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COMMUTING DILATIONS AND
UNIFORM ALGEBRAS

TAKAHIKO NAKAZI

1. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra
of complex-valued continuous functions on X, and let A be a uniform algebra on
X. Fix a nonzero complex homomorphism 7 on A and a representing measure m
for 7 on X. The abstract Hardy space H? = HP(m), 1 < p < oo, determined
by A is defined to the closure of A in LP = LP(m) when p is finite and to be the
weak*-closure of A in L% = L*®°(m) when p = 00.

Let M be an invariant subspace of H? under the multiplications of functions
in A and N the orthogonal complement of M in H?, thatis, N = H? & M. The
orthogonal projection in L? with range N will be denoted by P. For f a function in
H™ let S; denote the projection onto N of the operator My on L? of multiplication
by f, that is, Sy = PM;|N. If A is a disc algebra and 7(f) = £(0) where f denotes
the holomomorphic extension of f in A, then 7 is a complex homomorphism on
A. Let m be a normalized Lebesgue measure on the unit circle dU; then m is a
representing measure for 7. Then H? is the classical Hardy space H>(U).

SARASON THEOREM. Let H? be the classical Hardy space H*(U). If T is a
bounded linear operator on N that commutes with Sy (f € A), then there is a
Sfunction ¢ in H® such that

[¢llo =17l and T =S,.

The Sarason Theorem implies that || Sy || = ||¢ + M N L*|| for any ¢ in H*,
and hence it is close to Nehari’s theorem. The author ([10], [11]) generalized Ne-
hari’s theorem to general uniform algebras. In this paper generalizations of the
Sarason Theorem to general uniform algebras will be proved using the method in
the author’s previous papers ([10], [11]). The proofs are different from Sarason’s
proof and simpler than his in the classical Hardy space H*(U). In Section 2, we
will consider the relation between || Sy || and ||¢ + MM L™||. In Section 3, we will
apply the result in Section 2 to get Pick’s theorem. In the special case, this gives
a theorem of Abrahamse [1, Theorem 1] that implies Pick’s theorem in a multiply
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connected domain. In Section 4, we will study generalizations of the Sarason The-
orem. This gives a dilation of the commutant of some representation of a uniform
algebra, extending partially the dilation theorem of Sz-Nagy and Foias, ([9]), in
case A is a disc algebra. In Section 5, we will give dilations of the commutants
of other representations of a uniform algebra relating with Hankel operators and
Toeplitz operators. In Section 6, we will give concrete examples for which we can
apply theorems in previous sections. That is, a uniform algebra which consists of
rational functions on a multiply connected domain, a subalgebra of a disc algebra
which contains theé constants and which has finite codimension, and a polydisc
algebra. However the Sarason Theorem is not true in an exact meaning. It is in-
teresting to compare a recent paper of R. G. Douglas and V. 1. Paulsen [6] or an
example of S. Parrott [13] with this.

Throughout this paper, we use the following definition and assume that MM L>®
is dense in M M L'. This assumption is satisfied in many examples (see Section
6).

DEFINITION. For an invariant subspace M in H>, M+ denotes the orthogonal
complement of M in L?. Moreover set

MinL® = {feL"":/fgdm:OforallginM}
X
and
MinL = '{feL‘:/ngdm:Oforaugian L°°}.

2. Generalized Interpolation. Put £L = {v € L™°; v! € L and v > 0}. Let
M be an invariant subspace of H? and N be an orthogonal complement of M in H?,
that is, N = H?> © M, as in the Introduction. For each v in L, let N = vH?> © vM
and P’ the orthogonal projection from L? onto N”. For ¢ in H® and g in N, Sy is
the operator defined by

S48 =P'Myg.

If v is a constant function, then N* = N, P* = P and S;) = S.
Denoting by (f) the coset in (L)~ / (H®)"! of an fin (L)', define

[ON = inf{ [l glloo 187 |03 & € (O}

and

Yo = sup{ |DIl; ) € X"/ H®)}.

This constant Yo was introduced in [11], and used in [11] and [12]. In the definition
above, we can use L/ |(H*®)™"| instead of (L®)~" / (H®)™".
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LEMMA 1. If h is in L* then there exists a sequence {v,} in L such that

. 2 .
lim | v, dm—/XIh] dm

n—o0

and

. 22
tim [ [hl*v;? dm = [ || dm.

PROOF. This is in the proof of Theorem 1 in [10]. In factset E, = {x € X; 0 <
|hx)] < 1/n}, Fo = {x € X; h(x) = 0} and F, = {x € X; |h(x)| > 1/n}.
Define v, by the formula

1 x€E,
vp(x) = l/n x€eFy
|hx)|Y*  x€F,

LEMMA 2. If ¢ is in H*, then for any vin L
M sup{|/¢h12 dm'; hevH?, kev'M*, ||k, < 1and

[l &ll2 < 1}.

PROOF. Since N* = (vH?>) N v~ !M™*, it is sufficient to show that

IS > sup{l/¢h1€ dm’; hevER, ke v 'M*, ||hl, < 1and

Ikl < 1}.

For h € vH? and k € v 1Mt

| o Hk dm| = |6 . )
= (¢ P"h, k)|
= |(P*¢P"h, k)|
< ASHI Al NIl

where (, ) denotes the usual inner product with respect to dm. Hence the lemma
follows.
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THEOREM 1. Suppose M is an invariant subspace of H* and M+ N L™ is dense
in M+ N L'. Let ¢ be a function in H®; then the following are valid.

(D) sup{||Sy|; ve L} =|¢ +MN L=|.

ISl = 1ISgll i () = @)

GO <S5/ 1Ss 1l < W for any vin L.

PROOF.
(HIfgeMn L*™® and h € NY then gh € vM. Hence

hagh = P((& +@)h) = P'(¢h).

Thus forany v € LIS} || < |[¢ +MNL®||.1fh € MM L™ thenh = v, xv, 'k,
Va € voH? and v;lh € (v,,M)l = v;'MJ-. By Lemma 2

UX¢E dm! - quﬁv,,(v;lﬁ) dm
<USEN valla [1vz' All2-

As n— oo, by Lemma 1
| @hdm| <suplisy]| [ 1Al dm
Since M+ N L™ is dense in M+ N L'

g + M L] < sup|Sy .

Q) Iff € (H®)™" then v|f|H? = q(vH?) and v_'|f|~'M' = q(v"'M"*) with
q= lfl/f=f/|fl, Hence

sup{lAaEqS dm.; a€vH?, bev 'M*, ||lall < 1and
]2 < 1}
= sup{‘/xc&qﬁ dml; cev|f|H:, dev'|fI™'M, |lc|, < 1 and

Il < 1},

By Lemma 2 || S| = [|S4]] if (v) = (w).
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(3) Letv € L1If fy [k[%? dm < Land fx|h|>v"? dm < 1, then fy [k|* dm <
V72|l and fx |h|* dm < ||v?||o. Hence

ISyl = sup{‘/xaﬁqﬁ dml; a€N', beN’, |la <1and
Il <1}
< sup{’/x vk X v dm'; vk € vH2, vk € (vM)*t,
vkl < 1 and [[v A < 1}
< sup{‘/xkﬁqi dnl; ke 1, he Mt ks < v )42
and (] < 14}
< (12l 1921) " sup || 116 | k€ 12, 1 e,
Il < 1 and Al < 1}.

By Lemma 2

1SS < 11 loo [Vlloo 1186

and by (2) in this theorem

IS5IE < I IISs -

This implies (3).
The proof of (1) of Theorem 1 is similar to that of Theorem 1 in [10]. The proofs
of (2) and (3) are similar to that of Theorem 3 in [11].

COROLLARY 1. Suppose M is an invariant subspace of H* such that M+ 1 L>®
is dense in M- L'. If Yy is finite, then

Sl <llé + ML= <ol Syl
for any ¢ in H®.

If A is a disc algebra then 7o = 1 and hence Corollary 1 is a part of the Sarason
Theorem. Let N, denote the set of representing measures on the Shilov boundary of
A for 7. Suppose N; is finite dimensional and m is a core point of N,. Let N* be the
real annihilator of A in LZ’; then N*° is also finite dimensional. Set E = exp N*°;
then E is a subgroup of L. If n = 0 then £ = {1}.
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COROLLARY 2. Suppose N, is finite dimensional and m is a core point of N;. Let
M be an invariant subspace of H* and ¢ a function in H®.

(Dsup{ 1Sy v € E} = [l + M L.

(2) If m is a unique logmodular measure then there exists vy in ‘E such that

ISy1l = llé +Mn L.
Moreover VY, is finite and so

[Ssll < ll@ +MOLZ[ < ¥ol[Ss |-

PROOF. (1) By the proof of Theorem 2 in [10] and (2) of Theorem 1, we can
choose ‘E instead of L in (1) of Theorem 1. By Theorem 6.1 in [7, Chapter V],
M+N L™ is dense in M- N L' and hence we need not assume it. (2) By (1) and the
proof of Theorem 3 in [10] there exists vo in Z such that || SY'[| = [|¢ +M N L.
7o is finite by Theorem in [11] and hence Corollary 1 completes the proof.

3. Pick Interpolation Theorem. The proofs in this section are modeled after
the Pick intepolation theorem for a bounded domain in the plane whose boundary
consists of finite disjoint analytic Jordan curves due to M. B. Abrahamse [1].

Let E = {sy,52,...,5,} be the finite set of independent continuous linear func-
tionals on H?. Suppose if s € E then for any ¢ in H* and h in H* s(¢h) =
5(¢)s(h), and we will write s(h) = h(s). PutM = {f € H%:f(s) =0 forall s €
E}. Then M is an invariant subspace and N = H> © M is an n-dimensional sub-
space. For each vin L, NV = vH? © vM is also an n-dimensional subspace. Let
(, ), denote the usual inner product with respect to v* dm. For each v in £ and
s € E, there exists k¥ in H? such that for any 4 in H?

h(s) = (h,K)), = /X kS V2 dm.

If vis constant we will write ky = k. Putk'(s, ) = (k3, k;),; then k¥ (s, ) is a kernel
function on E X E. If f is in M then for any s € E we have (f,k;), = 0 and hence

/ka;VZ dm = /ngkz dm = 0.

Therefore vk, belongs to N” and { vk} ,..., vk} } is a basis in N”.
LEMMA 3. For ¢ in H®, P'(¢ k") = ¢ (s)k".

THEOREM 2. Let E = { S1,852, ..., s,,} be the finite set of independent continuous
linear functionals on H*> which if s € E then for any ¢ in H® and h in H? s(¢ h) =
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s(¢)s(h), and let wi, wy, ..., w, be complex numbers. Suppose M- N L™ is dense
in Mt N L' where M = {h € H*, h(s) = 0 forall s € E}.

(1) There is an analytic function ¢ in H* satisfying ||¢ || ., < 1 and ¢ (s;) = w;
fori = 1,...,nif and only if the matrix

[(1 — wiwK’ (si, ;)]

is nonnegative for each v in L.

(2) When (v) = (u), the matrix [(1 — w;w;)k"(s;, s;)] is nonnegative if and only
if [(1 — w;w))k"(s;, 5;)] is nonnegative.

(3) When 7 is finite, if the matix

[(1 — w;w))k(s;, 57)]

is nonnegative then there is an analytic function ¢ in H* satisfying || ¢ ||. < Yo
and ¢ (s;)) =w;fori=1,...,n.

PROOF. For s € E, let or; be a complex number and set

k=" avk,.
s
Then
Iz = 3 sk (s. )
and

IP @2 = 3 i (96 (DK (s.1).
Hence the assertion

1P @03 < [Ikllz
for all k in NV is equivalent to the assertion

[(1 — wp#)k"(si, 5;)] > 0.

Since || P*(¢k)|l2 = ||(S})* k|2, the matrix above is nonnegative for each v if and
only if sup{||S}[|; v€ L} < 1.
(DIff|¢llo < 1and ¢(si) = wi fori = 1,...,nthensup{||S;||; ve L} <1
and hence from the above remark the part of ‘only if’ follows. Conversely if the
matrix is positive for each v € L, by what was shown above sup{ || S} ||; v €
L} < 1andby (1) of Theorem 1 ||¢ + M N L®|| < 1.
(2) follows from (2) of Theorem 1 and what was shown above.
(3) If [(1 — ww))k"(s;, 5)] is nonnegative then || S, || < 1. Since 7y is finite, by
Corollary 1 ||¢ + M N L*®|| <7, and this implies (2).
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COROLLARY 3. Suppose N; is finite dimensional and m is a core point of N;. Let
E ={s1,52,...,50} be the finite set of independent continuous linear functionals
on H? and wy,wa, ..., wy complex numbers.

(1) There is an analytic function ¢ in H® satisfying || ¢ |lo < 1 and ¢ (s;) = w;

fori=1,...,nif and only if the matrix

[(1 — wiw))k"(s;, 5))]

is nonnegative for each v in ‘E
(2) When m is a unique logmodular measure, if the matrix

[(1 — ww)k(s;, 5)]

is nonnegative then there is an analytic function ¢ in H* satisfying || ¢ ||coc < Yo
and ¢(sj)y =w;ifori=1,...,n.

In this section, we used a well known result, that is, when E = {51, 52,..., 5, }
is a finite set there exists at least one function f in H* such that f(s;) = w; for
i=1,...,n

4. Dilations of Commutants. Let L be a complex Hilbert space and B(L) the
algebra of all bounded linear operators on L. I denotes the identity operator in L.
An algebra homomorphism f — M; of H* in ‘B(L) which satisfies

My=1 and [ M <||flloo

is called a representation of H* on L. If A\ is a closed subspace of L and P is the
orthogonal projection onto A\, then A__is called semi-invariant under H* provided
PMPM,P = PM;M, for all f and g in H*. For ¢ in H* and h in A, S, is the
operator defined by

Sgh = PMyh.

D. Sarason [14] showed that every semi-invariant subspace of H* is equal to the
orthogonal complement of one invariant subspace of H> with respect to a larger
one, and every subspace of the latter form is semi-invariant under H°. By the
Sarason Theorem it is natural to assume that for any f, g in H® M*M, = M M.
A question is that if T is a bounded operator on A that commutes with S for
any f in H* then T = S, for some ¢ in H* and ||T|| = ||¢||. However the
conjecture can be answered negatively even if A\l is two dimensional because the
Pick interpolation theorem for two points is not true in the original form for the
annulus algebra [1, p. 202]. If the question can be answered positively for the disc
algebra, then it contains the part of a theorem of B. Sz-Nagy and C. Foias [9] and
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hence a theorem of 7. Ando [3]. The question is not true for the polydisc algebra
[8]. This is not so surprizing. For when Al = N = H? © M, if the question is

true then for any ¢ in H® ||S,|| = ||¢ + M N L*™||. This negative answer for the
polydisc algebra is related with examples of S. Parrott [13] and N. J. Varoffoulos
[15].

In this section we concentrate on a special case. We assume that H® = H> L*°.
Asin Section2let . = N=H>*OM, L =1%and Sy = S;(¢ € H®). Suppose
N L™ is dense in N, then N¥ N L™ is dense in N” for any v in L. For ¢ in H?
and g in NY M L™, S; is the operator defined by

S;g:Pde,g.

If ¢ isin H™ then §, = S

THEOREM 3. Let M be an invariant subspace of H* and let M- M L™ be dense
in MY and M+ N L', and NN L dense in N. Suppose T is a bounded operator
on N which commutes with S¢ for any f in H®.

(1) There exists a function ¢ in H* such that T = §¢.

(2) If TP1 is in H® then there exists a function ¢ in H* such that

Tl <@ llowr T=So and [[¢loo = sup{||S;|

;veEL}.
(3) If V¢ is finite then there exists a function ¢ in H* such that

ITI < l¢lloc <YolIT|| and T =S,.

PROOF.
(1) Put ¢ = TP1 then ¢ € H?. For any h,k € NN L*®

(Th,k) = (hP1,T*k)
= (TS,P1,k)
= (S, TP1,k)
= (¢ h,k)
= (Ssh, k)

because T commutes with S,,. Thus 7 = .§¢ because N M L* is dense in V.
(2) ¢1 = TP1 is in H™ and hence by the proof of (1) T = S,,. By (1) of
Theorem 1 we can choose ¢ in H* such that ||T|] < ||¢|le, T = Ss and
¢ llo = sup{lS;l: ve L}
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(3) Put ¢; = TP1 then ¢, € H>. As in the proof of (1) of Theorem 1 we can
show that

|fyorh dm| < sup 183,11 7] dm

for h € M+ N L*®. Moreover as in the proof of (3) of Theorem | we can show
that

s

IS5 < (1 2o 1¥20e) s | ki1

ke H°he M- N L™,

|kll2 < T'and [[All2 < 1}.

For any h,k € NN L, (Th,k) = (5';1 h, k) and hence as in the proof of Lemma 2
we can show that

7] = sup{‘/xkfnm dm’;k EH®, he M-N L, ||k, <1
and [[All> < 1}

because MM L™ is dense in M. Since Yy is finite, sup || 5’21 Il <Yl T||. Therefore
sup HS;SI || < oo and hence by the Hahn-Banach theorem there exists a function

¢ € L such that ¢ — ¢, is orthogonal to M- N L*. Since M+ N L™ is dense in

o

M*, ¢ — ¢ belongs to M. Thus ¢ € H*N L™ = H® and Sy = S}, .

5. Hankel operators and Toeplitz operators. Let L be a complex Hilbert
space and M;(f € L) a representation of L on L. If H is a closed subspace
of L and Q is the orthogonal projection onto H, then H is called invariant under
H* provided (1 — Q)M;(1 — Q) = My(1 — Q) for all f in H*®. For ¢ in L™ and h
in H, H, is the operator defined by

Hyh = QMyh
and it is called a Hankel operator. For ¢ in L™ and h in H, T, is the operator
defined by

Toh=(1—Q)Mh

https://doi.org/10.4153/CJM-1990-041-1 Published online by Cambridge University Press


file:///la/h
file:////h/dm
https://doi.org/10.4153/CJM-1990-041-1

786 TAKAHIKO NAKAZI

and it is called a Toeplitz operator. For ¢ in H® put T, = QM |H. Two natural
questions are following:
(1) If T is a bounded operator from H into H* and TT; =T, T for any f in H*
then T = H, for some ¢ in L™ and || T|| = || M,||?
(2) If T is a bounded operator on H that commutes with 77 for any f in H* then
T = T} for some ¢ in H* and || T|| = || M ||? As in Section 4 if the questions
can be answered positively for the disc algebra, then these contain the part of a
theorem of B. Sz-Nagy and C. Foias.
In this section we concentrate on a special case. Let L = L?> and H = H>.

PROPOSITION 4. Suppose if h is a function in H> with hH> C H? then h belongs
to H®. If T is a bounded linear operator on H that commutes with Tf*for allf in
H* then T = T for some ¢ in H® and ||T|| = || K, ||.

PROOF. Put ¢ = Tl then ¢ € H”. Fix h € H*. There exists a sequence { 4, } in
H® such that || h, —h||, — 0 and h, — h a.e. as n — 00. Since T commutes with
T}* for all f in H*,

Thy = T(Ty, 1)
=T} T1
= T;;q&
= huo.

Since T is bounded and ||Th, — Th|, — 0 as n — o9, ||h,¢ — Th|l, — O as
n — o0o. There exists a subsequence { 4, } in H* such that h, ¢ — h¢ a.e. as
j — 00, and hence ¢ h = Th. Thus ¢ H> C H? and by the hypothesis ¢ € H* and
T=Ts.

By the proofs of Theorem 1 in [10], Theorem 3 in [11] and Theorem 3 in this
paper, we can prove the following proposition. Let Q” be the orthogonal projection
from L2 onto (vH2)™ for each vin L. For ¢ in H* and g in vHZ, H}, is the operator
defined by

Hyg = Q'Myg.
When ¢ in H? and g in vH?> N L, H(vb is the operator denfined by ﬁ;g =Q'M,g.

PROPOSITION 5. Let (H?)" N L™ be dense in (H®)* N L' and H® = H2 N L>.
Suppose T is a bounded operator from H? into (Hz)L and TI‘; = T, T for any f
in H®.

(1) There exists a function ¢ in H* such that T = Ifl¢.
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(2) If T1 is in H™ then there exists a function in L* such that

7Tl <ll¢llo, T=Hy and
16l = sup{ | v € £}

(3) If vy is finite then there exists a function ¢ in L* such that

[Tl <l$llo <ol T|| and T = Hy.

6. Concrete Examples. All results in this paper were known in the disc algebra.
‘We shall now apply them to some other concrete examples.
(D Let T be a subgroup of reals, endowed with the discrete topology, and X the
dual group. Let m be a Haar measure on X and A = {f € CX);
Jxf(x)(—a,x) dm(x) = O for any a € T with a > 0}, where (a, x) denotes
the continuous character of X fora € I'. Then dimN; = O and N; = {m}, and
hence Yo = 1. If M is an invariant subspace of H?, then M+ N L™ is dense in
M+ and MM L' but N = H? © M is always infinite dimensional. Hence we can
not apply Theorem 2 or Corollary 2 to this example. We do not know whether
NN L% is dense in N or not.
(II) Let Y be a compact subset of the plane, and let R(Y) be the uniform closure
of the rational functions in C(Y). We regard R(Y) as a uniform algebra on its
Shilov boundary, the topological boundary X of Y. Suppose the complement Y*
of Y has a finite number n of components and the interior Y° of Y is a nonempty
connected set. Let A = R(Y)|X and 7(f) = f(s) for some s in YO If mis a
harmonic measure on X for s then m is a unique logmodular measure of N;
and dimN, = n < o0o. Then E C C(X) and 7y is finite (see [11]). (1) of
Corollary 2 is essentially a theorem of M. B. Abrahamse [1, Theorem 1]. We
can show that NN L* is dense in N, hence Theorem 3 gives a generalization
of the Sarason Theorem but an example of M. B. Abrahamse [1] shows that the
Sarason Theorem is not true explicitly.
(II1) Let A4 be the disc algebra and A be a subalgebra of 4 which contains the
constants and which has finite codimension in 4. If 7(f) = f(0) for f in A and
m is the normalized Lebesgue measure on the unit circle dU, then it is easy to
check that m is a core point of N; and dim N, = dimN*° = 2dim 4 / A. Hence
we can apply (1) of Corollary 3 to this example. But 7 is infinte [11].
Let > be the weak-*closure of A4 in L™, that is, H* the classical Hardy space.
Lets),...,s, be distinct points in the open unit disc U, and let wy, ..., w, be com-
plex numbers. We wish to know a necessary and sufficient condition for that there
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is a function f in H* satisfying ||f]lcc < 1,f(s;) = w; fori = 1,...,n,f(0) =
co=fO0) = 0and f(a)) = -+ = fla). LetA = {f € 4; f(0) = --- =
FH0) = 0andf(a;) = - -+ = f(ax)}, then (1) of Corollary 3 gives a solution, but
it is very difficult to check the condition.

(IV) The unit polydisc U" and the torus (0U)" are cartesian products of n copies

of U and of U, respectively. A(U") is the class of all continuous complex func-

tions on the closure U" of U" with holomorphic restrictions to U" is holomorphic
there. Let A = A(U™)|X and X = (dU)". Let m be normalized Lebesgue mea-

sure; then m is a representing measure for 7 on X where 7(f) = f(0)and 0 € U".

We can apply Theorem 1, Theorem 2, (1) and (2) of Theorem 3, Proposition 4

and Proposition 5.

The generalization of the Pick-Nevanlinna interpolation theorem was studied by
F. Beatrous and J. Burbea [5] when E in Theorem 2 is an infinite uniqueness set in
U'.IfE = {s),52,...,,} is finite set then nothing was known, where £ C U".
When M = {h € H*, h(s) = Oforalls € E}, M is an invariant subspace in
H? which has finite codimension and N = H* © M is in H®. Hence M+ N L™
is dense in M+ and M+ M L' and (1) and (2) of Theorem 2 in this paper give a
generalization of the Pick interpolation theorem. However we can not apply (3) of
Theorem 2. For K. [zuchi noted to me privately that 7Y is infinite because H* is
not a uniform algebra in L. If N is finite dimensional then N is in H* (see [2]).
Hence by Theorem 3 if T'is a bounded operator on N which commutes with Sy for
any f in H*, then T = S4 for some ¢ in H*. However, there is an operator T on
N such that || 7| ; |l¢ + M N L>||. For an example due to Koranyi and Pukdnski
[8] shows that a function on a 2 point set in the bi-disk that is not the restriction of
any function in the unit ball of H*. Thus an exact generalization of the Sarason
Theorem (and hence a theorem of Nagy and Foias) is not true.
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