EXISTENCE OF POSITIVE SOLUTION FOR INDEFINITE KIRCHHOFF EQUATION IN EXTERIOR DOMAINS WITH SUBCRITICAL OR CRITICAL GROWTH

G. M. FIGUEIREDO and D. C. DE MORAIS FILHO[∞]

(Received 10 March 2015; accepted 25 September 2016; first published online 23 December 2016)

Communicated by Andrew M. Hassell

Abstract

Using variational methods and depending on a parameter λ we prove the existence of solutions for the following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain $\Omega \subset \mathbb{R}^3$:

 $\begin{cases} M(||u||^2)[-\Delta u + u] = \lambda a(x)g(u) + \gamma |u|^4 u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

for the subcritical case ($\gamma = 0$) and also for the critical case ($\gamma = 1$).

2010 *Mathematics subject classification*: primary 45M20; secondary 35J25, 34B18, 34C11, 34K12. *Keywords and phrases*: Variational methods, nonlocal problems, Kirchhoff equation, exterior domain.

1. Introduction

The purpose of this article is to investigate the existence of positive solutions to the following class of nonlocal boundary value problems of the Kirchhoff type:

$$(P_{\lambda,\gamma}) \qquad \begin{cases} M(||u||^2)[-\Delta u+u] = \lambda a(x)g(u) + \gamma |u|^4 u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where λ is a positive real parameter and Ω is an exterior domain in \mathbb{R}^3 , that is, $\Omega = \mathbb{R}^3 \setminus \overline{\Theta}$, with Θ a bounded smooth domain in \mathbb{R}^3 . In this paper we study two cases of the problem $(P_{\lambda,\gamma})$; the first case is when $\gamma = 0$ (subcritical case) and the second case is when $\gamma = 1$ (critical case). The functions $M : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+$, $a : \Omega \to \mathbb{R}$ and

The first author was partially supported by PROCAD/CASADINHO: 552101/2011-7 and CNPq/PQ 301242/2011-9; the second author was partially supported by PROCAD/Casadinho: 552.464/2011-2 and FNDE-PET/BRAZIL.

^{© 2016} Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

 $g: \mathbb{R} \to \mathbb{R}$ are continuous functions that satisfy some conditions to be established later, and

$$||u||^{2} = \int_{\Omega} |\nabla u|^{2} dx + \int_{\Omega} |u|^{2} dx.$$

Before stating our main result, we need the following hypotheses on the function $M : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+$:

 (M_1) The function *M* is increasing and $0 < M(0) := m_0$.

 (M_2) The function $t \mapsto M(t)/t$ is decreasing.

More information about the physical motivation behind Kirchhoff problems can be found in [1-3, 6-8, 12] and references therein.

The hypothesis (M_1) allows us to deal with the problem $(P_{\lambda,\gamma})$ via variational methods. The hypothesis (M_2) gives an important growth criterion to be used throughout the paper.

A typical example of a function satisfying conditions (M_1) and (M_2) is given by

$$M(t) = m_0 + bt,$$

for a real constant b > 0 and for all $t \ge 0$. This function is the one originally considered in the Kirchhoff equation in the seminal paper [10]. However, our hypotheses on the function M include different classes of functions, such as $M(t) = m_0 + bt + \sum_{i=1}^k b_i t^{d_i}$ with $b_i \ge 0$, $d_i \in (0, 1)$ for all $i \in \{1, 2, ..., k\}$, and also some more special functions, not involving powers, such as $M(t) = ln(t + m_0)$, for some $m_0 > e$ (base of the natural logarithm) and $t \ge 0$.

The hypotheses on the function $g : \mathbb{R} \to \mathbb{R}$ are as follows:

 (g_1)

$$\lim_{t \to 0} \frac{g(t)}{|t|} = 0.$$

 (g_2)

$$\lim_{|t| \to +\infty} \frac{g(t)}{t^5} = 0$$

(g₃) There exists $\theta \in (4, 6)$ such that

$$0 < \theta G(t) \le tg(t) \quad \text{for all } |t| > 0,$$

where $G(t) = \int_0^t g(s) \, ds$.

A typical example of a function satisfying conditions (g_1) – (g_3) is given by

$$g(t) = \sum_{i=1}^k C_i t_+^{q_i}$$

with $k \in \mathbb{N}$, $1 < q_i < 5$, $C_i > 0$ and $t_+ = \max\{t, 0\}$.

The first hypothesis on the function *a* is:

(*a*₁) $a \in C(\Omega, \mathbb{R})$ changes sign in Ω .

To state the next hypotheses on the function *a*, let us define

$$\Omega^+ = \{x \in \Omega : a(x) > 0\}$$
 and $\Omega^- = \{x \in \Omega : a(x) < 0\}.$

It is known that there is a function $\zeta \in C_0^{\infty}(\Omega)$ such that $0 \leq \zeta(x) \leq 1$ in Ω , $\zeta(x) = 1$ in Ω^+ and $\zeta(x) = 0$ in Ω^- . Depending on the distance $\operatorname{dist}(\overline{\Omega^+}, \overline{\Omega^-})$ between the sets $\overline{\Omega^+}$ and $\overline{\Omega^-}$, it is possible to take this function with $\widetilde{K} := \sup_{\Omega} |\nabla \zeta|$ as small as we need (see (1.1)).

The next hypotheses on *a* are as follows:

 (a_2) The distance

$$\operatorname{dist}(\overline{\Omega^+}, \overline{\Omega^-}) = \delta > 0$$

is such that

$$\widetilde{K} < \frac{\theta}{2} - 2, \tag{1.1}$$

where θ is the constant that appears in hypothesis (g_3).

(a_3) There is $R_0 > 0$ such that

$$a(x) < 0$$
 for $|x| \ge R_0$ and $\sup_{|x|\ge R} |a(x)||x|^2 < \infty$ for all $R \ge R_0$.

The hypothesis (*a*₁) characterizes the problem ($P_{\lambda,\gamma}$) as indefinite, as can be seen in [4, 9, 13].

The previous function ζ will be essential to overcome some difficulties such as the boundedness of the Palais–Smale sequence.

The hypothesis (a_3) appeared in [13] and is used to overcome the lack of compactness of the embedding $H_0^1(\Omega) \hookrightarrow L^s(\Omega)$, for $2 < s \le 6$, due to the unboundedness of the domain Ω .

The main result of this paper is the following theorem.

THEOREM 1.1. Assume that conditions (M_1) , (M_2) , $(g_1)-(g_3)$ and $(a_1)-(a_3)$ hold. If $\gamma = 0$, the problem $(P_{1,0})$ has a positive solution for all $\lambda > 0$. If $\gamma = 1$, there exists $\lambda_* > 0$ such that the problem $(P_{\lambda,1})$ has a positive solution for all $\lambda > \lambda_*$.

In the literature, we did not find any works about Kirchhoff equations on exterior unbounded domains as studied in this paper.

The scheme of this paper is as follows: in Section 2, we build up the variational framework and prove some technical results; in Section 3, we prove the subcritical case of the problem; and in Section 4, we prove the critical case.

2. The variational framework and some technical lemmas

Since we intend to find a positive solution for the problem $(P_{\lambda,\gamma})$, throughout this paper let us assume that

$$g(t) = 0 \quad \forall t \le 0.$$

We recall that $u \in H_0^1(\Omega)$ is a weak solution of $(P_{\lambda,\gamma})$ if it satisfies

$$M(||u||^2) \left[\int_{\Omega} \nabla u \nabla \phi \, dx + \int_{\Omega} u \phi \, dx \right] = \lambda \int_{\Omega} a(x) g(u) \phi \, dx + \gamma \int_{\Omega} |u|^4 u \phi \, dx$$

for all $\phi \in H_0^1(\Omega)$.

We shall look for positive solutions as critical points of the C^1 -functional $I_{\lambda,\gamma}$: $H^1_0(\Omega) \to \mathbb{R}$, given by

$$I_{\lambda,\gamma}(u) = \frac{1}{2}\widehat{M}(||u||^2) - \lambda \int_{\Omega} a(x)G(u)\,dx - \frac{\gamma}{6}\int_{\Omega} u_+^6\,dx$$

where $\widehat{M}(t) = \int_0^t M(s) \, ds$ and $u_+ := \max\{u, 0\}$. Note that

$$I_{\lambda,\gamma}'(u)(\phi) = M(||u||^2) \Big[\int_{\Omega} \nabla u \nabla \phi \, dx + \int_{\Omega} u \phi \, dx \Big] - \lambda \int_{\Omega} a(x)g(u)\phi \, dx - \gamma \int_{\Omega} u_+^5 \phi \, dx$$

for all $\phi \in H_0^1(\Omega)$. Moreover, if the critical point is nontrivial, by a maximum principle, we conclude that it is a positive solution for $(P_{\lambda,\gamma})$.

In order to use variational methods, we first derive some results related to the wellknown Palais–Smale compactness condition ((PS) for short).

In the sequel, we prove that the functional $I_{\lambda,\gamma}$ has the mountain pass geometry. This fact is proved in the next two lemmas.

LEMMA 2.1. Assume that conditions (M_1) , (a_1) – (a_3) , (g_1) and (g_2) hold. Then there exist positive numbers ρ and α such that

$$I_{\lambda,\gamma}(u) \ge \alpha > 0 \quad \forall u \in H_0^1(\Omega); ||u|| = \rho.$$

PROOF. It follows from (g_1) and (g_2) that, for each $\epsilon > 0$, there is a positive constant C_{ϵ} such that

$$g(t) \le \epsilon |t| + C_{\epsilon} |t|^5. \tag{2.1}$$

By (a_3) we conclude that Ω^+ is bounded. Defining $C_0 = \sup_{\alpha \to \infty} a$ and using (2.1),

$$\int_{\Omega} a(x)G(u)\,dx \le \int_{\Omega^+} a(x)G(u)\,dx \le C_0\frac{\epsilon}{2}\int_{\Omega} |u|^2\,dx + C_0\frac{C_{\epsilon}}{6}\int_{\Omega} |u|^6\,dx.$$
(2.2)

By (2.2) and (*M*₁),

$$I_{\lambda,\gamma}(u) \ge \frac{m_0}{2} ||u||^2 - C_0 \frac{\epsilon}{2} \int_{\Omega} |u|^2 \, dx - \frac{\gamma + C_{\epsilon}}{6} \int_{\Omega} u_+^6 \, dx$$

Finally, using the Sobolev embedding theorem, there is a positive constant C > 0 such that

$$I_{\lambda,\gamma}(u) \ge \frac{m_0 - C \cdot \epsilon}{2} ||u||^2 - C ||u||^6.$$

For a sufficiently small ϵ the result follows choosing $\rho > 0$ small enough.

LEMMA 2.2. Assume that conditions (M_1) , (M_2) , $(a_1)-(a_3)$ and $(g_1)-(g_3)$ hold. Then there exists a function $e \in H_0^1(\Omega)$ such that $I_{\lambda,\gamma}(e) < 0$ and $||e|| > \rho$, where $\rho > 0$ appears in Lemma 2.1.

PROOF. Notice that using (g_3) there exist constants C, D > 0 such that

$$G(t) \ge C|t|^{\theta} - D. \tag{2.3}$$

Moreover, by (M_2) ,

$$M(t) \le M(1)t,\tag{2.4}$$

for all $t \ge 1$.

Let us consider $v_0 \in C_0^{\infty}(\Omega^+) \setminus \{0\}$ with $v_0 \ge 0$ in Ω^+ and $||v_0|| = 1$. Using $C_0 := \sup_{\overline{\Omega^+}} a$, (2.3) and (2.4),

$$I_{\lambda,\gamma}(tv_0) \le \frac{M(1)}{2}t^2 - Ct^{\theta} \int_{\text{supp }v_0} a(x)v_0^{\theta} \, dx + DC_0 |\text{supp }v_0| - \gamma \frac{t^6}{6} \int_{\Omega} v_0^6 \, dx,$$

where $|\text{supp } v_0|$ denotes the Lebesgue measure of the set supp v_0 . Since $4 < \theta < 6$, the result follows picking $e = t_* v_0$, for some large enough $t_* > 0$.

Due to the two previously proved lemmas, we may employ a version of the mountain pass theorem, without the (*PS*) condition (see [14, page 12]), due to Ambrosetti and Rabinowitz [5], and conclude the existence of a sequence $(u_n) \subset H_0^1(\Omega)$ satisfying

$$I_{\lambda,\gamma}(u_n) \to c_{\lambda,\gamma} \quad \text{and} \quad I'_{\lambda,\gamma}(u_n) \to 0,$$
 (2.5)

where

$$c_{\lambda,\gamma} = \inf_{\eta \in \Gamma} \max_{t \in [0,1]} I_{\lambda,\gamma}(\eta(t)) > 0$$
(2.6)

and

$$\Gamma := \{ \eta \in C([0, 1], H_0^1(\Omega)) : \eta(0) = 0, \eta(1) = e \}.$$
(2.7)

Let us prove the following lemma about the sequence (u_n) .

LEMMA 2.3. Let $(u_n) \subset H_0^1(\Omega)$ be a sequence satisfying (2.5). Then (u_n) is bounded.

PROOF. By straightforward calculations, there is a positive constant C such that

$$I_{\lambda,\gamma}(u_n) - \frac{1}{\theta} I'_{\lambda,\gamma}(u_n)(\zeta u_n) \le ||u_n|| + C,$$
(2.8)

where ζ is the function whose supremum (least upper bound), \widetilde{K} , appears in hypothesis (a_2) .

On the other hand, since $\zeta = 0$ in Ω^- , by (a_3) ,

$$I_{\lambda,\gamma}(u_n) - \frac{1}{\theta} I'_{\lambda,\gamma}(u_n)(\zeta u_n) \ge \frac{1}{2} \widehat{M}(||u_n||^2) - \frac{1}{\theta} M(||u_n||^2)||u_n||^2$$
$$- \frac{1}{\theta} \widetilde{K} M(||u_n||^2) \int_{\Omega} |u_n||\nabla u_n| \, dx$$

From Young's inequality,

$$I_{\lambda,\gamma}(u_n) - \frac{1}{\theta} I'_{\lambda,\gamma}(u_n)(\zeta u_n) \ge \frac{1}{2} \widehat{M}(||u_n||^2) - \frac{1}{\theta} M(||u_n||^2)||u_n||^2 - \frac{1}{2\theta} \widetilde{K} M(||u_n||^2)||u_n||^2.$$
(2.9)

By (2.8) and (2.9),

$$\frac{1}{2}\widehat{M}(||u_n||^2) - \frac{1}{\theta}M(||u_n||^2)||u_n||^2 - \frac{1}{2\theta}\widetilde{K}M(||u_n||^2)||u_n||^2 \le ||u_n|| + C.$$
(2.10)

Recall that by the definition of \widehat{M} and by (M_2) , it follows that

$$\widehat{M}(t) \ge \frac{1}{2}M(t)t$$
 for all $t \ge 0$. (2.11)

Thus, using (M_1) , (2.10) and (2.11),

$$m_0\left(\frac{1}{4} - \frac{1}{\theta} - \frac{\widetilde{K}}{2\theta}\right) ||u_n||^2 \le ||u_n|| + C$$

Since δ in (a_2) was taken to satisfy (1.1), we conclude that the sequence (u_n) is bounded.

Lemma 2.3 guarantees the existence of a convergent subsequence $(u_n) \in H_0^1(\Omega)$ such that

$$u_n \rightharpoonup u \quad \text{in } H_0^1(\Omega)$$
 (2.12)

and

$$u_n \to u \quad \text{in } L^s_{loc}(\Omega),$$
 (2.13)

for $2 \le s < 6$.

The following lemma will also be very useful.

LEMMA 2.4. Let $(u_n) \subset H_0^1(\Omega)$ be as in (2.12) and (2.13).

Then

$$\int_{\Omega} a(x)g(u_n)u_n \, dx \to \int_{\Omega} a(x)g(u)u \, dx \tag{2.14}$$

and

$$\int_{\Omega} a(x)g(u_n)u\,dx \to \int_{\Omega} a(x)g(u)u\,dx.$$
(2.15)

PROOF. We shall prove (2.14); the proof of the other limit (2.15) is analogous.

Notice that for all $R \ge R_0$, where R_0 is the positive constant that appears in hypothesis (a_3), since g has subcritical growth and (2.13) holds, applying the Lebesgue dominated convergence theorem,

$$\int_{\Omega \cap B_R} a(x)g(u_n)u_n\,dx \to \int_{\Omega \cap B_R} a(x)g(u)u\,dx.$$

The proof is completed if we prove that

$$\lim_{R \to \infty} \int_{\Omega \setminus B_R} a(x)g(u_n)u_n \, dx = 0 \tag{2.16}$$

uniformly in *n*.

It follows from (g_1) and (g_2) that, for $\epsilon > 0$ and a fixed $q \in (4, 6)$, there is a constant C_{ϵ} such that

$$g(t) \le \epsilon |t| + C_{\epsilon} |t|^{q-1} + \epsilon |t|^5.$$
 (2.17)

Using (2.17),

$$\int_{\Omega \setminus B_R} a(x)g(u_n)u_n \, dx \leq \epsilon \sup_{|x| \geq R} |a(x)| \int_{\Omega \setminus B_R} |u_n|^2 \, dx$$
$$+ C_{\epsilon} \sup_{|x| \geq R} |a(x)||x|^2 \int_{\Omega \setminus B_R} \frac{|u_n|^q}{|x|^2} \, dx$$
$$+ \epsilon \sup_{|x| \geq R} |a(x)| \int_{\Omega \setminus B_R} |u_n|^6 \, dx.$$
(2.18)

Applying Hölder's inequality,

$$\int_{\Omega \setminus B_R} \frac{|u_n|^q}{|x|^2} \, dx \le \left(\int_{\Omega \setminus B_R} \frac{dx}{|x|^{2r}} \right)^{1/r} ||u_n||^q \tag{2.19}$$

where r = 6/(6 - q). Since r > 3/2, then, given $\epsilon > 0$, there exists $R = R(\epsilon) \ge R_0$ such that

$$\left(\int_{\Omega\setminus B_R} \frac{dx}{|x|^{2r}}\right)^{1/r} < \epsilon.$$
(2.20)

Employing inequality (2.20) in (2.19) and (2.19) in (2.18), considering that (a_3) implies $\sup_{|x|\geq R} |a(x)| < \infty$, and taking into account the boundedness of the sequence (u_n) , the limit (2.16) is proved and the proof is completed.

3. The subcritical case

In the subcritical case, we consider $\gamma = 0$ and no restriction on the parameter λ is made, so it can be absorbed by the function *a*. Then, the problem $(P_{\lambda,\gamma})$ reduces to

$$(P_{1,0}) \qquad \begin{cases} M(||u||^2)[-\Delta u + u] = a(x)g(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

with the associated functional given by

$$I_0(u) = \frac{1}{2}\widehat{M}(||u||^2) - \int_{\Omega} a(x)G(u) \, dx.$$

[7]

Proof of Theorem 1.1 *in the subcritical case* ($\gamma = 0$).

Let us show that the sequence (u_n) that satisfies (2.5) has, indeed, a convergent subsequence. By Lemma 2.3, the sequence is bounded and has a weak convergent subsequence converging to *u*. Hence, up to subsequences, since $||u|| \le \liminf_{n\to\infty} ||u_n||$, we get $||u_n||^2 - ||u||^2 \ge 0$ for sufficiently large *n*. Thus, the weak convergence of (u_n) , (2.14) and (2.15) implies that for large *n*,

$$o_n = I'_0(u_n)(u_n) - I'_0(u_n)(u)$$

= $M(||u_n||^2)[||u_n||^2 - ||u||^2] + \int_\Omega a(x)g(u_n)u\,dx - \int_\Omega a(x)g(u_n)u_n\,dx$
 $\ge m_0[||u_n||^2 - ||u||^2] + o_n.$

Hence, since $m_0 > 0$, we conclude that $\lim_{n\to\infty} ||u_n|| = ||u||$, which implies the convergence $\lim_{n\to\infty} u_n = u$ in the space $H_0^1(\Omega)$.

The functional I_0 is of C^1 class, and by (2.5) and the above convergences it follows that $I'_0(u) = 0$. Therefore, u is a weak solution of the problem ($P_{1,0}$).

4. The critical case

In the critical case, we consider $\gamma = 1$, and the problem $(P_{\lambda,\gamma})$ takes the form

$$(P_{\lambda,1}) \qquad \begin{cases} M(||u||^2)[-\Delta u + u] = \lambda a(x)g(u) + |u|^4 u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

with the associated functional given by

$$I_{\lambda}(u) = \frac{1}{2}\widehat{M}(||u||^2) - \lambda \int_{\Omega} a(x)G(u)\,dx - \frac{1}{6}\int_{\Omega} u_+^6\,dx.$$

To prove Theorem 1.1 in the case $\gamma = 1$, we need to establish some definitions. Let us denote by *S* the best Sobolev constant of the embedding

$$H_0^1(\Omega) \hookrightarrow L^6(\Omega),$$

which is given by

$$S := \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 \, dx}{(\int_{\Omega} |u|^6 \, dx)^{1/3}}$$

It is well known that S is independent of the set Ω and it is never achieved, except when $\Omega = \mathbb{R}^3$. Moreover,

$$S := \frac{\int_{\mathbb{R}^3} |\nabla U|^2 \, dx}{(\int_{\mathbb{R}^3} |U|^6 \, dx)^{1/3}}$$

where $U(x) = C_3/(|x|^2 + 1)$ and C_3 is a constant such that

$$-\Delta U = U^5 \quad \text{in } \mathbb{R}^3.$$

From now on, we shall prove an estimate for $c_{\lambda,1}$ defined in (2.6). For economy of notation let us write $c_{\lambda,1} := c_{\lambda}$.

LEMMA 4.1. If conditions $(M_1)-(M_3)$, $(a_1)-(a_3)$ and $(g_1)-(g_3)$ hold, then

$$\lim_{\lambda \to \infty} c_{\lambda} = 0. \tag{4.1}$$

PROOF. Let $v_0 \in H_0^1(\Omega)$ be the function given in the proof of Lemma 2.2. Since the functional I_{λ} has the mountain pass theorem geometry, there exists t_{λ} such that

$$I_{\lambda}(t_{\lambda}v_0) = \max_{t \ge 0} I_{\lambda}(tv_0).$$

Hence, since v_0 is normalized,

$$t_{\lambda}^{2}M(t_{\lambda}^{2}) = \lambda \int_{\Omega} a(x)g(t_{\lambda}v_{0})t_{\lambda}v_{0} + t_{\lambda}^{6} \int_{\Omega} v_{0}^{6} dx, \qquad (4.2)$$

and then,

$$t_{\lambda}^2 M(t_{\lambda}^2) \ge t_{\lambda}^6 \int_{\Omega} v_0^6 \, dx.$$

Using (2.4),

$$t_{\lambda}^4 M(1) \ge t_{\lambda}^6 \int_{\Omega} v_0^6 \, dx,$$

and, therefore, for any sequence $\lambda_n \to \infty$ there is a sequence $t_{\lambda_n} \to t_0$, for some real number $t_0 \ge 0$.

Let us prove that $t_0 = 0$. If $t_0 > 0$, we would have a contradiction. Indeed, (4.2) implies that the expression

$$\lambda_n \int_{\Omega} a(x)g(t_{\lambda_n}v_0)t_{\lambda_n}v_0 + t_{\lambda_n}^6 \int_{\Omega} v_0^6 dx$$

is bounded. This, in turn, yields that

$$\lambda_n \int_{\Omega} a(x)g(t_{\lambda_n}v_0)t_{\lambda_n}v_0 \leq \int_{\Omega} a(x)g(t_{\lambda_n}v_0)t_{\lambda_n}v_0 + t_{\lambda_n}^6 \int_{\Omega} v_0^6 dx$$

is also bounded, but this cannot happen because

$$\lim_{n\to\infty}\lambda_n\int_{\Omega}a(x)g(t_{\lambda_n}v_0)t_{\lambda_n}v_0=+\infty.$$

Therefore, $t_0 = 0$.

Using the notation and results of Lemma 2.2, let us define the path $\eta_*(t) =: te = tt_*v_0$. Note that $\eta_*(0) = 0$, $I_{\lambda}(\eta_*(1)) < 0$ and, consequently, $\eta_*(t) \in \Gamma$, as defined in (2.7).

Finally,

$$0 < c_{\lambda} \leq \max_{t \in [0,1]} I_{\lambda}(\eta_{*}(t)) = I_{\lambda}(t_{\lambda}v_{0}) \leq \frac{1}{2}\widehat{M}(t_{\lambda}^{2})$$

and the continuity of the function \widehat{M} , together with the limit $t_{\lambda_n} \to 0$, imply that $\lim_{\lambda \to +\infty} c_{\lambda} = 0$, as we wished to prove.

Proof of Theorem 1.1 *in the critical case* ($\gamma = 1$).

Let us show that the Palais–Smale sequence (u_n) that satisfies (2.5) has a subsequence such that

$$\lim_{n \to \infty} \int_{\Omega} |u_n|^6 \, dx = \int_{\Omega} |u|^6 \, dx \tag{4.3}$$

and also that

$$\lim_{n \to \infty} ||u_n||^2 = ||u||^2.$$
(4.4)

Indeed, in order to prove (4.3), taking a subsequence, we may suppose that

$$|\nabla u_n|^2 \rightarrow |\nabla u|^2 + \mu$$
 and $|u_n|^6 \rightarrow |u|^6 + \nu$ (in the weak* sense of measures)

Using the concentration compactness principle due to Lions (see [11, Lemma 2.1]), we obtain an at most countable index set Λ and sequences $(x_i) \subset \mathbb{R}^3$, $(\mu_i), (\nu_i) \subset [0, \infty)$, such that

$$\nu = \sum_{i \in \Lambda} \nu_i \delta_{x_i}, \quad \mu \ge \sum_{i \in \Lambda} \mu_i \delta_{x_i} \quad \text{and} \quad S \nu_i^{1/3} \le \mu_i,$$
(4.5)

for all $i \in \Lambda$, where δ_{x_i} is the Dirac mass at $x_i \in \Omega$.

Now we claim $\Lambda = \emptyset$. Arguing by contradiction, assume that $\Lambda \neq \emptyset$. Consider a function ϕ such that $\phi \in C_0^{\infty}(\Omega, [0, 1]), \phi \equiv 1$ on $B_1(0), \phi \equiv 0$ on $B_2(0)$ and $|\nabla \phi|_{\infty} \leq 2$. Let us fix $i \in \Lambda$. Defining $\psi_{\varrho}(x) := \phi((x - x_i)/\varrho)$ where $\varrho > 0$, we have that $(\psi_{\varrho} u_n)$ is bounded. Thus $I'_1(u_n)(\psi_{\varrho} u_n) \to 0$, that is,

$$\begin{split} M(||u_n||^2) \bigg[\int_{\Omega} u_n \nabla u_n \cdot \nabla \psi_{\varrho} \, dx + \int_{\Omega} |u_n|^2 \psi_{\varrho} \, dx \bigg] \\ &= -M(||u_n||^2) \int_{\Omega} \psi_{\varrho} |\nabla u_n|^2 \, dx + \lambda \int_{\Omega} a(x) g(u_n) \psi_{\varrho} u_n \, dx + \int_{\Omega} \psi_{\varrho} |u_n|^6 \, dx + o_n(1). \end{split}$$

Since the support of ψ_{ϱ} is $B_{2\varrho}(x_i)$, we obtain

$$\left|\int_{\Omega} u_n \nabla u_n \cdot \nabla \psi_{\varrho} \, dx\right| \leq \int_{B_{2\rho}(x_i)} |\nabla u_n| |u_n \nabla \psi_{\varrho}| \, dx.$$

By the Hölder inequality and the fact that the sequence (u_n) is bounded in $H_0^1(\Omega)$,

$$\left|\int_{\Omega} u_n \nabla u_n \cdot \nabla \psi_{\varrho} \, dx\right| \leq C \left(\int_{B_{2\varrho}(x_i)} |u_n \nabla \psi_{\varrho}|^2 \, dx\right)^{1/2}.$$

By the dominated convergence theorem, $\int_{B_{2\varrho}(x_i)} |u_n \nabla \psi_{\varrho}|^2 dx \to 0$ as $n \to +\infty$ and $\rho \to 0$. Therefore,

$$\lim_{\varrho \to 0} \left[\lim_{n \to \infty} \int_{\Omega} u_n \nabla u_n \cdot \nabla \psi_{\varrho} \, dx \right] = 0.$$

By (M_1) ,

$$\lim_{\varrho \to 0} \lim_{n \to \infty} \left[M_a(||u_n||^2) \int_{\Omega} u_n \nabla u_n \cdot \nabla \psi_{\varrho} \, dx \right] = 0.$$

[10]

Moreover, similar reasoning yields

$$\lim_{\varrho \to 0} \lim_{n \to \infty} \left[\int_{\Omega} a(x) g(u_n) \psi_{\varrho} u_n \, dx \right] = 0.$$

Thus,

$$m_0 \int_{\Omega} \psi_{\varrho} \mathrm{d}\mu \leq \int_{\Omega} \psi_{\varrho} \mathrm{d}\nu + o_{\varrho}(1).$$

Letting $\rho \to 0$, and using the standard theory of Radon measures and (4.5), the following inequality is achieved:

$$v_i \ge (m_0 S)^{3/2}$$
.

Now we shall prove that the above inequality cannot occur, and therefore that the set Λ is empty. Indeed, arguing by contradiction, let us suppose that $v_i \ge (m_0 S)^{3/2}$ for some $i \in \Lambda$. Thus, some known standard arguments imply that

$$c_{\lambda} \ge \left(\frac{1}{\theta} - \frac{1}{2^*}\right) (m_0 S)^{3/2}.$$
 (4.6)

By (4.1), there exists $\lambda^* > 0$ such that

$$c_{\lambda} < \left(\frac{1}{\theta} - \frac{1}{2^*}\right) (m_0 S)^{3/2} \quad \forall \lambda \ge \lambda^*.$$
(4.7)

But inequality (4.6) contradicts (4.7) above. Hence, the index set $\Lambda = \emptyset$ and thus (4.3) holds.

In order to prove (4.4), by Lemma 2.3, again up to subsequences, we may assume that $\lim_{n\to\infty} ||u_n||^2 = A$, for some real number $A \ge 0$.

By (4.3) and Lemma 2.4,

$$\lim_{n \to \infty} M(||u_n||^2) ||u_n||^2 = \lambda \int_{\Omega} a(x)g(u)u \, dx + \int_{\Omega} |u|^6 \, dx.$$
(4.8)

Using (M_1) ,

$$M(A)\left[\int_{\Omega} \nabla u \nabla \phi \, dx + \int_{\Omega} u \phi \, dx\right] = \lambda \int_{\Omega} a(x)g(u)\phi \, dx + \int_{\Omega} |u|^4 u \phi \, dx, \tag{4.9}$$

for all $\phi \in H_0^1(\Omega)$.

The limits in (4.8) and (4.9) yield

$$\lim_{n \to \infty} M(||u_n||^2) ||u_n||^2 = M(A) ||u||^2$$

and (4.4) is valid.

For $\lambda \ge \lambda^*$, the rest of the proof follows the same steps made at the end of the proof of Theorem 1.1 in the subcritical case.

References

- C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, 'On a class of nonlocal elliptic problems with critical growth', *Differ. Equ. Appl.* 2 (2010), 409–417.
- [2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, 'Positive solutions for a quasilinear elliptic equation of Kirchhoff type', *Comput. Math. Appl.* 49 (2005), 85–93.
- [3] C. O. Alves and G. M. Figueiredo, 'Nonlinear perturbations of a periodic Kirchhoff equation in $\mathbb{R}^{N'}$, *Nonlinear Anal.* **75** (2012), 2750–2759.
- [4] C. O. Alves, L. R. Freitas and S. H. M. Soares, 'Indefinite quasilinear elliptic equations in exterior domains with exponential critical growth', *Differential Integral Equations* 24 (2011), 1047–1062.
- [5] A. Ambrosetti and P. H. Rabinowitz, 'Dual variational methods in critical point theory and applications', *J. Funct. Anal.* **14** (1973), 349–381.
- [6] A. Arosio, 'On the nonlinear Timoshenko–Kirchhoff beam equation', *Chin. Annal. Math.* **20** (1999), 495–506.
- [7] A. Arosio, 'A geometrical nonlinear correction to the Timoshenko beam equation', *Nonlinear Anal.* **47** (2001), 729–740.
- [8] C. Chen, Y. Kuo and T. Wu, 'The Nehari manifold for a Kirchhoff type problem involving signchanging weight functions', J. Differential Equations 250(4) (2011), 1876–1908.
- [9] D. C. de Morais Filho and O. H. Miyagaki, 'Critical singular problems on unbounded domains', *Abst. Appl. Anal.* 6 (2005), 639–653.
- [10] G. Kirchhoff, Mechanik (Teubner, Leipzig, 1883).
- [11] P. L. Lions, 'The concentration-compactness principle in the calculus of variations: the limit case', *Rev. Mat. Iberoamericana* 1 (1985), 145–201.
- [12] T. F. Ma, 'Remarks on an elliptic equation of Kirchhoff type', Nonlinear Anal. 63(5–7) (2005), 1967–1977.
- [13] H. Tehrani, 'Solutions for indefinite semilinear elliptic equations in exterior domains', J. Math. Anal. Appl. 255 (2001), 308–318.
- [14] M. Willem, *Minimax Theorems* (Birkhäuser, Boston, 1996).

G. M. FIGUEIREDO, Universidade Federal do Pará, Faculdade de Matemática, CEP: 66075-110, Belém - Pa, Brazil e-mail: giovany@ufpa.br

D. C. DE MORAIS FILHO, Universidade Federal de Campina Grande, Unidade Acadêmica de Matemática, CEP: 58109-970, Campina Grande - Pb, Brazil e-mail: daniel@dme.ufcg.edu.br