up along Y ).

Decomposing into connected components and noting that the blow-up along a disjoint union is
the successive blow-up along the connected components, one sees that this can also be described as
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the free abelian group on isomorphism classes [X]bl of connected smooth complete varieties with
imposed relations [∅]bl = 0 and [BlY X]bl − [E]bl = [X]bl − [Y ]bl, where Y ⊂ X is a connected closed
smooth subvariety.

Also Kbl
0 (Vark) carries a commutative ring structure induced by the product of varieties.

Step 2. The ring homomorphism Kbl
0 (Vark) −→ K0(Vark) which sends [X]bl to [X] is an isomor-

phism.

Proof. Again we construct an inverse. Using the presentation (sm) in Theorem 3.1 we see that defin-
ing an Euler characteristic with compact support is equivalent to defining an Euler characteristic
with compact support for smooth connected varieties.

Let X be a smooth connected variety of dimension n, and let X ⊂ X be a smooth comple-
tion with D = X −X a simple normal crossings divisor. Let D(l) be the normalization of the l-fold
intersections of D, where D(0) is understood to be X (so D(l) is the disjoint union of the
l-fold intersections of the irreducible components of D). Consider the expression

∑n
l=0(−1)l[D(l)]bl

in Kbl
0 (Vark).

We first show that this expression is independent of the choice of the completion:
Let X ⊂ X

′ and X ⊂ X be two smooth completions of X with X −X = D and X
′ −X = D′

simple normal crossings divisors. Owing to the weak factorization theorem the birational map
X

′ ��� X can be factored into a sequence of blow-ups and blow-downs between smooth complete
varieties with smooth centers disjoint from X which have normal crossings with the complement
of X. Hence we may assume that X ′ = BlZ X with Z ⊂ D smooth and connected such that Z has
normal crossings with D.

Let D0 be an irreducible component of D containing Z and let {Di}i∈I be the remaining irre-
ducible components. Then the irreducible components of D′ are D′

i = BlZ∩Di Di (where i ∈ {0}∪ I)
and the exceptional divisor E of the blow-up. For K ⊂ {0} ∪ I we put DK :=

⋂
j∈K Dj (where D∅

is understood to be X), D′
K :=

⋂
j∈K D′

j , ZK := Z ∩ DK and EK := E ∩ D′
K . As Z has simple

normal crossings with D we get D′
K = BlZK

DK with exceptional divisor EK , hence we have

[D′
K ]bl − [EK ]bl = [DK ]bl − [ZK ]bl.

Denote by E(l) the preimage of E in D′(l) and by Z(l) the preimage of Z in D(l). Then for l = 0, . . . , n
the preceding identity yields

[D′(l)]bl =
∑
|K|=l

[D′
K ]bl +

∑
|K|=l−1

[EK ]bl

=
∑
|K|=l

([DK ]bl + [EK ]bl − [ZK ]bl) +
∑

|K|=l−1

[EK ]bl

= [D(l)]bl + [E(l)]bl − [Z(l)]bl + [E(l−1)]bl

(for l = 0 the last term is zero). As Z ⊂ D0 we get Z{0}∪K = ZK for K ⊂ I, thus
∑

(−1)l[Z(l)]bl = 0.
Taking the alternating sum hence yields∑

(−1)l[D′(l)]bl =
∑

(−1)l[D(l)]bl.

Therefore we can set e(X) :=
∑

(−1)l[D(l)]bl.
We have to check that e(X) = e(X−Y )+e(Y ) for Y ⊂ X a connected closed smooth subvariety

of a connected smooth variety X. We choose X ⊃ X smooth and complete such that D = X −X
is a simple normal crossings divisor and such that the closure Y of Y in X is also smooth and
has normal crossings with D (we can take first a smooth completion of X with boundary a simple
normal crossings divisor and then an embedded resolution of the closure of Y compatible with this
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divisor—compare, e.g., § 1.2 of [AKMW02]). In particular D∩Y is a simple normal crossings divisor
in Y . Denote the irreducible components of D by {Di}i∈I , for K ⊂ I let DK be defined as above,
let YK := Y ∩DK and Y (l) =

⊔
|K|=l YK . Then e(Y ) =

∑
(−1)l[Y (l)]bl.

Let X̃ := BlY X and denote the exceptional divisor by E. Denote the proper transform of Di

by D̃i. The complement D̃ of X − Y in X̃ is the simple normal crossings divisor
⋃
D̃i ∪ E. If

EK := E∩D̃K then as above D̃K is the blow-up of DK along YK with exceptional divisor EK . Thus

[D̃(l)]bl =
∑
|K|=l

[D̃K ]bl +
∑

|K|=l−1

[EK ]bl

=
∑
|K|=l

([DK ]bl − [YK ]bl + [EK ]bl) +
∑

|K|=l−1

[EK ]bl

= [D(l)]bl − [Y (l)]bl + [E(l)]bl + [E(l−1)]bl.

Taking the alternating sum yields e(X − Y ) = e(X)− e(Y ). Hence e induces a morphism K0(Vark)
−→ Kbl

0 (Vark) which clearly is an inverse for the mapping Kbl
0 (Vark) −→ K0(Vark).

Using the fact that we can restrict to quasi-projective generators in the presentation (sm) of
Theorem 3.1 and that a connected smooth quasi-projective variety has a smooth projective simple
normal crossings completion, we see that we can restrict to projective generators in the descrip-
tion (bl) of Theorem 3.1.

4. The universal Euler characteristic of pairs

Let A be an abelian group. Then an A-valued Euler characteristic is a mapping which associates to
each pair (X,Y ) of varieties over k with Y ⊂ X a closed subvariety an element χ(X,Y ) ∈ A (where
we denote χ(X, ∅) by χ(X)) such that the following properties hold.

– Additivity. If X ⊃closed Y ⊃closed Z, then χ(X,Z) = χ(X,Y ) + χ(Y,Z).

– Excision. If f : X ′ −→ X is proper and Y ⊂ X is a closed subvariety such that f induces an
isomorphism X ′ − f−1Y ∼= X − Y , then χ(X ′, f−1Y ) = χ(X,Y ).

– Gysin. If X is smooth and connected and D ⊂ X is a smooth divisor, then χ(X − D) =
χ(X) − χ(P1 ×D, {∞} ×D).

Excision implies that χ(X,Y ) only depends on the isomorphism class of the pair (X,Y ). Using
additivity we get χ(X,Y ) = χ(X)−χ(Y ). Additivity and excision yield χ(X 	Y ) = χ(X 	Y, Y ) +
χ(Y ) = χ(X) + χ(Y ) and χ(∅) = 0. If X ⊂ W is an open embedding with W complete, then the
excision property implies that χ(W,W − X) is independent of the choice of the open embedding.
We denote χ(W,W −X) by χc(X). For Y ⊂ X closed we have

χc(X) = χ(W,W −X)

= χ(W,Y ∪ (W −X)) + χ(Y ∪ (W −X),W −X)
= χc(X − Y ) + χc(Y ),

where by Y we denote the closure of Y in W . Hence χc factors through K0(Vark).

Definition 4.1. The value ring of the universal Euler characteristic for pairs of k-varieties is
defined to be the free abelian group on isomorphism classes of pairs (X,Y ) with Y ⊂ X closed
modulo the relations for an Euler characteristic. We denote it by K̃0(Vark). The class of a pair
(X,Y ) in K̃0(Vark) is denoted by 〈X,Y 〉, where we write 〈X〉 as shorthand for 〈X, ∅〉. The product
of 〈X,Y 〉 and 〈X ′, Y ′〉 is defined to be 〈X ×X ′,X × Y ′ ∪ Y ×X ′〉.
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The above construction yields a group homomorphism

χc : K0(Vark) −→ K̃0(Vark),

which is actually a ring homomorphism.
To see that the ring structure on K̃0(Vark) is compatible with the Gysin relation, we intro-

duce an auxiliary group K̂0(Vark), defined as the free abelian group on isomorphism classes of
pairs of varieties over k modulo excision and additivity. We denote the class of a pair (X,Y ) in
K̂0(Vark) by {X,Y }, where we write {X} for {X, ∅}. We get a ring structure on K̂0(Vark) by setting
{X,Y }{X ′, Y ′} = {X×X ′,X×Y ′∪Y ×X ′}. Noting that {X,Y } = {X}−{Y } and {X,S} = {X̃, S̃}
for an arbitrary X, where S is the singular locus of X and X̃ a resolution of singularities with
S̃ the inverse image of S, we get {X} = {X̃}−{S̃}+{S}, where the dimension of S̃ and S is strictly
less than the dimension of X. Proceeding inductively on the dimension of X we can write every
class {X,Y } as a linear combination of classes of smooth varieties. Hence the subgroup generated
by expressions of the form {X −D} − {X} + {P1 ×D, {∞}×D} with X smooth and D a smooth
divisor on X actually is an ideal.

Using the multiplicative structure of K̃0(Vark) the Gysin relation can be rewritten as

〈X −D〉 = 〈X〉 − 〈P1, {∞}〉〈D〉.
Theorem 4.2. The map χc : K0(Vark) −→ K̃0(Vark) is a ring isomorphism. If X is a smooth
connected k-variety and (X,D) is a simple normal crossings completion of X over k, then the inverse
of χc assigns to 〈X〉 the element

∑
(−L)l[D(l)]. Its image in Mk is also equal to Dk(L− dimX [X]) =

L
dimXDk([X]).

Before we prove this we give an application of Theorems 3.1 and 4.2.
Let Mk denote the category of Chow k-motives (see e.g. the introduction [Sch94] by Scholl for

the definition of Mk). For a smooth connected projective variety X over k, denote by h(X) the
motive of X and its class in K0(Mk) by [h(X)]. Denote the class [h(P1)] − [h(Spec k)] of the Tate
motive by Lmot, and by [h(X)]∨ = L

−dimX
mot ⊗ [h(X)] the class of the dual motive of h(X).

Corollary 4.3. There is a ring homomorphism (in fact the unique group homomorphism) χc,mot :
K0(Vark) −→ K0(Mk) which sends the class of a smooth projective variety X to [h(X)]. The class
of the affine line is mapped to the class of the Tate motive by this morphism. Likewise, there is a
ring homomorphism (in fact the unique group homomorphism) χmot : K̃0(Vark) −→ K0(Mk) which
sends the class of a smooth projective variety X to [h(X)]. The two are related by the property
that for X smooth and connected we have (χmot〈X〉)∨ = L

− dimX
mot ⊗ χc,mot[X].

Proof of Corollary 4.3. For Y ⊂ X a smooth closed subvariety of a smooth projective variety we
have [h(BlY X)]−[h(E)] = [h(X)]−[h(Y )], where E denotes the exceptional divisor. We now use the
presentation (bl) of Theorem 3.1 to see that there is a unique group homomorphism K0(Vark) −→
K0(Mk) which sends the class of a smooth projective variety X to [h(X)] and therefore is a ring
homomorphism. As L is mapped to Lmot it can be extended to Mk.

Furthermore due to Theorem 4.2 there is a unique group homomorphism χmot (in fact a ring
homomorphism) which makes

K0(Vark) χc,mot

��������

χc

��
K0(Mk)

K̃0(Vark)

χmot ��������

commutative.
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Now let X be a smooth connected variety. As the image of χ−1
c 〈X〉 in Mk is Dk(L− dimX [X])

and as

Mk
χc,mot ��

Dk

��

K0(Mk)

∨
��

Mk
χc,mot �� K0(Mk)

is commutative we conclude that (χmot〈X〉)∨ = L
− dimX
mot ⊗ χc,mot[X].

The rest of this section is devoted to the proof of Theorem 4.2. For this purpose we give a more
convenient presentation of K̃0(Vark).

For the moment let K̃
bl

0 (Vark) be the free abelian group on isomorphism classes of pairs of
smooth varieties (denoted by 〈X,Y 〉bl, where 〈X〉bl stands for 〈X, ∅〉bl), with the same relations as
for K̃0(Vark) except that we impose the excision relation only for blow-ups at smooth centers
(as 〈X, ∅〉bl = 〈X	Y, Y 〉bl by blowing upX	Y along Y we get by additivity 〈X	Y 〉bl = 〈X〉bl+〈Y 〉bl

and 〈∅〉bl = 0).

Proposition 4.4. The obvious group homomorphism K̃
bl

0 (Vark) −→ K̃0(Vark) is an isomorphism.
In other words, the value group K̃0(Vark) of the universal Euler characteristic for pairs of k-varieties
has a presentation as the free group on isomorphism classes of pairs of smooth k-varieties, modulo
additivity, Gysin and excision for blow-ups at smooth centers.

The strategy for the proof of the proposition is to construct an inverse by defining a map
Ψ : K̂0(Vark) −→ K̃

bl

0 (Vark) that is the obvious map on a smooth pair {X,Y } and factors through
the Gysin relation. It is enough to define Ψ{X} for all varieties {X} and then to set Ψ{X,Y } =
Ψ{X}−Ψ{Y }. Then Ψ will automatically fulfill additivity. For a smooth variety X we want Ψ{X}
to be equal to 〈X〉bl.

We proceed by induction on the dimension. To be more precise we use that lim−→ K̂0(Vark)n
∼=

K̂0(Vark), where K̂0(Vark)n denotes the free abelian group on isomorphism classes of pairs of
varieties of dimension at most n modulo excision and additivity. In dimension zero we just set
Ψ{X} = 〈X〉bl. Suppose now that Ψ has already been defined for pairs {X,Y } with dimX < n,
that it factors through the excision relation for such pairs (in particular it is additive on disjoint
unions in dimensions smaller than n) and that Ψ{X} = 〈X〉bl for X smooth and dimX < n. In the
following five steps we extend Ψ to K̂0(Vark)n.

Step 1. Suppose f : X ′ −→ X is proper with Y ′ = f−1Y , and suppose that f induces an isomor-
phism X ′ − Y ′ ∼= X − Y . Suppose dimX,dimX ′ � n and dimY,dimY ′ < n, X and X ′ smooth.
Then 〈X ′〉bl − Ψ{Y ′} = 〈X〉bl − Ψ{Y }.

Proof. Suppose first that X and X ′ are connected. Owing to the factorization theorem f can be
factored into a sequence of blow-ups and blow-downs with smooth centers disjoint from X − Y . So
we can assume that X ′ −→ X is a blow-up along Z ⊂ X a smooth closed subvariety with Z ⊂ Y .
Let E ⊂ Y ′ be the exceptional divisor of this blow-up. We have 〈X ′〉bl − 〈E〉bl = 〈X〉bl − 〈Z〉bl and
furthermore Ψ{Y ′} − 〈E〉bl = Ψ{Y } − 〈Z〉bl by the induction hypothesis. Hence 〈X ′〉bl − Ψ{Y ′} =
〈X〉bl − Ψ{Y }.

Now in general X can be written as the disjoint union of connected components X1 	 · · · 	Xl 	
· · ·	Xn such that Yi := Xi ∩Y is a proper subset of Xi for i � l and Yi = Xi for i > l. In particular
Yi is smooth for i > l, and as dimYi < n the induction hypothesis yields Ψ{Yi} = 〈Yi〉bl = 〈Xi〉bl
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and hence

〈X〉bl − ψ{Y } =
l∑

i=1

〈Xi〉bl − ψ{Yi}.

Decomposing X ′ = X ′
1 	 · · · 	X ′

l′ 	 · · · 	X ′
n′ in the same way and setting Y ′

i = X ′
i ∩ Y yields

〈X ′〉bl − ψ{Y ′} =
l′∑

i=1

〈X ′
i〉bl − ψ{Y ′

i }.

As f induces an isomorphism
⊔l′

i=1X
′
i −Y ′

i
∼= ⊔l

i=1Xi −Yi it follows that l = l′ and we may assume
that f induces (X ′

i, Y
′
i ) −→ (Xi, Yi) for i � l, hence the two sums are equal.

Now let X be an arbitrary n-dimensional variety. Choose π : X̃ −→ X proper with X̃ smooth
such that π induces an isomorphism over the smooth locus of X. Let S ⊂ X be the singular locus
of X, and let S̃ ⊂ X̃ be the inverse image of S. As we want Ψ{X̃, S̃} to be equal to Ψ{X,S} we
set Ψ{X} := 〈X̃〉bl − Ψ{S̃} + Ψ{S} (the right-hand side has already been defined as X̃ is smooth
and dimS,dim S̃ < n).

Since any two choices of X̃ −→ X are dominated by a third one (take for example the closure
of X −S which is diagonally embedded in the product and resolve the singularities), Step 1 implies
that 〈X̃〉bl − Ψ{S̃} + Ψ{S} is independent of this choice. It is clear that Ψ is additive with respect
to disjoint unions and that for smooth X we get Ψ{X} = 〈X〉bl.

We have to prove that Ψ factors through excision for pairs of varieties of dimension � n.

Step 2. The map Ψ factors through excision for f : (X ′, Y ′) −→ (X,Y ) with X and X ′ both smooth
of dimension � n.

Proof. Like in the proof of Step 1 we can decompose X and X ′ into connected components. Now
use Ψ{Xi} = 〈Xi〉bl and Ψ{X ′

i} = 〈X ′
i〉bl and apply Step 1 to the Xi and X ′

i with i � l.

Step 3. The map Ψ factors through excision for f : (X ′, Y ′) −→ (X,Y ) with dimX,dimX ′ � n,
X ′ smooth and dimY < n.

Proof. Let S ⊂ Y be the singular locus of X, let X̃ −→ X be a resolution of singularities which is an
isomorphism outside S, and let Ỹ be the inverse image of Y and S̃ the inverse image of S. Then by
definition Ψ{X,S} = Ψ{X̃, S̃} and by induction Ψ{Y, S} = Ψ{Ỹ , S̃}. Hence Ψ{X,Y } = Ψ{X̃, Ỹ }.

Let X̂ be a resolution of singularities of the closure of X − Y in X̃ × X ′ (we embed X − Y
diagonally). We have a commutative diagram

X̂ ��

��

X ′

��
X̃ �� X

of proper birational maps which yield isomorphisms over X − Y . Let Ŷ be the inverse image of Y
in X̂. Then Ψ{X̂, Ŷ } = Ψ{X ′, Y ′} and Ψ{X̂, Ŷ } = Ψ{X̃, Ỹ } as X̂ , X̃ and X ′ are smooth.

Step 4. The map Ψ factors through excision for f : (X1, Y1) −→ (X2, Y2) with dimX1,dimX2 � n
and dimY1,dimY2 < n.

Proof. For i = 1, 2 let Si be the singular locus of Xi, and let Zi = Yi ∪ Si. Then f−1(Z2) = Z1

and f induces an isomorphism of smooth varieties X1 − Z1
∼= X2 − Z2 (as the singular locus of

Xi −Yi is Si −Yi). Let X̃i be a resolution of singularities of Xi that is an isomorphism over Xi −Zi:
so if Z̃i is the preimage of Zi in X̃i then X̃i − Z̃i

∼= Xi − Zi. Let X3 be the closure of X1 − Z1
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(embedded diagonally) in X̃1×X̃2. Let X̃3 a resolution of singularities of X3 (that is an isomorphism
over X1 − Z1). We thus have a commutative diagram

X̃3

π1

����
��
�� π2

���
��

��
�

X̃1

��

X̃2

��
X1

�� X2

where π−1
1 (Z̃1) = π−1

2 (Z̃2) =: Z̃3 and π1, π2 induce isomorphisms outside Z̃3. As X̃i are smooth for
1 � i � 3 and dimZ1,dimZ2 < n we have

Ψ{X1, Z1} = Ψ{X̃1, Z̃1} = Ψ{X̃3, Z̃3} = Ψ{X̃2, Z̃2} = Ψ{X2, Z2}.
The induction hypothesis gives

Ψ{Z1, Y1} = Ψ{Z2, Y2}.
Adding these two equations up yields Ψ{X1, Y1} = Ψ{X2, Y2}.
Step 5. The map Ψ factors through excision for f : (X ′, Y ′) −→ (X,Y ) with dimX,dimX ′ � n.

Proof. Let X1, . . . ,Xl be the irreducible components of X, and let Yi := Xi∩Y . Let B :=
⋃

Yi 	=Xi
Xi,

and let N := Y ∩B. Let A =
⋃

Yi=Xi
Xi. Hence X = A ∪B and Y = A ∪N .

Consider the proper map A 	 B −→ X which induces an isomorphism A 	 B − (A ∩ B 	 A ∩
B) ∼= X − (A ∩ B). As dimA ∩ B < n we get Ψ{A 	 B,A ∩ B 	 A ∩ B} = Ψ{X,A ∩ B}, hence
Ψ{A 	B} = Ψ{X} + Ψ{A ∩B}.

Analogously we get Ψ{A 	N} = Ψ{Y } + Ψ{A ∩N}.
Subtracting yields Ψ{A 	B,A 	N} = Ψ{X,Y } (because A ∩N = A ∩B ∩ Y = A ∩B).
On the other hand Ψ{A 	B,A 	N} = Ψ{B,N}, hence Ψ{B,N} = Ψ{X,Y }.
The same reasoning yields Ψ{B′, N ′} = Ψ{X ′, Y ′} (with analogous notations).
Restricting f yields a proper map (B′, N ′) −→ (B,N) which induces an isomorphism B′−N ′ ∼=

B −N , and as dimN,dimN ′ < n this finishes the proof.

This finishes the induction step.

As the Gysin relation holds in K̃
bl

0 (Vark), we get an induced homomorphism Ψ : K̃0(Vark) −→
K̃

bl

0 (Vark) which can inductively be seen to be an inverse of K̃
bl

0 (Vark) −→ K̃0(Vark). This establishes
Proposition 4.4.

We now prove Theorem 4.2 by defining an inverse χ : K̃0(Vark) −→ K0(Vark) on classes of
smooth varieties and checking compatibility with excision for blow-ups and the Gysin relation. Let
X be a smooth connected variety. Choose a smooth completion X ⊃ X of X with D = X −X a
divisor with simple normal crossings.

Step 1. The element
∑

(−L)l[D(l)] of K0(Vark) is independent of the choice of the completion of X
(we denote it by χ(X)).

Proof. In view of the weak factorization theorem we only have to compare the result for a completion
X ⊂ X and the completion X ⊂ BlZ X =: X ′, with Z a smooth and irreducible closed subvariety
of X disjoint from X which has normal crossings with D = X −X.

Let D0 be an irreducible component of D containing Z and let {Di}i∈I be the remaining
irreducible components. Then the irreducible components of D′ = X

′ − X are D′
i = BlZ∩Di Di
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(where i ∈ {0} ∪ I) and the exceptional divisor E of the blow-up. For K ⊂ {0} ∪ I we put
DK :=

⋂
j∈K Dj (where D∅ is understood to be X), D′

K :=
⋂

j∈K D′
j , ZK := Z ∩ DK and

EK := E ∩ D′
K . Denote the codimension of ZK in DK by dK . As Z has normal crossings with

D we get D′
K = BlZK

DK with exceptional divisor EK , hence by Lemma 3.5 we have

[D′
K ] − L[EK ] = [DK ] − L

dK [ZK ].

Denote by E(l) the inverse image of E in D′(l). For l = 0, . . . , n the preceding equality yields

L
l[D′(l)] = L

l
∑
|K|=l

[D′
K ] + L

l
∑

|K|=l−1

[EK ]

= L
l

∑
|K|=l

([DK ] + L[EK ] − L
dK [ZK ]) + L

l
∑

|K|=l−1

[EK ]

= L
l[D(l)] + L

l+1[E(l)] −
∑
|K|=l

L
l+dK [ZK ] + L

l[E(l−1)]

(for l = 0 the last term is zero).
For K ⊂ I we get ZK∪{0} = ZK and hence dK∪{0} = dK − 1, which yields

L
|K∪{0}|+dK∪{0} [ZK∪{0}] = L

|K|+dK [ZK ]

and ∑
K⊂I∪{0}

(−1)|K|
L
|K|+dK [ZK ] = 0.

Taking the alternating sum then yields∑
(−L)l[D′(l)] =

∑
(−L)l[D(l)]

as claimed.

Step 2. For a smooth X with connected components Xi we set χ(X) :=
∑
χ(Xi).

Step 3. Let X be a smooth variety, and let Z ⊂ X be a smooth closed subvariety. Let E be the
exceptional divisor of BlZ X −→ X. Then χ(BlZ X,E) = χ(X,Z).

Proof. By decomposing X and Z into connected components we see that it suffices to prove the
claim for connected X and Z. Denote the dimension of X by n. Choose a smooth completion X
of X such that D = X − X is a divisor with simple normal crossings and Z is smooth and has
normal crossings with D. So in particular D ∩ Z ⊂ Z is a simple normal crossings divisor. Then
BlZ X is a smooth completion of BlZ X with D′ := BlZ X − BlZ X a normal crossings divisor. The
exceptional divisor E of this blow-up is a smooth completion of E with E − E = E ∩D′ a simple
normal crossings divisor. Denote by E(l) the preimage of E in D′(l) and by Z(l) the preimage of Z
in D(l). Now

χ(BlZ X) = [D′(0)] − L[D′(1)] + · · · + (−L)n[D′(n)],

χ(E) = [E(0)] − L[E(1)] + · · · + (−L)n[E(n)],

χ(X) = [D(0)] − L[D(1)] + · · · + (−L)n[D(n)],

χ(Z) = [Z(0)] − L[Z(1)] + · · · + (−L)n[Z(n)].

As D′(l) − E(l) ∼= D(l) − Z(l) we get [D′(l)] − [E(l)] = [D(l)] − [Z(l)] in K0(Vark) and consequently

χ(BlZ X,E) = χ(BlZ X) − χ(E) = χ(X) − χ(Z) = χ(X,Z).
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Step 4. For X smooth and connected and D ⊂ X a smooth divisor, we have χ(X −D) = χ(X) −
Lχ(D).

Proof. Let X ⊃ X be a smooth completion of X such that D1 := (X −X) ∪D is a simple normal
crossings divisor, where D denotes the closure of D in X . Let D2 := X − X. Denote by ∆(l) the
inverse image of D in D

(l)
2 . Then χ(D) =

∑
(−L)l[∆(l)] and on the other hand

χ(X −D) =
∑

(−L)l[D(l)
1 ] =

∑
(−L)l[D(l)

2 ] − L

∑
(−L)l[∆(l)].

Step 5. For X smooth and connected, we have χ(P1 ×X, {∞} ×X) = Lχ(X).

Proof. Let X be a smooth completion of X with D = X − X a simple normal crossings divisor.
Then P

1 ×X is a smooth completion of P
1 ×X such that the complement of P

1 ×X is P
1 ×D, a

simple normal crossings divisor. This yields

χ(P1 ×X, {∞} ×X) = χ(P1 ×X) − χ(X)

=
∑

(−L)l([(P1 ×D)(l)] − [D(l)])

= Lχ(X).

Hence χ factors through K̃0(Vark). We will now denote the induced mapping by χ.

Step 6. Let X be a smooth connected variety. Then χcχ〈X〉 = 〈X〉 in K̃0(Vark).

Proof. Let X ⊃ X be a smooth completion with D := X − X a simple normal crossings divisor.
Let D1, . . . ,Dn be the irreducible components of D. We proceed by induction on n.

If X is complete then obviously χcχ〈X〉 = 〈X〉. This establishes the claim for n = 0.
Let X = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X be given by Xi := Xi+1 − (Di+1 ∩Xi+1). Then

χcχ〈X〉 = χcχ〈X1 − (D1 ∩X1)〉
= χcχ〈X1〉 − χcχ〈P1 × (D1 ∩X1), {∞} × (D1 ∩X1)〉

by the Gysin relation. Now X1 ⊂ X is a smooth completion with X −X1 a simple normal crossings
divisor with less then n irreducible components. The same holds for D1 ∩ X1 ⊂ D1 and for P

1 ×
(D1 ∩X1) ⊂ P

1 ×D1. Hence by induction we get

χcχ〈X1〉 − χcχ〈P1 × (D1 ∩X1), {∞} × (D1 ∩X1)〉
= χcχ〈X1〉 − χcχ〈P1 × (D1 ∩X1)〉 + χcχ〈{∞} × (D1 ∩X1)〉
= 〈X1〉 − 〈P1 × (D1 ∩X1)〉 + 〈{∞} × (D1 ∩X1)〉
= 〈X〉

again by the Gysin relation.

Step 7. The mappings χc and χ are mutually inverse.

Proof. Obviously χχc[X] = [X] for X smooth and complete, and we already know that χcχ〈X〉 =
〈X〉 for X smooth.

Step 8. For X a smooth and connected variety the image of χ〈X〉 in Mk is equal to Dk(L− dimX [X])
= L

dimXDk([X]).

Proof. Let (X,D) be a smooth simple normal crossings completion. Then

Dk([X]) =
∑

(−1)lDk([D(l)]) =
∑

(−1)l
L

l−dimX [D(l)].

This finishes the proof of Theorem 4.2.
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5. Relative Grothendieck groups of varieties

Let S be a (not necessarily irreducible) variety over k. Let K0(VarS) be the free abelian group on
isomorphism classes [X]S of varieties X over S where we impose the relations [X]S = [X − Y ]S +
[Y ]S for Y ⊂ X a closed subvariety (hence again [∅]S = 0). We call it the Grothendieck group of
S-varieties.

This group, too, has simple presentations.

Theorem 5.1. The Grothendieck group of S-varieties has the following alternative presentations:

sm) as the abelian group generated by the isomorphism classes of S-varieties which are smooth
over k subject to the relations [X]S = [X − Y ]S + [Y ]S , where X is smooth and Y ⊂ X is a
smooth closed subvariety;

bl) as the abelian group generated by the isomorphism classes of S-varieties which are smooth
over k and proper over S subject to the relations [∅]S = 0 and [BlY X]S − [E]S = [X]S − [Y ]S ,
where X is smooth over k and proper over S, Y ⊂ X is a closed smooth subvariety, BlY X is
the blow-up of X along Y and E is the exceptional divisor of this blow-up.

Moreover, we get the same group if in case (sm) we restrict to varieties which are quasi-projective
over S or if in case (bl) we restrict to varieties which are projective over S. We can also restrict to
connected varieties in both presentations.

We proceed in the same way as in the absolute case. For the moment denote by Ksm
0 (VarS)

the free abelian group on isomorphism classes [X]S,sm of varieties over S which are smooth over k,
modulo [X]S,sm = [X − Y ]S,sm + [Y ]S,sm for X ⊂ Y a smooth closed subvariety of X.

Step 1. The group homomorphism Ksm
0 (VarS) −→ K0(VarS) is an isomorphism.

Proof. We use the same stratification argument as in the absolute case.

Again we can restrict to smooth connected varieties in the presentation (sm) by decomposing
into connected components.

We can also stratify by smooth varieties which are quasi-projective over S.
Now we establish the presentation (bl). Denote by Kbl

0 (VarS) the free abelian group on isomor-
phism classes of varieties [X]S,bl, where X is a variety which is proper over S and smooth over k,
modulo [X]S,bl − [Y ]S,bl = [BlY X]S,bl − [E]S,bl for Y a closed smooth subvariety of X and E the
exceptional divisor of the blow-up of X along Y and [∅]S,bl = 0 (blowing up along Y yields then
[X 	 Y ]S,bl = [X]S,bl + [Y ]S,bl).

Decomposing into connected components and noting that the blow-up along a disjoint union is
the successive blow-up along the connected components one sees that this can also be described as
the free abelian group on isomorphism classes [X]S,bl of smooth complete irreducible varieties with
imposed relations [∅]S,bl = 0 and [BlY X]S,bl − [E]S,bl = [X]S,bl − [Y ]S,bl, where Y ⊂ X is a closed
irreducible smooth subvariety.

Step 2. The group homomorphism Kbl
0 (VarS) −→ K0(VarS) which maps [X]S,bl to [X]S is an

isomorphism.

Proof. For an arbitrary variety X over S there exist a proper X → S and an open dense immersion
X ↪→ X over S. If X is smooth over k and connected we can even find X smooth with X − X
a simple normal crossings divisor (by resolution of singularities and principalization). As the weak
factorization theorem also works over a base variety (note that a birational map between two
irreducible varieties which are proper over S is automatically proper) we can construct an inverse
in the same way as in the absolute case.
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Using the fact that we can restrict to generators which are quasi-projective over S in the pre-
sentation (sm) and that a connected smooth variety which is quasi-projective over S has a smooth
simple normal crossings completion which is projective over S we see that we can restrict to gener-
ators projective over S in the description (bl).

6. The six operations

The product of varieties makes K0(VarS) a K0(Vark)-module. Let Mk denote K0(Vark)[L−1], and
let MS denote the localization K0(VarS)[L−1]. Denote the class [S]S by �S.

Remark 6.1. If f : S −→ S′ is a morphism of k-varieties, composition with f yields a K0(Vark)-
linear mapping f! : K0(VarS) −→ K0(VarS′), hence we get an Mk-linear mapping f! : MS −→ MS′ .
Pulling back along f yields a K0(Vark)-linear mapping f∗ : K0(VarS′) −→ K0(VarS) and hence an
Mk-linear mapping MS′ −→ MS .

Taking products yields a K0(Vark)-bilinear associative exterior product

� : K0(VarS) × K0(VarT ) −→ K0(VarS×T )

and hence an Mk-bilinear associative map

� : MS ×MT −→ MS×T .

For morphisms f : S −→ S′ and g : T −→ T ′ of varieties we get the identities (f × g)!(A�B) =
f!(A) � g!(B) and (f × g)∗(C �D) = f∗(C) � g∗(D). If p : S × S′ −→ S is the projection to the
first factor we get p∗(A) = A� �S′ for A ∈ MS .

Remark 6.2. Taking fiber products yields an internal K0(Vark)-bilinear symmetric associative prod-
uct ⊗ : K0(VarS) × K0(VarS) −→ K0(VarS) and hence an Mk-bilinear symmetric associative map
⊗ : MS ×MS −→ MS which provides MS with the structure of a commutative Mk-algebra.

This satisfies f∗(C ⊗D) = f∗(C) ⊗ f∗(D) and �S ⊗A = A⊗ �S = A.
For A ∈ MS′ and B ∈ MS we have f!(f∗A ⊗ B) = A⊗ f!B. In other words, if we regard MS

as an MS′-module via f∗, then f! is an MS′-module homomorphism.
For A,B ∈ MS and C,D ∈ MT we get

(A� C) ⊗ (B �D) = (A⊗B) � (C ⊗D),

hence the exterior product provides MS×T with the structure of an MS ⊗MT -algebra.

Definition 6.3. The duality involution relative to S is the map defined as follows: There is a mor-
phism DS : K0(VarS) −→ MS which sends a generator [X]S with X connected and smooth over k,
proper over S, to L

−dim X [X]S . A relative version of Lemma 3.5 shows that this is indeed compatible
with blow-up relations. For A ∈ K0(Vark) and B ∈ K0(VarS) we get DS(AB) = Dk(A)DS(B) (this
is easily checked on smooth proper generators), so DS can be extended to a Dk-linear morphism
DS : MS −→ MS .

Indeed DS is an involution. We have already noted in § 4 that Dk(L) = L
−1 and that Dk is a lift

of the duality morphism on the Grothendieck ring of Chow motives. For A ∈ MS and B ∈ MT we
get

DS×T (A�B) = DS(A) � DT (B).

Definition 6.4. For f : S −→ S′ define f ! := DSf
∗DS′ and f∗ = DS′f!DS.

These are both Mk-linear mappings.
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Remark 6.5. If f is a proper mapping then f∗ coincides with f!. If f is an open embedding then
f ! coincides with f∗. More generally, if f is smooth of relative dimension m, then for A ∈ MS′ we
have f∗A = L

mf !A.

Proposition 6.6. Given a cartesian diagram as follows

T

π

��

g �� T ′

π′
��

S
f �� S′

we have g!π
∗ = π′∗f! and g∗π! = π′!f∗. If f is proper or π′ is smooth, then g∗π∗ = π′∗f∗.

Proof. The only thing to prove is g∗π∗ = π′∗f∗ for π′ smooth. So suppose π′ is smooth of relative
dimension m, hence the same holds for π.

Let A ∈ MS. Then due to Remark 6.5

π′∗f∗A = L
mπ′!f∗A = L

mg∗π!A = g∗(Lmπ!A) = g∗π∗A.

Definition 6.7. Define the dualizing element of MS by DS := DS(�S). For A,B ∈ MS define

Hom(A,B) := DS(A⊗DSB).

This yields a mapping MS × MS −→ MS which is Dk-linear in the first and Mk-linear in the
second component. For A ∈ MS we get Hom(A,DS) = DS(A).

List of properties 6.8. Let f : S −→ S′ be a morphism of k-varieties. Then the following
identities hold:

Hom(A, f∗B) = f∗ Hom(f∗A,B) for A ∈ MS′ and B ∈ MS ,

Hom(f∗A, f !B) = f ! Hom(A,B) for A,B ∈ MS′ ,

f∗ Hom(A, f !B) = Hom(f!A,B) for A ∈ MS and B ∈ MS′ .

For A,B,C ∈ MS we get

Hom(A,Hom(B,C)) = Hom(A⊗B,C).

For p : S × S′ −→ S the projection to the first factor and for A,B ∈ MS we have

Hom(p∗A, p∗B) = p∗ Hom(A,B).

Proof. We have

f∗ Hom(f∗A,B) = f∗DS(f∗A⊗DSB) = DS′f!(f∗A⊗DSB) = DS′(A⊗ f!DSB)
= DS′(A⊗DS′f∗B) = Hom(A, f∗B),

Hom(f∗A, f !B) = DS(f∗A⊗DSf
!B) = DS(f∗A⊗ f∗DS′B) = DSf

∗(A⊗DS′B)

= f !DS′(A⊗DS′B) = f ! Hom(A,B),

f∗ Hom(A, f !B) = f∗DS(A⊗DSf
!B) = f∗DS(A⊗ f∗DS′B)

= DS′f!(A⊗ f∗DS′B) = DS′(f!A⊗DS′B) = Hom(f!A,B).

Furthermore,

Hom(A,Hom(B,C)) = Hom(A,DS(B ⊗DSC))
= DS(A⊗ (B ⊗DSC)) = Hom(A⊗B,C).
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Finally, using DS×S′(C �D) = DS(C) � DS′(D) for C ∈ MS and D ∈ MS′ we get

Hom(p∗A, p∗B) = DS×S′((A� �S′) ⊗DS×S′(B � �S′))
= DS×S′((A� �S′) ⊗ (DSB � DS′))
= DS×S′((A⊗DSB) � DS′) = DS(A⊗DSB) � DS′(DS′)
= Hom(A,B) � �S′ = p∗ Hom(A,B).

7. Equivariant Grothendieck groups of varieties

Let G be a finite group. There are also G-equivariant versions of Grothendieck groups of varieties:
Let K′G

0 (Vark) be the free abelian group on G-isomorphism classes [G � X] (or shorthand [X])
of varieties X with a good G-action over k, divided out by the relations [X] = [X − Y ] + [Y ] for
Y ⊂ X a closed G-invariant subvariety. The product of varieties (with diagonal G-action) induces a
commutative ring structure on K′G

0 (Vark). Now note that a linear automorphism of a vector bundle
V −→ X induces the identity on the (singular) cohomology of P(V ) as it induces the identity on
the cohomology of the fibers. If G acts on X and V is trivial and carries a linear G-action over the
action on X, this action factors as a G-action over the base and the G-action on the base only. As
the Grothendieck groups cannot distinguish between trivial and non-trivial bundles, this serves as
a motivation to define KG

0 (Vark) as K′G
0 (Vark) modulo the subgroup MG

k generated by expressions
of the form [G � P(V )] − [Pn × (G � X)], where X is a variety with good G-action, V is a vector
bundle of rank n + 1 over X with linear G-action over the action on X, G � P(V ) denotes the
projectivization of this action and P

n × (G � X) denotes the action of G on the right factor only.
In fact this subgroup is an ideal in K′G

0 (Vark).
Note that as for a vector bundle V −→ X of rank n we have [G � V ] = [G � P(V ⊕OX)]− [G �

P(V )] we get the equality [G � V ] = [An × (G � X)] in KG
0 (Vark).

Lemma 7.1. The group K′G
0 (Vark) has the following alternative presentations:

sm) as the abelian group generated by the isomorphism classes of smooth varieties with good
G-action subject to the relations [X] = [X − Y ] + [Y ], where X is smooth with good G-action
and Y ⊂ X is a smooth G-invariant closed subvariety;

bl) as the abelian group generated by the isomorphism classes of smooth complete varieties with
good G-action subject to the relations [∅] = 0 and [BlY X] − [E] = [X] − [Y ], where X is a
smooth complete variety with good G-action, Y ⊂ X is a closed smooth G-invariant subvariety,
BlY X is the blow-up of X along Y and E is the exceptional divisor of this blow-up.

Moreover, we get the same group if in case (sm) we restrict to quasi-projective varieties or if in
case (bl) we restrict to projective varieties. In both presentations we can also restrict to varieties
such that G acts transitively on the connected components.

Proof. Stratifying by smoothG-invariant equidimensional varieties establishes the presentation (sm).
We can also stratify by quasi-projective G-invariant varieties. We can decompose further into smooth
varieties such that G acts transitively on the connected components.

Now note that a smooth connected variety X with a goodG-action has a good smooth completion
with as complement a G-invariant simple normal crossings divisor: Take a normal completion X/G
of X/G and take the normalization X̃ of X/G in X. By construction X̃ carries a good G-action
(induced by the G-action on k(X)) extending the G-action on X which it contains as an open and
dense subvariety. Furthermore X̃ is finite over X/G and hence complete. An equivariant resolution
of singularities of X̃ making the complement of X a simple normal crossings divisor then gives
a completion X with the desired properties. Actually as in Remark 2.7 it suffices that G acts
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transitively on the connected components of X. A reasoning slightly different from before then
establishes the presentation (bl) as we will show in Lemma 7.2. Restricting to quasi-projective
varieties in the presentation (sm) shows that we can restrict to projective varieties in (bl) (here we
can take any smooth projective equivariant simple normal crossings completion, as on a projective
variety a G-action is automatically good).

Lemma 7.2. Denote by K′G,bl
0 (Vark) the free abelian group on isomorphism classes [X]bl of smooth

complete varieties X over k with a good G-action, modulo the relations for blow-ups along
smooth closed G-invariant subvarieties. Then the group homomorphism K′G,bl

0 (Vark) −→ K′G
0 (Vark)

which sends [X]bl to [X] is an isomorphism.

Proof. We construct an inverse, but rather than writing it down explicitly we use the fact that
K′G

0 (Vark) ∼= lim−→K′G
0 (Vark)n, where K′G

0 (Vark)n denotes the free abelian group on isomorphism
classes of smooth varieties with a good G-action of dimension at most n modulo the relations for
smooth closed G-invariant subvarieties. (The expression used in the case without group action may
not be the right one – take for example P

2 with the involution interchanging two coordinates x1

and x2 and consider this as the completion of the complement of the two divisors {x1 = 0} and
{x2 = 0}.)

We have a morphism χc,0 : K′G
0 (Vark)0 −→ K′G,bl

0 (Vark) by just sending [X] to [X]bl.
Now let n > 0. Suppose that for m < n we have already defined compatible morphisms χc,m :

K′G
0 (Vark)m −→ K′G,bl

0 (Vark) in such a way that χc,m[X] = [X]bl for X (smooth and) complete.
Suppose X is smooth of dimension at most n, and suppose G acts transitively on the connected

components of X. We choose an equivariant simple normal crossings completion X. For D = X−X
we denote by D◦,(l) the open l-fold intersections of D (we remove all (l + 1)-fold intersections from
each l-fold intersection), such that X =

⋃
l�0D

◦,(l).

Consider the expression [X]bl−
∑n

l=1 χc,n−1[D◦,(l)]. It does not depend on the chosen completion:
owing to the factorization theorem we only need to compare it to the corresponding expression for
X

′ = BlZ X , where Z ⊆ D is a smooth G-invariant closed subvariety of X which has normal
crossings with D. Then D′ = X

′ −X is equal to E ∪ D̃, where E is the exceptional divisor (which
is smooth and not necessarily connected) and D̃ is the proper transform of D. For l > 0 this yields
D′◦,(l) ∩ E = E ∩ D̃◦,(l−1) with complement D̃◦,(l) − E ∩ D̃◦,(l). Hence

χc,n−1[D′◦,(l)] = χc,n−1[E ∩ D̃◦,(l−1)] + χc,n−1[D̃◦,(l) − E ∩ D̃◦,(l)],

and as D̃◦,(l) − E ∩ D̃◦,(l) ∼= D◦,(l) − Z ∩D◦,(l) and thus

χc,n−1[D̃◦,(l) − E ∩ D̃◦,(l)] = χc,n−1[D◦,(l)] − χc,n−1[Z ∩D◦,(l)],

we find

[X ′]bl −
n∑

l=1

χc,n−1[D′◦,(l)]

= [X ′]bl −
n∑

l=1

χc,n−1[D◦,(l)] +
n∑

l=1

χc,n−1[Z ∩D◦,(l)] −
n∑

l=1

χc,n−1[E ∩ D̃◦,(l−1)].

Now
∑n

l=1 χc,n−1[Z ∩ D◦,(l)] = χc,n−1[Z] = [Z]bl and
∑n

l=1 χc,n−1[E ∩ D̃◦,(l−1)] = [E]bl, and as
[X ′]bl − [E]bl + [Z]bl = [X]bl we get

[X ′]bl −
n∑

l=1

χc,n−1[D′◦,(l)] = [X]bl −
n∑

l=1

χc,n−1[D◦,(l)].
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Hence we can define en(X) as [X ]bl −
∑n

l=1 χc,n−1[D◦,(l)]. By construction en(X) = [X]bl if X
is complete and en(X) = χc,n−1[X] if X is of dimension less than n. We still have to check that
for a smooth closed G-invariant subvariety Y of X (such that G acts transitively on the connected
components of Y ) the equality en(X) = en(X − Y ) + en(Y ) holds. As in the case without group
action we choose X ⊃ X smooth and complete such that D = X −X is a simple normal crossings
divisor and such that the closure Y of Y in X is also smooth and has normal crossings with D (and
such that everything is compatible with the group action). Again we take X̃ = BlY X as completion
of X − Y . Then X̃ − (X − Y ) = D̃ ∪ E, where E is the exceptional divisor and D̃ is the proper
transform of D. As D̃◦,(l) − E ∩ D̃◦,(l) ∼= D◦,(l) − Y ∩D◦,(l) we get

en(X − Y ) = [X̃ ]bl −
n∑

l=1

χc,n−1([E ∩ D̃◦,(l−1)]) −
n∑

l=1

χc,n−1[D̃◦,(l) − E ∩ D̃◦,(l)]

= [X̃ ]bl − [E]bl −
n∑

l=1

χc,n−1[D◦,(l)] +
n∑

l=1

χc,n−1[Y ∩D◦,(l)]

= [X ]bl − [Y ]bl −
n∑

l=1

χc,n−1[D◦,(l)] +
n∑

l=1

χc,n−1[Y ∩D◦,(l)]

= en(X) − en(Y ).

Hence en induces a morphism χc,n : K′G
0 (Vark)n −→ K′G,bl

0 (Vark) which is compatible with χn−1.

We can also consider varieties over a base variety S with good G-action over S (by this we mean
that X → S is G-equivariant where we give S the trivial G-action). Denote by K′G

0 (VarS) the free
group on isomorphism classes [X]S of such varieties modulo relations for closed subvarieties. It has
the structure of a K′G

0 (Vark)-module provided by the product of varieties with diagonal G-action. We
define KG

0 (VarS) to be K′G
0 (VarS) modulo the submodule MG

S generated as a group by expressions
of the form [G � P(V )]S − [Pn × (G � X)]S (so in particular KG

0 (VarS) is a KG
0 (Vark)-module).

Again for a vector bundle V −→ X of rank n we have [G � V ]S = [An × (G � X)]S in KG
0 (VarS).

By the same reasoning as above we get the following lemma.

Lemma 7.3. The group K′G
0 (VarS) has the following alternative presentations:

sm) as the abelian group generated by the isomorphism classes of S-varieties with good G-action
over S which are smooth over k subject to the relations [X]S = [X − Y ]S + [Y ]S , where X is
smooth and Y ⊂ X is a smooth closed G-invariant subvariety;

bl) as the abelian group generated by the isomorphism classes of S-varieties with good G-action
over S which are smooth over k and proper over S subject to the relations [∅]S = 0 and
[BlY X]S − [E]S = [X]S − [Y ]S , where X is smooth over k and proper over S and carries a
good G-action over S, Y ⊂ X is a closed smooth G-invariant subvariety, BlY X is the blow-up
of X along Y and E is the exceptional divisor of this blow-up.

Moreover, we get the same group if in case (sm) we restrict to varieties which are quasi-projective
over S or if in case (bl) we restrict to varieties which are projective over S. We can also restrict to
varieties such that G acts transitively on the connected components in both presentations.

The K′G
0 (Vark)-submodule MG

S has convenient generators (as an abelian group). First an auxil-
iary lemma is needed.

Lemma 7.4. Let X be a smooth irreducible variety with a good G-action. Let V → X be a vector
bundle with linear G-action over the action on X. Let X ⊂ X be open and dense such that the
G-action extends to a good action on X . Then there is a non-empty open subvariety U of X and
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an equivariant π : X ′ −→ X, projective over X , such that X ′ is smooth, π induces an isomorphism
over U and X ′ carries a vector bundle with G-action extending V |U .

Before we prove the lemma we make some remarks on Grassmann bundles. Suppose V −→ X
is a vector bundle of rank n � r. Then there is the Grassmann variety p : Grassr(V ) −→ X which
parametrizes quotients of rank r or equivalently sub-bundles of rank n − r: there is a short exact
sequence

0 −→ S −→ p∗V −→ Q −→ 0,

where S is the universal sub-bundle and Q is the universal quotient bundle, such that for a morphism
f : Y −→ X there is a one-to-one correspondence between liftings φ of f to Grassr(V ) and sub-
bundles Sφ of f∗V which is given by φ �→ φ∗S. Now suppose we are given an action of a finite
group G on X and an action of G on V which is linear over the action on X. This induces an action
of G on Grassr(V ) where naively speaking g ∈ G sends an r-codimensional subspace Sx of Ex to
gSx ⊆ Egx. With respect to this action p is equivariant, and p∗E carries an induced (diagonal)
G-action which is linear over the action on Grassr(V ). This action preserves S and hence induces
an action on Q.

Now for a G-equivariant morphism f : Y −→ X there is a one-to-one correspondence between
G-equivariant liftings φ of f to Grassr(V ) and r-codimensional G-sub-bundles Sφ of f∗V , given by
φ �→ φ∗S. Then also f∗V/Sφ

∼= φ∗Q with the induced G-action.

Proof of Lemma 7.4. Let K = k(X) the function field of X. Then over the generic point of X the
vector bundle V is given by a K-vector space W with an additive G-action such that g(λw) =
g(λ)g(w) for λ ∈ K and w ∈W . We choose a K-basis w1, . . . , wr of W .

As the action of G on X is good, X can be covered by affine open subschemes Spec(B), where
B ⊂ K is preserved by G. Consider the free B-module on pairs (g, i) with g ∈ G and 1 � i � r.
This module carries a linear G-action over the action on B by setting h(λ(g, i)) = h(λ)(hg, i). The
action glues to a G-action on the trivial bundle A

|G|r
X

, linear over the action on X.
Consider the G-equivariant K-linear surjection from the K-vector space on pairs (g, i) to W

which sends (g, i) to g(wi). Over an open G-invariant subvariety U ⊂ X this extends to a
G-equivariant surjection of the trivial bundle to V .

Consider the rth Grassmannian Grassr(A|G|r
X

) of A
|G|r
X

which classifies r-dimensional quotients.
It carries a G-action, and the universal quotient bundle carries a linear G-action over this action.
Over U we get a G-equivariant section provided by V such that pulling back the universal quotient
bundle to U yields V |U with the original G-action.

We can now take the closure X̃ of this section in Grassr(A
|G|r
X

) and the restriction of the universal

quotient bundle to X̃. Taking a G-equivariant resolution X ′ of singularities for X̃ and pulling back
this bundle we are done.

Lemma 7.5. The subgroup MG
S of K′G

0 (VarS) is generated by expressions of the form [G � P(V )]S −
[Pn × (G � X)]S , where X is a smooth variety, projective over S, with good G-action, transitive on
the connected components, V is a vector bundle of rank n + 1 over X with a linear G-action over
X, and G � P(V ) denotes the action induced by the action on V .

Proof. Let X be an arbitrary variety over S with good G-action. Suppose V is a vector bundle of
rank n+ 1 with a linear G-action over the action on X. We proceed by induction on the dimension
of X.

If X is zero dimensional, by decomposing it into G-orbits we can write the difference [G �
P(V )]S − [Pn × (G � X)]S as a linear combination of the generators described above.
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For the induction step we choose a smooth G-invariant open subvariety W , quasi-projective over
S, such that the complement has smaller dimension. The induction hypothesis shows that it suffices
to write [G � P(V |W )]S − [Pn × (G � W )]S as a linear combination of the described generators.
Decomposing further we can assume that G acts transitively on the connected components of W .

Identifying V |W with G ×H (V |W0), where W0 is a connected component of W and H is its
stabilizer, we may assume that W is connected.

We now choose a smooth W ⊃ W , projective over S, such that the G-action extends to W
and W is dense in W . The preceding lemma and the induction hypothesis show that there is an
open non-empty U ⊂ W such that [G � P(V |U )]S − [Pn × (G � U)]S can be written as a linear
combination of the desired generators. Hence applying the induction hypothesis to W − U we are
done.

Summarizing we get the following theorem.

Theorem 7.6. The ring KG
0 (Vark) is the free abelian group on smooth projective (respectively,

complete) varieties with good G-action (transitive on the connected components), with the product
described above, modulo blow-up relations and the subgroup generated by expressions of the form
[G � P(V )] − [Pn × (G � X)], where X is a smooth projective variety with a G-action transitive
on the connected components, and V −→ X is a vector bundle of rank n + 1 over X with a linear
action over the action on X.

More generally the next theorem is obtained.

Theorem 7.7. The group KG
0 (VarS) is the free abelian group on smooth varieties, projective (respec-

tively, proper) over S with (good) G-action over S (transitive on the connected components), modulo
blow-up relations and the subgroup generated by expressions of the form [G � P(V )]S − [Pn × (G �
X)]S , where X is a smooth variety, projective over S, with a G-action transitive on the connected
components, and V −→ X is a vector bundle of rank n + 1 over X with a linear action over the
action on X.

8. Operations in the equivariant setting

Let ϕ : G −→ H be a morphism of finite groups. This induces a restriction homomorphism

ResH
G : KH

0 (VarS) −→ KG
0 (VarS)

which in the case S = Spec k is a ring homomorphism.
On the other hand the product of varieties with diagonal G-action yields a KG

0 (Vark)-module
structure on KG

0 (VarS). Hence KG
0 (VarS) carries the structure of a K0(Vark)-module.

Let MG
k denote KG

0 (Vark)[L−1], and let MG
S denote the localization KG

0 (VarS)[L−1].
As the morphism ResH

G is K0(Vark)-linear it induces an Mk-linear morphism ResH
G : MH

S −→
MG

S .
For a group homomorphism ϕ : G −→ H there is also an induction morphism

IndH
G : KG

0 (VarS) −→ KH
0 (VarS)

which sends the class of a G-variety X to the class of H ×G X. (This factors through KG
0 (VarS) as,

for a vector bundle V −→ X with a linear G-action over an action on X, we have H ×G
P(V ) =

P(H ×G V ), where H ×G V is a vector bundle over H ×G X with a linear H-action over the action
on the base.)

The induction morphism IndH
G is K0(Vark)-linear and hence induces an Mk-linear morphism

IndH
G : MG

S −→ MH
S .
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Restriction and induction are related by the fact that IndH
G ResH

G is multiplication with [H/G] ∈
MH

k .
We define f! and f∗ as before.
Taking products yields an Mk-bilinear associative map

� : MG
S ×MH

T −→ MG×H
S×T .

In the case G = H the diagonal mapping G −→ G×G induces an MG
k -bilinear associative map

� : MG
S ×MG

T −→ MG
S×T .

Taking fiber products yields an Mk-bilinear associative map

⊗ : MG
S ×MH

S −→ MG×H
S

(which can also be obtained from the external product by pulling back along the diagonal map
S −→ S × S). In the case G = H the diagonal mapping induces an MG

k -bilinear associative map

⊗ : MG
S ×MG

S −→ MG
S .

Using the presentation in Theorem 7.7 we see that we get a group homomorphism KG
0 (VarS) −→

MG
S mapping the class of a smooth X which is proper over S with G acting transitively on the

connected components to L
−dimX [X]S , which extends to a DG

k -linear morphism

DG
S : MG

S −→ MG
S .

For A ∈ MG
S and B ∈ MH

T we get

DG×H
S×T (A�B) = DG

S (A) � DH
T (B).

We define f !, f∗ and Hom as before and get equivariant versions of the identities in Section 6.
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