A DETERMINANT EXPRESSION OF TCHEBYCHEV POLYNOMIALS

A. Korsak and C. Schubert

(received August 12, 1960)

1. A certain $n \times n$ determinant, namely that in (1), provides a rather simple expression for the Tchebychev polynomial $T_n(x) = \cos n(\cos^{-1}x)$. This determinant also leads to an interesting combinatorial interpretation of the coefficients in that polynomial.

2. We wish to prove the following identity:

	I	-2x	1		•	•	0	0	
	0	1	-2x	•••	•	•	0	0	
	0	0	1		•	•	0	0	
(1)		•	•						$= 2(1 - T_n(x))$.
		•	3				1		
	0	0	0	• • •	•	۰	-2x	1	
	1	0	0	* • •	۰	•	1	-2x	
	-2x	1	0				0	1	

Let $A_n(x)$ be the $n \times n$ matrix with the entries of the above determinant. Consider the $n \times n$ matrix

	Го	1	0		0	0]
	0	0	1	•••	0	0
Ω _n =	0	0	0	• • •	0	0
		•	:		•	:
	0	0	0	• • •	1	0
	0	0	0	•••	0	1
	[1 [·]	0	0	• • •	0	٥

Canad. Math. Bull. vol. 3, no. 3, September 1960

243

which is a particular example of a circulant matrix [1]. It has the following properties.

(a) For each integer r, Ω_n^r is obtained from Ω_n by displacing the generalized diagonal of 1's by r - 1 positions to the right; that is, each entry 1 is displaced cyclically by r - 1 positions to the right. Thus Ω_n^n is equal to the $n \times n$ identity I_n .

(b) The determinant $\left|\sum_{\lambda=1}^{n} a_{\lambda} \Omega_{n}^{\lambda}\right|$ is the product of the n sums(c.f. [1])

$$\sum_{\lambda=1}^{n} a_{\lambda} e^{2\pi i k \lambda / n}, k = 1, 2, \ldots, n.$$

From (a), we form the expansion of $A_n(x)$ in terms of powers of \mathfrak{A}_n ,

$$A_{n}(x) = I_{n} - 2x \mathcal{N}_{n} + \mathcal{N}_{n}^{2}.$$

Hence

$$\left| A_{n}(x) \right| = (-1)^{n-1} \left| \Omega_{n}^{-1} A_{n}(x) \right| = -(-2)^{n} \left| \frac{1}{2} \left(\Omega_{n} + \Omega_{n}^{n-1} \right) - x I_{n} \right| .$$

It follows from (b) that the zeros of $\left| A_{n}(x) \right|$ are the sums
$$\frac{1}{2} \left\{ e^{2\pi i k/n} + e^{2\pi i k(n-1)/n} \right\} = \cos 2\pi k/n, \quad k = 1, 2, \ldots, n,$$

which in turn are the n zeros of $l - T_n(x)$. Finally, by expanding $|A_n(0)|$, we find that $|A_n(x)|$ and $2(1 - T_n(x))$ are polynomials of degree n with constant term

$$2(1 - \cos \frac{1}{2}n\pi) = \begin{cases} 2, & n \text{ odd} \\ 2 - 2(-1)^{\frac{1}{2}n}, & n \text{ even} \end{cases}$$

and so they are identical.

3. In expanding the determinant $|A_n(x)|$, it can be checked that its non-zero terms are obtained in exactly the following ways.

(i) We form the product of all the entries in one of the three non-zero generalized diagonals.

(ii) We partition off r distinct 2×2 submatrices of

 A_n , each containing non-zero entries from two cyclically adjacent rows and columns of A_n . We then form the product of the entries 1 in these submatrices with the remaining entries (-2x) of the second generalized diagonal. Thus

(2)
$$A_n(x) = 2 - \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r S_{n,r}(2x)^{n-2r}$$

where $S_{n,r}$ equals the number of possible selections of r integers from the first n such that the difference of any two is not congruent to 1 modulo n, and $0 \le r \le \lfloor n/2 \rfloor$. Clearly S =1.

4. From (2) and (1), we now know the form of $T_n(x)$.

$$T_{n}(x) = \sum_{r=0}^{\lfloor n/2 \rfloor} T_{n,r} x^{n-2r}$$

where $T_{n,r} = (-1)^{r_2} S_{n,r}$; r =

We next determine $S_{n,r}$ for $l \leq r \leq [n/2]$ as a function of n and r. In the selection of the r integers, we consider two cases.

(i) The integer 1 is not chosen. Let $\{a_{\lambda} | \lambda = 1, 2, ..., r\}$ be a selection. Thus we may assume

(3) $1 < a_{\lambda} < a_{\lambda+1} - 1 < n; \quad \lambda = 1, 2, ..., r - 1.$

Put $b_{\lambda} = a_{\lambda} - \lambda$; $\lambda = 1, 2, ..., r$. Then from (3) we obtain

(4)
$$1 \le b_1 < b_{\lambda+1} \le n-r; \quad \lambda = 1, 2, ..., r-l.$$

(ii) The integer l is chosen. If $r \ge 2$, let $\{c_{\lambda} \mid \lambda = 2, 3, ..., r\}$ be a selection of the remaining r - 1 integers. Thus similarly

(5) $2 < c_{\lambda} < c_{\lambda+1} - 1 < n - 1;$ $\lambda = 2, 3, ..., r - 1.$

Put $d_{\lambda} = c_{\lambda+1} - \lambda - 1$; $\lambda = 1, 2, ..., r - 1$. Then from (5) we have

(6)
$$l \leq d_{\lambda} < d_{\lambda+1} \leq n-r-1; \quad \lambda = 1, 2, ..., r-2.$$

It is readily seen from (4) (from (6)) that the sets $\{b_{\lambda}\}$ (the sets $\{d_{\lambda}\}$) are all the possible selections of r integers from the first n - r (of r - l integers from the first n - r - l) with no restrictions.

245

Hence for $l \leq r \leq [n/2]$,

$$S_{n,r} = \binom{n-r}{r} + \binom{n-r-1}{r-1}.$$

REFERENCE

 A. C. Aitken, Determinants and Matrices, (New York, 1944), § 51.

University of Toronto