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COMMUTING DILATIONS AND 
UNIFORM ALGEBRAS 

TAKAHIKO NAKAZI 

1. Introduction. Let X be a compact Hausdorff space, let C(X) be the algebra 
of complex-valued continuous functions on X, and let A be a uniform algebra on 
X. Fix a nonzero complex homomorphism r on A and a representing measure m 
for r on X. The abstract Hardy space W — Hp(m), 1 < p < oo, determined 
by A is defined to the closure of A in LP = LP{m) when p is finite and to be the 
weak*-closure of A in L°° = L°°(ra) when/? = oo. 

Let M be an invariant subspace of H2 under the multiplications of functions 
in A and N the orthogonal complement of M in H2, that is, N — H2 0 M. The 
orthogonal projection in L2 with range N will be denoted by P. For/ a function in 
H°° let Sf denote the projection onto N of the operator Mf on L2 of multiplication 
by/ , that is, Sf — PMf\N. If A is a disc algebra and r{f) = /(0) where/ denotes 
the holomomorphic extension of / in A, then r is a complex homomorphism on 
A. Let m be a normalized Lebesgue measure on the unit circle dU\ then m is a 
representing measure for r . Then H2 is the classical Hardy space H2(U). 

SARASON THEOREM. Let H2 be the classical Hardy space H2(U). If T is a 
bounded linear operator on N that commutes with Sf (f £ A), then there is a 
function </> in H°° such that 

||(/>||00 = | |r| | and T=S^. 

The Sarason Theorem implies that || S^ || = || </> + M D L°°|| for any <j> in H°°, 
and hence it is close to Nehari's theorem. The author ([10], [11]) generalized Ne-
hari's theorem to general uniform algebras. In this paper generalizations of the 
Sarason Theorem to general uniform algebras will be proved using the method in 
the author's previous papers ([10], [11]). The proofs are different from Sarason's 
proof and simpler than his in the classical Hardy space H2(U). In Section 2, we 
will consider the relation between || S^ || and || <f> +MD L°°||. In Section 3, we will 
apply the result in Section 2 to get Pick's theorem. In the special case, this gives 
a theorem of Abrahamse [1, Theorem 1] that implies Pick's theorem in a multiply 
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connected domain. In Section 4, we will study generalizations of the Sarason The­
orem. This gives a dilation of the commutant of some representation of a uniform 
algebra, extending partially the dilation theorem of Sz-Nagy and Foia§, ([9]), in 
case A is a disc algebra. In Section 5, we will give dilations of the commutants 
of other representations of a uniform algebra relating with Hankel operators and 
Toeplitz operators. In Section 6, we will give concrete examples for which we can 
apply theorems in previous sections. That is, a uniform algebra which consists of 
rational functions on a multiply connected domain, a subalgebra of a disc algebra 
which contains the constants and which has finite codimension, and a polydisc 
algebra. However the Sarason Theorem is not true in an exact meaning. It is in­
teresting to compare a recent paper of R. G. Douglas and V. I. Paulsen [6] or an 
example of S. Parrott [13] with this. 

Throughout this paper, we use the following definition and assume that MLC\ L°° 
is dense in ML D L1. This assumption is satisfied in many examples (see Section 
6). 

DEFINITION. For an invariant subspace M in //2, M1 denotes the orthogonal 
complement of M in L2. Moreover set 

M±r)L00=lfe L°°:Jfg dm = 0 for all g in M\ 

and 

M^HL1 = if <E L{:Jfg dm = 0 for all g in MR L°° J . 

2. Generalized Interpolation. Put L = { v e L°°; v_1 <E L°° and v > 0} . Let 
M be an invariant subspace of H2 and N be an orthogonal complement of M in H2, 
that is, Af = H2 0 M, as in the Introduction. For each v in L, let 1ST — vH2 0 vM 
and Pv the orthogonal projection from L2 onto N*. For <j> in H°° and g in Nv, S^ is 
the operator defined by 

s; g = pvM^g. 

If v is a constant function, then AT = N, Pv = P and S£ - S^. 

Denoting by (f) the coset in (L00) -1/ (H00)-1 of an / in (L00)-1, define 

11(011 =inf{|kl|oo||r1lloo; g 6(0} 

and 

7o = sup{||(/)||; <f)e{L°°)-l/(H°°)-1}. 

This constant 7o was introduced in [11], and used in [11] and [12]. In the definition 
above, we can use Lj \ (H°°r[ | instead of (L00)-1 / (H00)'1. 
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LEMMA I. If h is in L°° then there exists a sequence { vn} in L such that 

lim vl dm — \h\ dm 
n-^oo JX n JX ' ' 

and 

lim / \h\ vZ1 dm— \ \h\ dm. 
n—oo JX ' ' n JX ' ' 

PROOF. This is in the proof of Theorem 1 in [10]. In fact set En = {x G X\ 0 < 
\h{x)\ < l/n}9 F0 = {x G X; A(JC) = 0} and Fn = {x e X; \h(x)\ > l/n}. 
Define vn by the formula 

vn(x) = < 
1 x e En 

l/n JCGFQ 

,\h(x)\1/2 xeFn 

LEMMA 2.1f</>i s in H°°, then for any v in L 

ISJII = sup (1/ (j)hk dm ; h E v//2, k e v_1Mx , \\h\\2 < 1 and 

< 1 

PROOF. Since A^ = (vH2) n v_1Mx , it is sufficient to show that 

is;il >suP / « >hk dm ; h e vH\ k e v - 1 M \ \\h\\2 < 1 and 

< 1 

For h e vH2 and k E v~xML 

\J (j)hkdm\ = \((j>Kk)\ 

= \(<j>PvKk)\ 

= \{Pv(j)PvKk)\ 

<ll^lll|A||2||*ll2 

where ( , ) denotes the usual inner product with respect to dm. Hence the lemma 
follows. 
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THEOREM 1. Suppose M is an invariant subspace ofH2 and ML H L°° is dense 
in M1- Pi l). Let <j> be a function in H°°; then the following are valid. 

(7) sup{||S; ||; veL} = | | ^+AfnL 0 0 | | . 

W 11̂ 11 = 11̂ 11 iy(v) = (n). 
(3)\\(v-l)\\ < \\^\\ I \\S^\\<\\{v)\\ for any v in L. 

PROOF. 

(1) If g G M H L°° and h G A^ then gh G vM. Hence 

s;+gh = pv(($+g)h) = n<f>h). 

Thus for any v G L\\S^\\ < ||</> +AfnL°°||. If /z G M i nL°° then/i = v„xv;'/i, 

v„ G v„//2 and v~lh G (v^M)1 = v^M 1 . By Lemma 2 

/ èh dm\ — \ évn(v„ xh) dm\ 
\Jx \ \Jx n I 

<raikii2ik'/,||2. 

As n —•» oo, by Lemma 1 

/ <j> h dm\ < sup || S^ || / | /z| dm. 

Since M x H L°° is dense in ML H L1 

| |< />+MnL~| |<sup| |S; | | . 
V 

(2) If/ G (H00)"1 then v|/|//2 = q(vH2) and v ' l / l - ' M 1 = ^"'A/-1) with 
9 = | / | / / = / / | / | . H e n c e 

sup | / ab(f) dm 

sup \jxcu 

; a G v/72, b G v-'A/-1, ||a||2 < 1 and 

dm\; c G v\f\H2, d G v~l\f\~[M, \\c\\2 < 1 and 

IMl2< l ) . 

By Lemma 2 || 5 ; || = ||5"J| if (v) = («). 
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(3)Letv G L.UJx\k\2v2 dm < 1 and Jx \h\2v~2 dm < 1, then Jx\k\2 dm < 
II ^—2||oo and Sx\h\2 dm < || v2||00. Hence 

l^ll =supl|jTaî0 dm 

< sup 
/ , 

vk x v h(j> dm 

< sup ( / khcj) dm 

; a£N\ beN\ \\a\\2 < 1 and 

I l * l l 2 < l j 

; vke vH2,v-{k£{vM)L, 

\\vk\\2 < land||v -1/*||2 < l ) 

;keH2,heML, ll^lb^llv-2!!^2 

. ,2| |1/2| 

< II V 

and||A||2 < |K,__ 

|v2 | |oo)1 / 2sup| | |^( /) dm\\ kEH2, h^M1, 

\\k\\2 < 1 and \\h\\2 < l1 

By Lemma 2 

l^ll <Hv- ||oo II K||oo 

and by (2) in this theorem 

l l^ | |< | | (v) | | | |5 , | | . 

This implies (3). 
The proof of (1) of Theorem 1 is similar to that of Theorem 1 in [10]. The proofs 

of (2) and (3) are similar to that of Theorem 3 in [11]. 

COROLLARY 1. Suppose M is an invariant subspace ofH2 such that M1 D L°° 
is dense in ML D l). If Ko is finite, then 

||S*II <| |</>+MnL°°|| <7o||S*|| 

for any <j> in H°°. 

If A is a disc algebra then 7o = 1 and hence Corollary 1 is a part of the Sarason 
Theorem. Let NT denote the set of representing measures on the Shilov boundary of 
A for r . Suppose NT is finite dimensional and m is a core point oiNT. Let N°° be the 
real annihilator of A in Ug\ then N°° is also finite dimensional. Set *E = exp N°°; 
then *E is a subgroup of L. If n — 0 then £ = { 1}. 
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COROLLARY 2. Suppose NT is finite dimensional and m is a core point ofNT. Let 
M be an invariant subspace ofH2 and </> a function in H°°. 

(7)sup{||S;||; v e £ } =\\<t>+MnL°°\\. 
(2) If m is a unique logmodular measure then there exists vo in *E such that 

\\sv;\\ = y+Mnn\. 

Moreover 7o is finite and so 

\\S4 <| |(/>+MnL°°| | < 7 o | | ^ | | . 

PROOF. (1) By the proof of Theorem 2 in [10] and (2) of Theorem 1, we can 
choose £ instead of L in (1) of Theorem 1. By Theorem 6.1 in [7, Chapter V], 
M 1 H L°° is dense in M 1 H L1 and hence we need not assume it. (2) By (1) and the 
proof of Theorem 3 in [10] there exists v0 in £ such that 11 Ŝ ° 11 = 11 <j> + M D L°° \ | . 
7o is finite by Theorem in [11] and hence Corollary 1 completes the proof. 

3. Pick Interpolation Theorem. The proofs in this section are modeled after 
the Pick intepolation theorem for a bounded domain in the plane whose boundary 
consists of finite disjoint analytic Jordan curves due to M. B. Abrahamse [1]. 

Let E = {s\,S2,...,sn} be the finite set of independent continuous linear func-
tionals on H2. Suppose if s G E then for any <j> in H°° and h in H2 s(<f>h) = 
s(<f>)s(h\ and we will write s(h) = h(s). Put M = {/ € H2:f(s) = 0 for all s € 
E}. Then M is an invariant subspace and N = H2 0 M is an «-dimensional sub-
space. For each v in L, IsT — vH2 0 vM is also an «-dimensional subspace. Let 
( , )v denote the usual inner product with respect to v2 dm. For each v in L and 
s G E, there exists kv

s in H2 such that for any h in H2 

h(s) = (Kkv
s\ = J h¥sv

2 dm. 

If v is constant we will write kv
s = ks. Put kv(s, t) = (kv

s, k
v
t)v\ then kv(s, t) is a kernel 

function on E x E. Iff is in M then for any s G E we have (/", kv
s)v — 0 and hence 

J fk]v2 dm = jtf vkv
s dm = 0. 

Therefore vkv
s belongs to A^ and { v ^ , . . . , vkv

Sn} is a basis in AT. 

LEMMA 3. For </> in H°°, Pv(^kv
s) = J(s)kv

s. 

THEOREM 2. Let E — { s\, 52,..., sn} be the finite set of independent continuous 
linear functional on H2 which if s G E then for any </> in H°° and h in H2 s(<l) h) — 
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s((j) )s(h), and let w\, u>2, •. . , wn be complex numbers. Suppose M1 Pi L°° is dense 
inM1nLl where M = {/zG//2; h(s) = 0 for all s<EE}. 

(1) There is an analytic function </> in 7/°° satisfying ||</> H^ < 1 and </>(S|) = w, 
for i = 1, . . . , w if and only if the matrix 

[ ( l -w/w.orfe ,^)] 

is nonnegative for each v in L. 
(2) When (v) = (w), the matrix [(1 — WiWj)kv(si,Sj)] is nonnegative if and only 
if [(1 — WiWj)kv(si,Sj)] is nonnegative. 
(3) When 7o is finite, if the matix 

[(1 -WiWj)k(shSj)] 

is nonnegative then there is an analytic function <j> in H°° satisfying || </> ||oo < 7o 
and <j> (Si) = wi for i — 1, . . . , n. 

PROOF. For s G £, let as be a complex number and set 

Then 

||*||2
2 = E ascUv(M) 

and 

Hence the assertion 

lW*)||f< 11*11? 
for all & in A^ is equivalent to the assertion 

[(l-WiWjW^sjïï^O. 

Since ||PV(<£&)||2 = IlOSJi)* &|h, the matrix above is nonnegative for each v if and 
only if sup{||<>; ||; v e L} < h 

(1) If Halloo < land </>(*,) = Wi for i= 1 n then sup{ ||S^ ||; v G £ } < 1 
and hence from the above remark the part of 'only if follows. Conversely if the 
matrix is positive for each v G L, by what was shown above sup{ \\S\ || ; v G 
L} < 1 and by (1) of Theorem 1 || cf> + M Pi L°°|| < 1. 
(2) follows from (2) of Theorem 1 and what was shown above. 
(3) If [(1 — WiWj)kv(si,Sj)] is nonnegative then ||5^ || < 1. Since 7o is finite, by 
Corollary 1 ||c/> +MH L°°\\ < 7o and this implies (2). 
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COROLLARY 3. Suppose NT is finite dimensional and m is a core point ofNT. Let 
E = {s\,S2,...,sn} be the finite set of independent continuous linear junctionals 
on H2 and w\, H>2, . . . , wn complex numbers. 

(1) There is an analytic function <j> in H°° satisfying || <\> \00 < 1 and </> (sf) = w, 
for i = 1, . . . , n if and only if the matrix 

[(l-WiWjW^Sj)] 

is nonnegative for each v in £ 
(2) When m is a unique logmodular measure, if the matrix 

[(1 -WiWj)k(shSj)] 

is nonnegative then there is an analytic function <j> in H°° satisfying \\<j>\\oo < 7o 
and <\> (si) = Wifor i— 1, . . . , n. 

In this section, we used a well known result, that is, when E — {s\,S2,.--,sn} 
is a finite set there exists at least one function/ in H°° such that/(X) = w>; for 
/ = 1,... ,n. 

4. Dilations of Commutants. Let L be a complex Hilbert space and (B(L) the 
algebra of all bounded linear operators on L. I denotes the identity operator in L. 
An algebra homomorphism/ •—• 9Af of H°° in #(L) which satisfies 

fWi=/ and HS ÎI <||/||oo 

is called a representation of H°° on L. If ^ is a closed subspace of L and T is the 
orthogonal projection onto 9£, then 9^ is called semi-invariant under H°° provided 
(FMf

<FMg<2 = <PMfMg for al l / and g in H°°. For <j> in H°° and h in f̂ , S^ is the 
operator defined by 

D. Sarason [14] showed that every semi-invariant subspace of//00 is equal to the 
orthogonal complement of one invariant subspace of H°° with respect to a larger 
one, and every subspace of the latter form is semi-invariant under H°°. By the 
Sarason Theorem it is natural to assume that for any/,g in H°° !Mffy{g = 94.^9^. 
A question is that if T is a bounded operator on !A£ that commutes with Sf for 
any/ in H°° then T — 5</> for some (j) in //°° and ||r| | = ||</> ||oo- However the 
conjecture can be answered negatively even if fA£ is two dimensional because the 
Pick interpolation theorem for two points is not true in the original form for the 
annulus algebra [1, p. 202]. If the question can be answered positively for the disc 
algebra, then it contains the part of a theorem of B. Sz-Nagy and C. Foia§ [9] and 
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hence a theorem of T. Ando [3]. The question is not true for the poly disc algebra 
[8]. This is not so surprizing. For when 9\£ — N = H2 0 M, if the question is 
true then for any <j> in H°° || S<f> || = || <f> + M D L°°||. This negative answer for the 
polydisc algebra is related with examples of S. Parrott [131 and N. J. Varopoulos 
[15]. 

In this section we concentrate on a special case. We assume that H°° = H2D L°°. 
As in Section 2 let 3\£ = N = H2 0 M, L = L2 and S^ = S^ (</> <E H°°). Suppose 
NH L°° is dense in N, then A^ D L°° is dense in A^ for any v in L. For </> in H2 

and g in A^ Pi L°°, 5^ is the operator defined by 

s;g = pvMtg. 

If 0 is in H°° then S£ = 5 ^ . 

THEOREM 3. Ler M be an invariant subspace ofH2 and let ML D L°° be dense 
in M1 and ML Pi L1, and N H L°° dense in N. Suppose T is a bounded operator 
on N which commutes with Sf for any f in H°°. 

(1) There exists a function <j> in H2 such that T — S^. 
(2) IfTPl is in H°° then there exists a function <f> in H°° such that 

\\T\\ < Halloo, T=S<f> and ||0 IU - sup{ \\§; || ; v £ L} . 

(3) Iflo is finite then there exists a function <j> in H°° such that 

\\T\\ < H Hoc < 7o||T\\ and T = S+. 

PROOF. 

(1) Put </> = TPl then <j> € H2. For any h,k G N H L°° 

(Th,k) = (hPl,T*k) 

= (TShPl,k) 

= (ShTPl,k) 

= (4>h,k) 

because T commutes with S^. Thus T = S^ because N Pi L°° is dense in N. 
(2) </>, = TP\ is in H°° and hence by the proof of (1) 7 = 5^ . By (1) of 
Theorem 1 we can choose <j> in H°° such that | |r | | < ||</>||oo> T — S^ and 
lk||oo = sup{||SJ||; veL}. 
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(3) Put cj>\ — TP\ then <j>\ G H2. As in the proof of (1) of Theorem 1 we can 
show that 

\la\h dm 
\Jx 

< sup | | i ; | | \\h\dm 

for h e ML H L°°. Moreover as in the proof of (3) of Theorem 1 we can show 
that 

IS; || < (l|v-2||oo II^Hoo)* sup{|j^*Â^i rfm|; 

keH00MeM1nL00A\k\\2< 1 and||A||2< V 

For any h,k € Nil L°°, (Th, k) — (5£ h, k) and hence as in the proof of Lemma 2 
we can show that 

| |r | | = sup{\J kh<j>\ dm\;keH°°, heM±DL00, \\k\\2 < 1 

and| | /* | |2<l} 

because M 1 Pi L°° is dense in M. Since 7o is finite, sup || S^ \\ < Toll T\\ • Therefore 
V 

sup || 5^ || < oo and hence by the Hahn-Banach theorem there exists a function 
V 

<t> € L°° such that </> - </>i is orthogonal to ML H L°°. Since M1 H L°° is dense in 
M1 , (j) - 4>x belongs to M. Thus </> G H2 D L°° = H°° and S0 = S^. 

5. Hankel operators and Toeplitz operators. Let L be a complex Hilbert 
space and 5l^(/" E L°°) a representation of L°° on L. If H is a closed subspace 
of L and 2 is the orthogonal projection onto HL, then H is called invariant under 
H°° provided (1 - Q)(Mf(\ - Q) = Mf(\ - Q) for all / in #°°. For <j> in L°° and /i 
in //, 7/^ is the operator defined by 

H4>h = Q<M4>h 

and it is called a Hankel operator. For </> in L°° and h in //, TJ is the operator 
defined by 
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and it is called a Toeplitz operator. For </> in 77°° put T^ = QCM^, \ 77. Two natural 
questions are following: 

(1) If 7 is a bounded operator from 77 into 77x and 77? = 777 for any/ in 7/°° 
then 7 = 77̂ , for some </> in L°° and || T\\ = \\ 9^ || ? 
(2) If 7 is a bounded operator on 77 that commutes with 7JÎ" for any/ in 77°° then 
T = Tl for some </> in 77°° and \\T\\ = || fÂ> || ? As in Section 4 if the questions 
can be answered positively for the disc algebra, then these contain the part of a 
theorem of B. Sz-Nagy and C. Foia§. 
In this section we concentrate on a special case. Let L — L2 and 77 = 772. 

PROPOSITION 4. Suppose if h is a function in H2 with hH2 C 772 then h belongs 
to 77°°. If 7 is a bounded linear operator on 77 that commutes with Tt for allf in 
77°° then 7 = 7£ for some <j> in 77°° and \\ T\\ = \\ K^ ||. 

PROOF. Put </> = 71 then </> G 772. Fix h G 772. There exists a sequence { hn} in 
77°° such that || hn — /i||2 —•»• 0 and /z„ —> /z a. e. as n —> oo. Since 7 commutes with 
7^ for a l l / in 77°°, 

77in = r(7^1) 

= KTl 

= ^0. 

Since 7 is bounded and \\Thn — Th\\2 —> 0 as n —• oo, ||/in</> — 77z||2 —* 0 as 
/? —* oo. There exists a subsequence {/in.} in 77°° such that hnj4> —» /zc/> a. e. as 
y —* oo, and hence <\>h = 7/i. Thus </>772 C 772 and by the hypothesis <j> G 77°° and 
T=T}. 

By the proofs of Theorem 1 in [10], Theorem 3 in [11] and Theorem 3 in this 
paper, we can prove the following proposition. Let Qv be the orthogonal projection 
from L2 onto (v772) for each v in L. For <\> in 77°° and g in v772, H\ is the operator 
defined by 

H;g = QvM^g. 

When <j> in 772 and g in v772 H L°°, 77̂  is the operator denfined by fy g = QVM^ g. 

PROPOSITION 5. Let (772)X n L°° be dense in (77°°)-L n L1 and 77°° = 772 n LD 

in 77°°. 
Suppose 7 w « bounded operator from H2 into (772) am/ TTÏ — TjT for any f 

(I) There exists a function <j> in 77 such that T — HA,. 
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(2)IfTl is in H°° then there exists a function in L°° such that 

II 71| <||</> | U T = H+ and 

Halloo = s u p { | | ^ | | ; vEL}. 

(3) If 7o is finite then there exists a function <j> in L°° such that 

\\T\\ < | |<Hloo<7oim|andr = / ^ . 

6. Concrete Examples. All results in this paper were known in the disc algebra. 
We shall now apply them to some other concrete examples. 

(I) Let r be a subgroup of reals, endowed with the discrete topology, and X the 
dual group. Let m be a Haar measure on X and A — {/ G C(X); 
Sxf(x)(—a,x) dm(x) = 0 for any a E T with a > 0} , where (a,x) denotes 
the continuous character of X for a E T. Then dim NT = 0 and NT — { m}, and 
hence 7o = 1. If M is an invariant subspace of H2, then M1 D L°° is dense in 
Mx and M1- D L1 but N = H2QMis always infinite dimensional. Hence we can 
not apply Theorem 2 or Corollary 2 to this example. We do not know whether 
TV PI L°° is dense in Af or not. 
(II) Let F be a compact subset of the plane, and let R{Y) be the uniform closure 
of the rational functions in C(Y). We regard R(Y) as a uniform algebra on its 
Shilov boundary, the topological boundary X of Y. Suppose the complement Yc 

of Y has a finite number n of components and the interior Y° of Y is a nonempty 
connected set. Let A = R(Y)\X and r(f) — f(s) for some s in Y°. If m is a 
harmonic measure on X for s then m is a unique logmodular measure of NT 

and dim7VT = n < oo. Then £ C C(X) and 7o is finite (see [11]). (1) of 
Corollary 2 is essentially a theorem of M. B. Abrahamse [1, Theorem 1]. We 
can show that N D L°° is dense in N, hence Theorem 3 gives a generalization 
of the Sarason Theorem but an example of M. B. Abrahamse [1] shows that the 
Sarason Theorem is not true explicitly. 
(III) Let A be the disc algebra and A be a subalgebra of A which contains the 
constants and which has finite codimension in A. If r(f) = f(0) for/ in A and 
m is the normalized Lebesgue measure on the unit circle dU, then it is easy to 
check that m is a core point of NT and dimNr = dim Â °° = 2 dim Aj A. Hence 
we can apply (1) of Corollary 3 to this example. But 7o is infinte [11]. 
Let ^C°° be the weak-*closure of !A in L°°, that is, H°° the classical Hardy space. 

Let s i , . . . , sn be distinct points in the open unit disc U, and let w\,..., wn be com­
plex numbers. We wish to know a necessary and sufficient condition for that there 
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is a function/ in H°° satisfying ||/||oo < hf(st) = wt for / = 1, . . . , n,f(0) = 
• • • = f(l)(0) = 0 and/( f l l) = • • • = f(ak). Let A = {/ G * ; / ( 0 ) 
/ (£)(0) = 0 and/(ai) = • • • = f(ak)} , then (1) of Corollary 3 gives a solution, but 
it is very difficult to check the condition. 

(IV) The unit polydisc Un and the torus (dU)n are cartesian products of n copies 
of U and ofdU, respectively. A(Un)\s the class of all continuous complex func­
tions on the closure 0n of Un with holomorphic restrictions to Un is holomorphic 
there. Let A = A(Un)\X and X = (dU)n. Let m be normalized Lebesgue mea­
sure; then m is a representing measure for r on X where r(f) — /(0) and 0 E Un. 
We can apply Theorem 1, Theorem 2, (1) and (2) of Theorem 3, Proposition 4 
and Proposition 5. 
The generalization of the Pick-Nevanlinna interpolation theorem was studied by 

F. Beatrous and J. Burbea [5] when E in Theorem 2 is an infinite uniqueness set in 
Un. If E = {s\,S2,...,sn} is finite set then nothing was known, where E C Un. 
When M = {h G H2; h(s) = 0 for ail s G E}, M is an invariant subspace in 
H2 which has finite codimension and N — H2 0 M is in //°°. Hence M 1 Pi L°° 
is dense in ML and M 1 P. L1 and (1) and (2) of Theorem 2 in this paper give a 
generalization of the Pick interpolation theorem. However we can not apply (3) of 
Theorem 2. For K. Izuchi noted to me privately that 7o is infinite because H°° is 
not a uniform algebra in L°°. UN is finite dimensional then N is in H°° (see [2]). 
Hence by Theorem 3 if T is a bounded operator on N which commutes with Sf for 
any/ in H°°, then T = S^ for some <j> in H°°. However, there is an operator T on 
N such that || T\\ i || <j> + M D L°°||. For an example due to Korânyi and Pukânski 
[8] shows that a function on a 2 point set in the bi-disk that is not the restriction of 
any function in the unit ball of H°°. Thus an exact generalization of the Sarason 
Theorem (and hence a theorem of Nagy and Foia§) is not true. 
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