An elementary existence theorem for entire functions

Kurt Mahler

It is proved that, for any m given distinct real numbers a_{1}, \ldots, a_{m}, there exist transcendental entire functions $f(z)$ at most of order m for which all the values

$$
f^{(n)}\left(\alpha_{k}\right) \quad\left\{\begin{array}{l}
n=0,1,2, \ldots, \\
k=1,2, \ldots, m
\end{array}\right)
$$

are rational integers.
1.

Let a_{1}, \ldots, a_{m}, where $m \geq 2$ (the case $m=1$ is trivial), be finitely many given distinct real numbers, and let

$$
a_{h j} \quad\left[\begin{array}{l}
h=0,1,2, \ldots . \\
j=1,2, \ldots, m
\end{array}\right)
$$

be infinitely many real numbers still to be selected. Put

$$
g(z)=\left(z-a_{1}\right) \ldots\left(z-a_{m}\right), \quad A_{k}=\left|g^{\prime}\left(a_{k}\right)\right|=\prod_{\substack{j=1 \\ j \neq k}}^{m}\left|a_{k}-a_{j}\right|
$$

so that all A_{k} are positive numbers. Let further

$$
g_{h j}(z)=\frac{a_{h i j}}{z-a_{j}} \cdot \frac{g(z)^{h+1}}{h!(h+1)!^{m-1}} \quad\binom{h=0,1,2, \ldots .}{j=1,2, \ldots, m}
$$

and

Received 2 August 1971.

$$
f(z)=\sum_{h=0}^{\infty} \sum_{j=1}^{m} g_{h j}(z)
$$

Then, for all non-negative integers n,

$$
g_{h j}^{(n)}\left(a_{k}\right)=0 \text { if } j=k \text { and } h>n, \text { or if } j \neq k \text { and } h \geq n
$$

but

$$
g_{n k}^{(n)}\left(a_{k}\right)=a_{n k} \prod_{\substack{j=1 \\ j \neq k}}^{m}\left\{\frac{\left(a_{k}-a_{j}\right)^{n+1}}{(n+1)!}\right\}=\mp \frac{a_{n k} \cdot A_{k}^{n+1}}{(n+1)!^{m-1}}
$$

It follows therefore that
(1) $f^{(n)}\left(a_{k}\right)=\mp \frac{a_{n k} A_{k}^{n+1}}{(n+1)!^{m-1}}+\sum_{n=0}^{n-1} \sum_{j=1}^{m} g_{h j}^{(n)}\left(a_{k}\right) \quad\binom{n=0,1,2, \ldots}{k=1,2, \ldots, m}$.
2.

Here, in the double sum on the right-hand side, there occur only coefficients $a_{h j}$ with $0 \leq h \leq n-1$. This basic equation (1) enables us therefore to select the coefficients $a_{h j}$ suitably by induction on h, as follows.

Firstly, take

$$
a_{0 k}=\mp A_{k}^{-1} \quad(k=1,2, \ldots, m)
$$

so that

$$
f\left(a_{k}\right)=\mp 1 \quad(k=1,2, \ldots, m)
$$

Secondly, let $n \geq 1$, and assume that all coefficients $a_{h j}$ with $0 \leq h \leq n-1$ have already been fixed. There exist then, for each suffix $k=1,2, \ldots, m$, just two real values of $a_{h j}$ such that simultaneously

$$
-(n+1)!^{m-1} \leq a_{n k} A_{\dot{k}}^{n+1} \leq+(n+1)!^{m-1}, \quad a_{n k} \neq 0
$$

and

$$
f^{(n)}\left(a_{k}\right) \text { is a rational integer. }
$$

With the coefficients $a_{h j}$ so chosen, we find for $f(z)$ the upper estimate

$$
|f(z)| \leq \sum_{h=0}^{\infty} \sum_{j=1}^{m} \frac{|q(z)|}{A_{j}\left|z-a_{j}\right|} \frac{|g(z)|^{h}}{A_{j}^{h} \cdot h!}
$$

which is equivalent to

$$
|f(z)| \leq \sum_{j=1}^{m} \frac{|g(z)|}{A_{j}\left|z-a_{j}\right|} \cdot \exp \left(\frac{|g(z)|}{A_{j}}\right) .
$$

This estimate shows that the series for $f(z)$ converges absolutely and uniformly in every bounded set of the complex plane and defines an entire function of z at most of order m.

In fact, since there are always two choices for each of the coefficients $a_{h j}$, we obtain a non-countable set of such functions $f(z)$. Hence, amongst these functions, there are also non-countably many which are not polynomials and hence are transcendental entire functions. The following result has thus been established.

THEOREM. Let a_{1}, \ldots, a_{m} be finitely many distinct real numbers where $m \geq 2$. There exist non-countably many entire transcendental functions $f(z)$ at most of order m such that all the values

$$
f^{(n)}\left(a_{k}\right) \quad\binom{n=0,1,2, \ldots}{k=1,2, \ldots, m}
$$

are rational integers.

3.

Two interesting questions arise now which I have not been able to solve. The first one concerns the extension of the theorem to the case of infinite sequences.

PROBLEM A. Let $S=\left\{a_{k}\right\}$ be an infinite sequence of distinct real numbers without finite limit points. Which conditions has S to satisfy if there is to exist at least one entire function $f(z)$ not a constant
such that all the values

$$
f^{(n)}\left(a_{k}\right) \quad\binom{n=0,1,2, \ldots .}{k=1,2,3, \ldots}
$$

are rational integers?
In the special case when S consists of the integral multiples of a fixed positive number, I have proved that there do exist entire functions with this property; see [1].

To formulate a second problem, let again $a_{1}, \ldots, a_{m}, m \geq 2$, be a finite set of distinct real numbers, and let $f(z)$ be one of the functions the existence of which has been established in the theorem. Since we may replace z by $z-a_{m}$, there is no loss of generality in assuming that $a_{m}=0$. With this choice, the set $\left\{a_{1}, \ldots, a_{m-1}\right\}$ has then non-countably many possibilities. On the other hand, it is easily seen that there are only countably many entire functions of the form

$$
f(z)=\sum_{h=0}^{\infty} f_{h} \frac{z^{h}}{h!}
$$

with rational integral coefficients f_{h} which satisfy algebraic differential equations. Taking $m=2$, we arrive therefore at the following question.

PROBLEM B. For which real values of the number $a_{1} \neq 0$ does there exist an entire transcendental function $f(z)$ which
(i) satisfies an algebraic differential equation, and
(ii) has the property that all the values

$$
f^{(n)}(0) \text { and } f^{(n)}\left(a_{1}\right) \quad(n=0,1,2, \ldots)
$$

are rational integers?
Such functions always exist when α_{1} is a rational multiple of π; but I do not know whether this is the only case.
An existence theorem 419

Reference

[1] Kurt Mahler, "An arithmetic remark on entire periodic functions", Bull. Austral. Math. Soc. 5 (1971), 191-195.

Department of Mathematics,
Ohio State University,
Columbus,
Ohio,
USA.

