A DETERMINANT EXPRESSION
 OF TCHEBYCHEV POLYNOMLALS

A. Korsak and C. Schubert

(received August 12, 1960)

1. A certain $\mathrm{n} \times \mathrm{n}$ determinant, namely that in (1), provides a rather simple expression for the Tchebychev polynomial $T_{n}(x)=\cos n\left(\cos ^{-1} x\right)$. This determinant also leads to an interesting combinatorial interpretation of the coefficients in that polynomial.
2. We wish to prove the following identity:
(1) $\left|\begin{array}{cccccccc}1 & -2 x & 1 & \cdots & . & . & 0 & 0 \\ 0 & 1 & -2 x & \cdots & \cdot & . & 0 & 0 \\ 0 & 0 & 1 & \cdots & . & . & 0 & 0 \\ \cdot & \cdot & \cdot & & & & & \cdot \\ \cdot & \cdot & \cdots & & & & 1 & \\ 0 & 0 & 0 & \cdots & . & . & -2 x & 1 \\ 1 & 0 & 0 & \cdots & . & . & 1 & -2 x \\ -2 x & 1 & 0 & \ldots & . & . & 0 & 1\end{array}\right|=2\left(1-T_{n}(x)\right)$.

Let $A_{n}(x)$ be the $n \times n$ matrix with the entries of the above determinant. Consider the $n \times n$ matrix

$$
\Omega_{n}=\left[\begin{array}{llllll}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & : & : \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Canad. Math. Bull. vol. 3, no. 3, September 1960
which is a particular example of a circulant matrix [1]. It has the following properties.
(a) For each integer r, Ω_{n}^{r} is obtained from Ω_{n} by displacing the generalized diagonal of l's by r-l positions to the right; that is, each entry 1 is displaced cyclically by r-1 positions to the right. Thus Ω_{n}^{n} is equal to the $n \times n$ identity I_{n}.
(b) The determinant $\left|\sum_{\lambda=1}^{n}{ }_{\lambda} \Omega_{n}^{\lambda}\right|$ is the product of the n sums (c.f. [l])

$$
\sum_{\lambda=1}^{\mathrm{n}} \mathrm{a}_{\lambda} \mathrm{e}^{2 \pi \mathrm{ik} \lambda / \mathrm{n}}, \mathrm{k}=1,2, \ldots, \mathrm{n} .
$$

From (a), we form the expansion of $A_{n}(x)$ in terms of powers of Ω_{n},

$$
A_{n}(x)=I_{n}-2 x \Omega_{n}+\Omega_{n}^{2}
$$

Hence

$$
\left|A_{n}(x)\right|=(-1)^{n-1}\left|\Omega_{n}^{-1} A_{n}(x)\right|=-(-2)^{n}\left|\frac{1}{2}\left(\Omega_{n}+\Omega_{n}^{n-1}\right)-x I_{n}\right| .
$$

It follows from (b) that the zeros of $\left|A_{n}(x)\right|$ are the sums $\frac{1}{2}\left\{e^{2 \pi i k / n}+e^{2 \pi i k(n-1) / n\}}=\cos 2 \pi k / n, k=1,2, \ldots, n\right.$,
which in turn are the n zeros of $1-T_{n}(x)$. Finally, by expanding $\left|A_{n}(0)\right|$, we find that $\left|A_{n}(x)\right|$ and $2\left(1-T_{n}(x)\right)$ are polynomials of degree n with constant term

$$
2\left(1-\cos \frac{1}{2} n \pi\right)= \begin{cases}2, & n \text { odd } \\ 2-2(-1)^{\frac{1}{2} n}, & n \text { even }\end{cases}
$$

and so they are identical.
3. In expanding the determinant $\left|A_{n}(x)\right|$, it can be checked that its non-zero terms are obtained in exactly the following ways.
(i) We form the product of all the entries in one of the three non-zero generalized diagonals.
(ii) We partition off r distinct 2×2 submatrices of
A_{n}, each containing non-zero entries from two cyclically adjacent rows and columns of A_{n}. We then form the product of the entries 1 in these submatrices with the remaining entries $(-2 x)$ of the second generalized diagonal. This

$$
\begin{equation*}
A_{n}(x)=2-\sum_{r=0}^{[n / 2]}(-1)^{r} S_{n, r}(2 x)^{n-2 r} \tag{2}
\end{equation*}
$$

where $S_{n, r}$ equals the number of possible selections of r integers from the first n such that the difference of any two is not congruent to 1 modulo n, and $0 \leqslant r \leqslant[n / 2]$. Clearly $S_{n, 0}=1$.
4. From (2) and (1), we now know the form of $T_{n}(x)$.

$$
T_{n}(x)=\sum_{r=0}^{[n / 2]} T_{n, r} x^{n-2 r}
$$

where $T_{n, r}=(-1)^{r} 2 \quad S_{n, r} ; r=$
We next determine $S_{n, r}$ for $1 \leqslant r \leqslant[n / 2]$ as a function of n and r. In the selection of the r integers, we consider two cases.
(i) The integer 1 is not chosen. $\operatorname{Let}\left\{a_{\lambda} \mid \lambda=1,2, \ldots, r\right\}$ be a selection. Thus we may assume
(3) $\quad 1<a_{\lambda}<a_{\lambda+1}-1<n ; \lambda=1,2, \ldots, r-1$.

Put $b_{\lambda}=a_{\lambda}-\lambda ; \lambda=1,2, \ldots, r$. Then from (3) we obtain
(4) $\quad 1 \leqslant b_{\lambda}<b_{\lambda+1} \leqslant n-r ; \quad \lambda=1,2, \ldots, r-1$.
(ii) The integer 1 is chosen. If $r \geqslant 2$, let $\left\{c_{\lambda} \mid \lambda=2,3, \ldots, r\right\}$ be a selection of the remaining $r-1$ integers. Thus similarly

$$
\begin{equation*}
2<c_{\lambda}<c_{\lambda+1}-1<n-1 ; \quad \lambda=2,3, \ldots, r-1 \tag{5}
\end{equation*}
$$

Put $d_{\lambda}=c_{\lambda+1}-\lambda-1 ; \lambda=1,2, \ldots, r-1$. Then from (5) we have
(6) $\quad 1 \leqslant d_{\lambda}<d_{\lambda+1} \leqslant n-r-1 ; \quad \lambda=1,2, \ldots, r-2$.

It is readily seen from (4) (from (6)) that the sets $\left\{b_{\lambda}\right\}$ (the sets $\left\{d_{\lambda}\right\}$) are all the possible selections of r integers from the first $n-r$ (of $r-1$ integers from the first $n-r-1$) with no restrictions.

Hence for $1 \leqslant r \leqslant[n / 2]$,

$$
S_{n, r}=\binom{n-r}{r}+\binom{n-r-1}{r-1} .
$$

REFERENCE

I. A. C. Aitken, Determinants and Matrices, (New York, 1944), §51.

University of Toronto

