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Abstract. Given a finite group G, we denote by �(G) the graph whose vertices
are the proper subgroups of G and in which two vertices H and K are joined by an edge
if and only if G = 〈H,K〉. We prove that if there exists a finite nilpotent group X with
�(G)∼=�(X ), then G is supersoluble.

2010 Mathematics Subject Classification. 20D60, 20D30

1. Introduction. Let G be a finite group. We define a graph �(G) as follows. The
vertices of �(G) are the proper subgroups of G. Two vertices H and K are joined by an
edge if G is generated by H and K, that is, G = 〈H,K〉. This graph was introduced in
[1] and is called the join graph of G. We have slightly modified the original definition,
including in the vertex set the subgroups of G contained in the Frattini subgroup Frat(G)
of G. They correspond to isolated vertices of �(G). In particular, �(G) contains no edge
if G is cyclic of prime-power order.

A typical question that arises whenever a graph is associated with a group is the
following:

QUESTION 1. How similar are the structures of two finite groups G1 and G2 if the
graphs �(G1) and �(G2) are isomorphic?

We will say that a subgroup H of G is a maximal intersection in G if there exists a
family M1, . . . ,Mt of maximal subgroups of G with H = M1 ∩ · · · ∩ Mt. Let M(G) be the
subposet of the subgroup lattice of G consisting of G and all the maximal intersections in
G. Notice that M(G) is a lattice in which the meet of two elements H and K coincides
with their intersection and their join is the smallest maximal intersection in G containing
〈H,K〉 (in general 〈H,K〉 is not a maximal intersection, see the example at the end of
Section 2). The maximum element of M(G) is G, and the minimum element coincides
with the Frattini subgroup Frat(G) of G. The role played by M(G) in investigating the
property of the graph �(G) is clarified by the following proposition.

PROPOSITION 2. The lattice M(G) can be completely determined from the knowledge
of the graph �(G). In particular, if G1 and G2 are finite groups and the graphs �(G1) and
�(G2) are isomorphic, then also the lattices M(G1) and M(G2) are isomorphic.

Notice that the condition M(G1)∼=M(G2) is necessary but not sufficient to ensure
�(G1)∼=�(G2). For example, consider G1 = A × 〈x〉 and G2 = Sym(3)× 〈y〉, where A ∼=
C3 × C3, 〈x〉 ∼= C2 and 〈y〉 ∼= C3. Let a1, a2, a3, a4 and b1, b2, b3, b4 be generators for
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the four different non-trivial proper subgroups of, respectively, A and Sym(3). The map
sending A to Sym(3) and 〈ai, x〉 to 〈bi, y〉 for 1 ≤ i ≤ 4 induces an isomorphism between
M(G1) and M(G2); however, all the subgroups of G1 are maximal intersections, while
〈(1, 2, 3)y〉 and 〈(1, 2, 3)y2〉 are not maximal intersections in G2. In particular, �(G1) has
12 vertices and �(G2) has 14 vertices. So the following variation of Question 1 arises.

QUESTION 3. How similar are the structures of two finite groups G1 and G2 if the
lattices M(G1) and M(G2) are isomorphic?

Our aim is to start to investigate Questions 1 and 3, considering the particular case
when G1 is a finite nilpotent group. Notice that if G1 is a finite nilpotent group and�(G1)∼=
�(G2), then G2 is not necessarily nilpotent. For example, if p is an odd prime, Cp is the
cyclic group of order p, and D2p is the dihedral group of order 2p, then the subgroup lattices
of Cp × Cp and D2p are isomorphic and therefore �(Cp × Cp)∼=�(D2p). Our main result
is the following.

THEOREM 4. Let G be a finite group. If there exists a finite nilpotent group X with
M(G)∼=M(X ), then G is supersoluble.

COROLLARY 5. Let G be a finite group. If there exists a finite nilpotent group X with
�(G)∼=�(X ), then G is supersoluble.

Let M be the family of the finite groups G with the property that M(G)∼=M(X ) for
some finite nilpotent group X . In a similar way, let D be the family of the finite groups G
with the property that �(G)∼=�(X ) for some finite nilpotent group X . By Theorem 4, if
G ∈M, then G is supersoluble, but there exist supersoluble groups which do not belong
to M and it is not easy to give a complete characterization of the finite groups in M or in
D. We give a solution of this problem in the particular case when G is a finite group with
Frat(G)= 1. Recall that a finite group G is called a P-group of G, it is either a non-cyclic
elementary abelian group or a semidirect product of an elementary abelian p-group A by
a group of prime order q 	= p which induces a non-trivial power automorphism on A (in
particular each subgroup of A is normal in G). Some of the properties of P-groups that will
be used throughout the paper are highlighted in [17, Section 2.2].

PROPOSITION 6. Let G be a finite group with Frat(G)= 1. Then, G ∈D if and only if
G is a direct product of groups with pairwise coprime orders that are either P-groups or
elementary abelian p-groups.

The classification of the Frattini-free groups in M is more difficult. First, we need a
definition. Let t ≥ 2 be a positive integer and p1, . . . , pt be prime numbers with the property
that pi+1 divides pi − 1 for 1 ≤ i ≤ t − 1. We denote by �(p1, . . . , pt) the set of the direct
products H1 × · · · × Ht−1, where Hi

∼= Cni
pi
� Cpi+1 is a non-abelian P-group. Moreover,

we will denote by �∗(p1, . . . , pt) the direct products X × Y with X ∈�(p1, . . . , pt) and
Y ∼= Cp1 . Finally, let � (respectively �∗) be the union of all the families �(p1, . . . , pt)

(respectively, �∗(p1, . . . , pt)), for any possible choice of t and p1, . . . , pt.

PROPOSITION 7. Let G be a finite group with Frat(G)= 1. Then, G ∈M if and only if
G is a direct product H1 × · · · × Hu, where the orders of the factors are pairwise coprime
and each of the factors is of one of the following types:

(1) an elementary abelian p-group;
(2) a group in �;
(3) a group in �∗.
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It follows from the previous proposition that Sym(3)× C2 is an example (indeed the
one of smallest possible order) of a supersoluble group which does not belong to M.

Notice that our proof of Theorem 4 uses the classification of the finite simple groups.
Theorem 4 is invoked in the proof of Proposition 7, which therefore in turn depends on the
classification. On the contrary, Proposition 6 can be directly proved without using Theorem
4 and the classification of the finite simple groups. Indeed, it turns out that if G ∈D and
Frat(G)= 1, then G has the same subgroup lattice as a finite abelian group, and the groups
with this property have been classified by Baer [3]. However, we are not able to deduce
Corollary 5 from Proposition 6, so also our proof of this result depends on the classification.
To avoid the use of the classification in the proof of Corollary 5, one should give a positive
answer to the following question that we leave open.

QUESTION 8. Does �(G1)∼=�(G2) imply �(G1/ Frat(G1))∼=�(G2/ Frat(G2))?

The obstacle in dealing with this question is that it is not clear whether and how one
can deduce which vertices of the graph �(G) correspond to subgroups of G containing
Frat(G).

2. Preliminary results. Denote by NG(X ) the neighborhood of the vertex X in the
graph �(G). We define an equivalence relation ≡G by the rules X ≡G Y if and only if
NG(X )=NG(Y ). If X ≤ G, let X̃ be the intersection of the maximal subgroups of G
containing X (setting G̃ = G).

LEMMA 9. NG(X )⊆NG(Y ) if and only if X̃ ≤ Ỹ . In particular, X ≡G Y if and only if
X̃ = Ỹ .

Proof. Assume NG(X )⊆NG(Y ) and let M be a maximal subgroup of G. If
Y ≤ M, then 〈Y ,M〉 	= G, so M /∈NG(Y ). It follows that M /∈NG(X ), that is, 〈X ,M〉 	= G.
This implies X ≤ M . It follows that X̃ ≤ Ỹ . Conversely, assume X̃ ≤ Ỹ , or equivalently
that every maximal subgroup of G containing Y contains also X . If Z /∈NG(Y ), then
〈Y , Z〉 ≤ M for some maximal subgroup M of G. It follows 〈X , Z〉 ≤ M and consequently
Z /∈NG(X ).

Proof of Proposition 2. Notice that if X ≤ G, then X̃ is a maximal intersection in G,
and if X is itself a maximal intersection, then X̃ = X . So, by Lemma 9, the map sending
the equivalence class containing X to X̃ induces a bijection from the set of the equivalence
classes to the set of the maximal intersections in G. Moreover, if X1, X2 ∈M(G), then
X1 ≤ X2 if and only if NG(X1)⊆NG(X2).

We conclude this section with an example showing that if X1, X2 ∈M(G), then it is
not necessarily true that 〈X1, X2〉 ∈M(G). Let F be the field with three elements, and let
C = 〈−1〉 be the multiplicative group of F. Let V = F3 be a 3-dimensional vector space
over F and let σ = (1, 2, 3) ∈ Sym(3). The wreath product H = C � 〈σ 〉 has an irreducible
action on V defined as follows: if v = (f1, f2, f3) ∈ V and h = (c1, c2, c3)σ

i ∈ H , then
vh = (f1σ−i c1σ−i , f2σ−i c2σ−i , f3σ−i c3σ−i). Consider the semidirect product G = V � H and let
v = (1,−1, 0) ∈ V . Since H and Hv are two maximal subgroups of G, K := H ∩ Hv =
CH(v)= {(1, 1, z) | z ∈ C} ∼= C2 is a maximal intersection in G. Since G/V ∼= H and
Frat(H)= 1, V is also a maximal intersection in G. However, VK is not a maximal inter-
section in G. Indeed, if X is a maximal intersection in G containing V , then X = VY with
Y a maximal intersection in H . But H ∼= C2 × Alt(4) and the unique subgroup of order 2
of H that can be obtained as an intersection of maximal subgroups is {(z, z, z) | z ∈ C}.

The following elementary remark is used several times throughout the paper.
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LEMMA 10. If a finite Frattini-free nilpotent group X contains t maximal subgroups
that intersect trivially, then |X | is a product of at most t (not necessarily distinct)
primes.

3. Proof of Theorem 4. Recall that the Möbius function μG is defined on the sub-
group lattice of G as μG(G)= 1 and μG(H)= − ∑

H<K μG(K) for any H <G. If H ≤ G
cannot be expressed as an intersection of maximal subgroups of G, then μG(H)= 0 (see
[12, Theorem 2.3]), so for every H ∈M(G), the value μG(H) can be completely deter-
mined from the knowledge of the lattice M(G). The following result could be easily
deduced from [15, Theorem 2.6]. We prefer to give a direct proof.

PROPOSITION 11. Let G be a finite soluble group. For every irreducible G-module V
define q(V)= | EndG(V)|, set θ(V)= 0 if V is a trivial G-module, and θ(V)= 1 otherwise,
and let δ(V) be the number of chief factors G-isomorphic to V and complemented in an
arbitrary chief series of G. Let V(G) be the set of irreducible G-modules V with δ(V) 	= 0.
Then

μG(1)=
{∏

V∈V(G)(−1)δ(V)|V |θ(V)δ(V)q(V)(δ(V)2 ) if
∏

V∈V(G) |V |δ(V) = |G|,
0 otherwise.

Proof. We prove the statement by induction on the order of G. Let N be a minimal
normal subgroup of G. By [13, Lemma 3.1]

μG(1)=μG/N (1)
∑
K∈K

μG(K),

denoting by K the set of all subgroups of G which complement N . If K =∅, then
N is a non-complemented chief factor of G and μG(1)= 0. Moreover in this case,∏

V∈V(G) |V |δ(V) ≤ |G|/|N |< |G|. In any case, since N is a minimal normal subgroup of
G and G is soluble, if K ∈K, then K is a maximal subgroup of G and consequently
μG(K)= −1. Thus, μG(1)= −μG/N (1) · c, where c is the number of complements of
N in G. To conclude it suffices to notice that, by [10, Satz 3], c = |N |θ(N)q(N)δ(N)−1.

COROLLARY 12. If X ∼= Cm1
p1

× · · · × Cmt
pt
, then μX (1)= (−1)m1 p

(m1
2 )

1 · · · (−1)mt p(
mt
2 )

t .

LEMMA 13. Let G be a finite group and assume G ∈M. If N is a normal subgroup of
G containing Frat(G), then

(1) μG(N) 	= 0;
(2) N is a maximal-intersection in G;
(3) Frat(G/N)= 1;
(4) G/N ∈M.

Proof. Since G ∈M, there exists a finite nilpotent group with M(G)∼=M(X ).
We have M(G/ Frat(G))∼=M(G)∼=M(X )∼=M(X/ Frat(X )), and this implies
μX/ Frat(X )(1)=μG/ Frat(G)(1). By Corollary 12, μX/ Frat(X )(1) 	= 0 and therefore
μG/ Frat(G)(1) 	= 0. If N is a normal subgroup of G containing Frat(G), then we deduce
from [13, Lemma 3.1] that μG(N)=μG/N (1) divides μG/ Frat(G)(1). As a consequence,
μG(N) 	= 0 and N is a maximal intersection in G. This implies in particular Frat(G/N)= 1.
Finally, there exists Y ≤ X such that M(G/N)∼=M(X/Y ), so G/N ∈M.
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LEMMA 14. Let H be a finite supersoluble group and V a faithful irreducible
H-module. Consider the semidirect product G = V � H . Suppose that there exists a finite
nilpotent group X with M(G)∼=M(X ). Then V is cyclic of prime order.

Proof. Since M(X )∼=M(X/ Frat(X )), we may assume Frat(X )= 1. There exist v
and w in V such that CH(v)∩ CH(w)= 1 (see [19, Theorem A]). This implies that
H,Hv,Hw are maximal subgroups of G with trivial intersection. But then also X must con-
tain three maximal subgroups with trivial intersection, and consequently, by Lemma 10,
|X | is the product of at most three (not necessarily distinct) primes. Suppose |V | = pa,

with p a prime and a ≥ 2. Since Frat(X )= 1, it follows from Corollary 12 that μX (1) 	= 0.
Moreover, by Proposition 11, μX (1)=μG(1) is divisible by pa. By Corollary 12, this is
possible only if X ∼= Cp × Cp × Cp and μX (1)=μG(1)= −p3. By Proposition 11, |V |
divides μG(1) so V is a p-group. By Lemma 13, V ∈M(G). Since V is a minimal
element in M(G), it follows that M(H)∼=M(G/V)∼=M(Cp × Cp) and therefore, by
Corollary 12, μH(1)= p. Moreover 2 is the maximal length of a chain in M(H) and
Frat(H)= 1 by Lemma 13. So H is a supersoluble group in which the intersection of any
pair of maximal subgroups is trivial. This implies that |H | is the product of two primes, say
p1 and p2, and we may assume that H has a normal subgroup of order p1.By Proposition 11,
μH(1)= 1 if H is cyclic, μH(1)= p1 otherwise. Since μH(1)= p, it follows that
Op(H) 	= 1, in contradiction with the fact that V is a faithful irreducible H-module of
p-power order.

LEMMA 15. If G is a finite almost simple group, then there exist maximal subgroups
M1, . . . ,Mt of G, with t ≤ 5, with the property that M1 ∩ · · · ∩ Mt = 1.

Proof. The result follows from [5, Theorem 1], except when S = soc(G) is an alter-
nating group or a classical group and all the primitive actions of G are of standard type. If
soc(G) is of alternating type, then the result follows from [7, Corollaries 1.4, 1.5, Remark
1.6] (see also [9, Lemma 2] and its proof). In the case of classical groups, we are done if
we are able to build up a non-standard action by taking primitive actions with stabilizer in
one of the Aschbacher classes C2, C3, C4, C5, C6, C7. For this purpose, we use [14, Tables
3.5.A. 3.5.B, 3.5.C, 3.5.D, 3.5.E and 3.5.F] (and the similar tables in [4] if the dimension of
G is up to 12). We need to be careful because a subgroup H in one of the given Aschbacher
classes of G may not actually be maximal in G. As it is explained in [14, Section 3.4],
to avoid this possibility, we need to select H in such a way that when we look to the cor-
responding row in the table, we do not find restrictive conditions in column VI and the
homomorphism π described in column V is the identity. A subgroup with these properties
can be found, except in the following three cases:

(1) S =�+
2p(2) and p is an odd prime (and we may assume p ≥ 5, since�+

6 (2)
∼= Alt(8)).

In this case, |G : S| ≤ 2. Let V be the natural module for G, and let � be the set of
nondegenerate plus-type subspaces of dimension p + 1. Then G acts primitively on
this set, and by the proof of [6, Theorem 6.13], it contains three maximal subgroups
M1, M2, M3 such that M1 ∩ M2 ∩ M3 ∩ S = 1, so t ≤ 4.

(2) S = P�+
2p(5) and p is an odd prime. Again, let V be the natural module for S, and let

� be the set of nondegenerate plus-type subspaces of dimension p + 1. Then G acts
primitively on this set. Arguing as in the proof of [6, Theorem 6.13], three subspaces
in � can be exhibited with the property that if g ∈ O+

2p(5) stabilizes each of them,
then, with respect to a suitable basis, g is represented either by a scalar matrix or by
the matrix
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±

⎛
⎜⎜⎝

I2p−2 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ .

Let M1,M2,M3 be the stabilizers in G of these subspaces. We have |M1 ∩ M2 ∩ M3 ∩
PO+

2p(5)| ≤ 2, so |M1 ∩ M2 ∩ M3 ∩ G| ≤ 4 and consequently there exist M4 and M5

such that M1 ∩ M2 ∩ M3 ∩ M4 ∩ M5 = 1.
(3) S =�p(q) with p ≥ 7 a prime, q = qt

0 with q0 an odd prime, and t a power of 2. In
this case, let V be the natural module for S and � the set of the 2m-dimensional
nondegenerate subspaces of V of plus-type if p = 4m + 1, or the set of the (2m + 1)-
dimensional nondegenerate subspaces X of V with the property that X ⊥ has plus
type if p = 4m + 3. Then, G acts primitively on �, and by [6, Theorem 6.11], the
restriction of this action to S has a base of size 2. By [11, Theorem 1.2], each element
of G has a regular cycle. Since G/S is metacyclic, it follows that the action of G on
� has a base of size at most 4. As a consequence, we can find four point stabilizers
with trivial intersection.

LEMMA 16. If G is a finite monolithic primitive group with non-abelian socle, then
there is no finite nilpotent group X with M(G)∼=M(X ).

Proof. Assume, by contradiction, that there exists a finite nilpotent group X with
M(X )∼=M(G). Since M(X )∼=M(X/ Frat(X )), we may assume Frat(X )= 1. There
exists a finite nonabelian simple group S such that N = soc(G)= S1 × . . .× Sn, with Si

∼= S
for 1 ≤ i ≤ n.

Suppose first that n ≥ 2. Let ψ be the map from NG(S1) to Aut(S) induced by the
conjugacy action on S1. Set H =ψ(NG(S1)), and note that H is an almost simple group
with socle S = Inn(S)=ψ(S1). Let T := {t1, . . . , tn} be a right transversal of NG(S1) in G;
the map

φT : G → H � Sym(n)

given by

g �→ (ψ(t1gt−1
1πg
), . . . , ψ(tngt−1

nπg
))πg,

where πg ∈ Sym(n) satisfies tigt−1
iπg

∈ NG(S1) for all 1 ≤ i ≤ n, is an injective homomor-
phism. So we may identify G with its image in H � Sym(n); in this identification, N is
contained in the base subgroup Hn and Si is a subgroup of the ith component of Hn.
By Lemma 13, Frat(G/N)= 1 and so there exist u maximal subgroups M1, . . . ,Mu of
G such that

N = M1 ∩ · · · ∩ Mu <M1 ∩ · · · ∩ Mu−1 < · · ·<M1 ∩ M2 <M1 <G.

Let R be a maximal subgroup of H with H = RS and set K = R ∩ S. We must have K 	= 1
(see, for example, the last paragraph of the proof of the main theorem in [16]). Notice
that L := G ∩ (R � Sym(n)) is a maximal subgroup of G ([2] Proposition 1.1.44). We have
D := L ∩ M1 ∩ · · · ∩ Mu = L ∩ N = Kn. Choose a subset {s1, . . . , sm} of S with minimal
cardinality with respect to the property K ∩ Ks1 ∩ · · · ∩ Ksm = 1. Set
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α1 = (s1, . . . , s1), α2 = (s2, . . . , s2), . . . , αm = (sm, . . . , sm),

β1 = (s1, 1, . . . , 1), β2 = (s2, 1, . . . , 1), . . . , βm = (sm, 1, . . . , 1),

γ1 = (1, s1, . . . , s1), γ2 = (1, s2, . . . , s2), . . . , γm = (1, sm, . . . , sm).

For 1 ≤ i ≤ m, set

Ai := Lαi ∩ · · · ∩ Lαm ∩ D,

Bi := Lβi ∩ · · · ∩ Lβm ∩ Lγ1 ∩ · · · ∩ Lγm ∩ D,

Ci := Lγi ∩ · · · ∩ Lγm ∩ D.

We have

1 = A1 < · · ·< Am <D, 1 = B1 < · · ·< Bm <C1 < · · ·<Cm <D.

In particular,

{M1, . . . ,Mt, L, Lα1 , . . . , Lαm}, {M1, . . . ,Mt, L, Lβ1 , . . . , Lβm , Lγ1 , . . . , Lγm}
are two families of maximal subgroups of G that are minimal with respect to the property
that their intersection is the trivial subgroup. However, the assumption M(G)∼=M(X )
implies that all the families of maximal subgroups of G with this property must have the
same size.

We may therefore assume that G is a finite almost simple group. Since Frat(X )= 1,
by Corollary 12, 0 	=μX (1)=μG(1). By Lemma 15, G contains t ≤ 5 maximal subgroups
with trivial intersection. But then X satisfies the same properties, and consequently, by
Lemma 10, |X | is the product of at most t ≤ 5 primes. It follows from Corollary 12 that
μX (1)=μG(1) is divisible by at most two different primes. By [13, Theorem 4.5], |G|
divides m ·μG(1), where m is the square-free part of |G/G′|. So, if S = soc(G), then,
since S ≤ G′, m divides |G/S| and consequently |S| divides μG(1)=μX (1). But then |S|
is divisible by at most two different primes, so it is soluble by Burnside’s paqb-theorem, a
contradiction.

Proof of Theorem 4. We prove our statement by induction on the order of G. If
Frat(G) 	= 1, then M(G/ Frat(G))∼=M(X/ Frat(X )), so G/ Frat(G) is supersoluble by
induction. But this implies that G itself is supersoluble. So we may assume Frat(G)= 1.
Assume, by contradiction, that G is not soluble. Then, there exists a non-abelian chief fac-
tor R/S of G. Let L = G/CG(R/S). Notice that L is a primitive monolithic group whose
socle is isomorphic to R/S. By Lemma 13, CG(R/S) is a maximal intersection in G.
But then M(L)∼=M(X/Y ) for a suitable normal subgroup Y of X , in contradiction with
Lemma 16. So we may assume that G is soluble. Assume by contradiction that G is not
supersoluble. Let 1 = N0 <N1 < · · ·<Nu = G be a chief series of G, and let j be the
largest positive integer with the property that the chief factor Nj/Nj−1 is not cyclic. Let
V = Nj/Nj−1 and H = G/CG(V). By Lemma 13 and Proposition 11, Nj/Nj−1 is a com-
plemented chief factor of G. Let K/Nj−1 be a complement of Nj/Nj−1 in G/Nj−1 and set
M = Nj−1CK(V). It turns out that G/M ∼= V � H . Again by Lemma 13, M is a maximal
intersection in G, so there exists Y ≤ X such that M(G/M)∼=M(X/Y ). By our choice of
the index j, the factor group G/Nj is supersoluble. Since Nj ≤ CG(V), also H is supersol-
uble. But then it follows from Lemma 14 that V is cyclic of prime order, in contradiction
with our assumption.
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4. Frattini-free groups in D and M.
Proof of Proposition 6. Assume that X is a finite nilpotent group with �(X )∼=�(G).

Since Frat(G)= 1, the unique isolated vertex in �(G) is the one corresponding to the
identity subgroup. The same must be true in �(X ) and therefore Frat(X )= 1. Hence, X
is a direct product of elementary abelian groups. In particular, every subgroup of X is a
maximal intersection in X , so the lattice M(X ) coincides with the entire subgroup lat-
tice L(X ) of X . This is equivalent to say that if Y1 and Y2 are different subgroups of
G, then NG(Y1) 	=NG(Y2). Again, the same property holds for �(G) and consequently
M(G)∼=L(G). So by Proposition 2, L(G)∼=L(X ), and the conclusion follows from [17,
Theorem 2.5.10].

LEMMA 17. Suppose that X1 and X2 are finite groups. If no simple group is a
homomorphic image of both X1 and X2 then M(X1 × X2)∼=M(X1)×M(X2).

Proof. A maximal subgroup M of a direct product X1 × X2 is of standard type if
either M = Y1 × X2 with Y1 a maximal subgroup of X1 or M = X1 × Y2 with Y2 a maxi-
mal subgroup of X2. A maximal subgroup M of X1 × X2 is of diagonal type if there exist a
maximal normal subgroup N1 of X1, a maximal normal subgroup N2 of X2, and an isomor-
phism φ : X1/N1 → X2/N2 such that M = {(x1, x2) ∈ H1 × H2 | φ(x1N1)= x2N2}. By [18,
Chapter 2, (4.19)], a maximal subgroup of X1 × X2 is either of standard type or of diagonal
type. If no simple group is a homomorphic image of both X1 and X2, then all the maximal
subgroups of X1 × X2 are of standard type. In particular, K ∈M(X1 × X2) if and only if
K = K1 × K2, with K1 ∈M(X1) and K2 ∈M(X2).

LEMMA 18. The following hold:

(1) If G = H1 × · · · × Ht−1 ∈�(p1, . . . , pt), with Hi
∼= Cni

pi
� Cpi+1, then M(G)∼=

M(Cn1+1
p1

× · · · × Cnt−1+1
pt−1 ).

(2) If G = H1 × · · · × Ht−1 × Cp1 ∈�∗(p1, . . . , pt) with Hi
∼= Cni

pi
� Cpi+1, then

M(G)∼=M(Cn1+1
p1

× · · · × Cnt−1+1
pt−1 × Cpt).

Proof. Let H ∼= Cn
p � Cq be a P-group. By [17, Theorem 2.2.3], the subgroup lattices

of H and Cn+1
p are isomorphic, and consequently, M(H)∼=M(Cn+1

p ). Now assume
G = H1 × · · · × Ht−1 ∈�(p1, . . . , pt), with Hi

∼= Cni
pi
� Cpi+1. By Lemma 17,

M(G)∼=M(H1 × · · · × Ht−1)∼=M(H1)× · · · ×M(Ht−1)

∼=M(Cn1+1
p1

)× · · · ×M(Cnt−1+1
pt−1

)∼=M(Cn1+1
p1

× · · · × Cnt−1+1
pt−1

).

This proves (1). If G = H1 × · · · × Ht−1 × Cp1 ∈�∗(p1, . . . , pt) with Hi
∼= Cni

pi
� Cpi+1,

then, again by Lemma 17,

M(G)∼=M(H1 × · · · × Ht−1 × Cp1)

∼=M(H1)× · · · ×M(Ht−1)×M(Cp1)

∼=M(Cn1+1
p1

)× · · · ×M(Cnt−1+1
pt−1

)×M(Cp1)

∼=M(Cn1+1
p1

)× · · · ×M(Cnt−1+1
pt−1

)×M(Cpt)

∼=M(Cn1+1
p1

× · · · × Cnt−1+1
pt−1

× Cpt).

So (2) is also proved.
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Proof of Proposition 7. First, we prove by induction on the order of G that if G ∈M,

then G is as described in the statement. Let M be a normal subgroup of G. By Lemma 13,
Frat(G/M)= 1 and G/M ∈M. Hence, G/M satisfies the same assumptions as G. During
the proof, we will use several times, without an explicit mention, this remark.

Let N be a minimal normal subgroup of G. By Theorem 4, there exists a prime p
such that N ∼= Cp. Moreover, since Frat(G)= 1, N has a complement, say K in G. Since
K ∼= G/N, by induction K = H1 × · · · × Hu, where H1, . . . ,Hu have coprime orders and
are as described in the statement.

First assume that N is central in G. If p does not divide the order of K, then
G = H1 × · · · × Hu × N is a factorization with the required properties. Otherwise, there
exists a unique i such that p divides |Hi|. It is not restrictive to assume i = u. If Hu is
either elementary abelian or Hu ∈�(p1, . . . , pt) with p1 = p, then we set H̃u = Hu × N ∼=
Hu × Cp and the factorization G = H1 × · · · × Hu−1 × H̃u satisfies the required properties.
In the other cases, there exist a prime q 	= p and a normal subgroup L of Hu such that
J = Hu/L is isomorphic either to Cq � Cp or to (Cp � Cq)× Cp. Since T = N × J ∼=
G/(H1 × · · · × Hu−1 × L) ∈M, there exists a Frattini-free nilpotent group X with
M(X )∼=M(T). Notice that since Frat(X )= 1, X is a direct product of elementary abelian
groups, so we may apply Corollary 12 when it is needed. If J ∼= Cq � Cp, then μX (1)=
μT (1)= −p · q and |X | is the product of three primes, but this possibility is excluded
by Corollary 12. If J ∼= (Cp � Cq)× Cp, then μX (1)=μT (1)= p2, again in contradiction
with Corollary 12.

Now assume that N is not central. Notice that G/CG(N), being isomorphic to a sub-
group of Aut(N), is cyclic. Since Frat(G/CG(N))= 1, we deduce G/CG(N)∼= Cq, where
q is a square-free positive integer. Moreover, there exists a Frattini-free nilpotent group
X such that M(X )∼=M(G/CK(N)). Since G/CK(N)∼= Cp � Cq, the identity subgroup
of G/CK(N) can be obtained as the intersection of two conjugated subgroups of order q.
By Lemma 10, |X | is the product of two primes, and consequently, M(G/CK(N))∼=M(X )
cannot contain chains of length > 2. But then q is a prime. In particular, there exists
a unique i such that q divides |Hi|. It is not restrictive to assume i = u. Notice that
Cq

∼= Hu/CHu(N), so q divides |Hu/H ′
u|. We distinguish the different possibilities for Hu

and determine the structure of NHu in each case.
First assume Hu = Ct

q, for some t ∈ N. Then, G/(H1 × · · · × Hu−1)∼= NHu
∼= (Cp �

Cq)× Ct−1
q . If t ≥ 2, then Y1 = (Cp � Cq)× Cq would be an epimorphic image of G.

Consequently, by Lemma 10, there would exist a nilpotent group X whose order is the prod-
uct of three primes such that μX (1)=μY1(1)= −p · q, in contradiction with Corollary 12.
Thus, t = 1, and consequently, NHu ∈�(p, q).

Assume Hu = T1 × · · · × Tt−1 ∈�(p1, . . . , pt), with Tj
∼= C

nj
pj � Cpj+1 . Since Hu is a

direct product of non-abelian P-groups, |Hu/H ′
u| is not divisible by p1. On the other hand,

q divides |Hu/H ′
u|, hence q 	= p1 and there exists 1 ≤ i ≤ t − 1 such that q = pi+1.Moreover,

since Hu/CHu(N)∼= Cq, it follows that CHu(N)=
(∏

j 	=i Tj

)
× Cni

pi
. Let r = pi and R a (non-

central) normal subgroup of Ti with order r. A Sylow q-subgroup Q of Ti centralizes neither
N nor R. The semidirect product Y2 = (N × R)� Q ∼= (Cp × Cr)� Cq is an epimorphic
image of G, and consequently, there exists a nilpotent group X whose order is the product of
three primes (by Lemma 10) such that μX (1)=μY2(1) is divisible by p · r. By Corollary 12
and Proposition 11, this is possible only if p = r, X ∼= C3

p , μX (1)= −p3 and N and R are
Q-isomorphic (and consequently G-isomorphic). But then NTi

∼= C1+ni
p � Cq is a P-group

and NHu = T1 × · · · × Ti−1 × NTi × Ti+1 × · · · × Tt−1 ∈�(p1, . . . , pt).
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Assume Hu = T1 × · · · × Tt−1 × L ∈�∗(p1, . . . , pt), with Tj
∼= C

nj
pj � Cpj+1 and L a

group of order p1. If q 	= p1, then q = pi+1 for some 1 ≤ i ≤ t, and we may repeat the
previous argument to deduce that NTi is a P-group and NHu = T1 × · · · × Ti−1 × NTi ×
Ti+1 × · · · × Tt−1 × L ∈�∗(p1, . . . , pt). If q = p1, then NL is a P-group of order p · p1 and
NHu = NL × T1 × · · · × Tt−1 ∈�(p, p1, . . . , pt).

We conclude that in any case one of the following occurs:

(1) NHu ∈�(p, p1, . . . , pt),

(2) NHu ∈�(p1, . . . , pt),

(3) NHu ∈�∗(p1, . . . , pt).

If p does not divide |H1| · · · |Hu−1|, then the factorization H1 × . . .Hu−1 × NHu satisfies
the requirements of the statement. Otherwise, we may assume that p divides |H1|. Notice
that in this case p does not divide Hu, so NHu ∈�(p, p1, . . . , pt). If H1 admits a non-central
chief factor of order p, then there exists a prime r such that Y3 = (Cp � Cq)× (Cp � Cr) is
an epimorphic image of G. There would exist a nilpotent group X with μX (1)=μY3(1).
However by Proposition 11, μY3(1)= p2 · qη, with η= 1 if q = r, η= 0 otherwise, while
by Corollary 12, p cannot divide μX (1) with multiplicity equal to 2. The only possibility
that remains is H1

∼= Ct
p. If t ≥ 2, then Y4 = (Cp � Cq)× C2

p is an epimorphic image of G,

and there would exist a nilpotent group X with μX (1)=μY4(1)= p2, again in contra-
diction with Corollary 12. So t = 1 and H1 × NHu ∈�∗(p, p1, p2, . . . , pt). Setting H̃1 =
H1 × NHu, we conclude that H̃1 × H2 × · · · × Hu−1 is the factorization we are looking for.

Conversely, assume that G = H1 × · · · × Hu is a factorization with the properties
described by the statement. By Lemma 18, for every 1 ≤ i ≤ u, there exists a nilpotent
group Xi such that M(Hi)=M(Xi) and |Xi| and |Hi| have the same prime divisors.
But then, by Lemma 17, M(G)∼=M(H1)× · · · ×M(Hu)∼=M(X1)× · · · ×M(Xu)∼=
M(X1 × · · · × Xu).
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