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Corrigendum:

‘An embedding theorem for abelian monoidal
categories, Compositio Math. 132 (2002), 27-48’

Phung H6 Hai

The discussion at the beginning of §3.5 is incorrect. Since A°P is not an ind-category but rather a
pro-category, the tensor product on it preserves limits but not colimits; hence one cannot extend
the monoidal structure from A°P to rpMod as indicated there. Therefore, Theorem 3.2 is merely a
conjecture. The following weaker form of Theorem 3.2 holds true.

THEOREM A. Let C be a small Abelian monoidal category with the tensor product being exact.
Assume that C has an injective finite cogenerator J (i.e. each object of C is a subobject of a finite
direct sum of copies of J). Then C°P admits a right exact monoidal embedding into the category
rModg, X — Homc(X ® J,J), where R := Homc(J, J).

Proof. The functor Hom¢(—, J) : C°? — pMod defines an equivalence between C°P and the category
of finitely generated left R-modules. Consequently, it extends to an equivalence between the ind-
category of C°? and gpMod. Thus we can extend the tensor product on C°P, which is exact, to an
exact tensor product on pMod. Hence we can apply Theorem 2.4 and obtain a monoidal right exact
embedding w := Hom¢(— ® J,J) : C°°P — rModpg. O

Consequently, Theorem 3.3, the proof of which relies on Theorem 3.2, is merely a conjecture.
The following weaker form of it is a consequence of Theorem A above.

THEOREM B. Let C be a small Abelian monoidal rigid category. Assume that C has an injective
finite cogenerator. Then C admits an exact monoidal embedding into the category of bimodules
over a ring. Further, the embedding is extendable to an exact embedding of the ind-category of C,
which commutes with colimits.

Proof. The proof is the same as that of Theorem 3.3. O

Examples of categories satisfying the conditions of Theorem B are finite tensor categories, studied
in [EO04].

The results of §4, which rely on Theorem B, therefore hold true only under the assumption that
C has finitely many simple objects. In fact, the tensor category constructed in [Del90, 2.19] is a
counterexample to the statement of Proposition 4.1 and of Theorem 4.4.
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