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ASYMPTOTICALLY STABLE STATIONARY SOLUTIONS
TO THE REACTION-DIFFUSION EQUATIONS

ARNOLD DIKANSKY

We assume that there exists an asymptotically stable stationary solution of a
Galerkin approximation for the reaction-diffusion system. It is shown that there
exists a nearby stationary solution of the full reaction-diffusion system provided
the order of the Galerkin approximation is high enough. The Lyapunov second
method is used to prove the asymptotic stability of the stationary solution.

1. INTRODUCTION

Systems of reaction-diffusion equations

with u 6 RN, x £ f2 C Rn, D = diag (d\, d%,... , dpf), where each dj > 0 is a constant,
are the main model equations in describing many biological and chemical phenomena.
The large time behavior of solutions of reaction-diffusion equations in many aspects
resembles one for systems of ordinary differential equations.

Due to the complexity of reaction-diffusion equations their numerical and theo-
retical studies use Galerkin approximations of these equations. The Galerkin method
permits one to associate to the partial differential equation a finite-dimensional system
by using the first m eigenfunctions of the operator DA with corresponding boundary
conditions. The important question is, of course, to what extent the dynamics of so-
lutions of reaction-diffusion equations as t —> oo can be predicted from their Galerkin
approximations. In some cases the answer is affirmative if a sufficiently large number
of retained eigenfunctions are taken.

For the Navier-Stokes equations Constantin, Foias and Temam [1] showed that, if
a solution of a Galerkin equation with a sufficiently large number of retained eigenfunc-
tions of the Stokes operator is almost constant on a time-interval, and some stability
spectral condition is satisfied, then there exists a stationary solution of the full Navier-
Stokes equation nearby to the solution of the Galerkin approximation. In their proofs
they used spectral properties of linear operators in the Galerkin approximations and the
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274 A. Dikansky [2]

Navier-Stokes equation linearised about stationary solutions. Kloeden [6] considerably
simplified the proofs of some results in [1] using the Lyapunov function defined in a
neighbourhood of the stationary solution of the Galerkin equation but he required suf-
ficiently strong asymptotic stability of the stationary solution in order to obtain small
perturbations to the Lyapunov function. The Lyapunov second method has been em-
ployed to obtain perturbation results for ordinary differential equations by Yoshizawa
[8] who developed a lot of relevant machinery. This method was used by Hale [4] for
reaction-diffusion equations with the large diffusion and Neumann boundary conditions
to show that their solutions are asymptotic to the solutions of an ordinary differential
equation which is the Galerkin approximation with the first eigenfunction. Kloeden [7]
for the Navier-Stokes equation used the Lyapunov function defined in a neighbourhood
of the attractor for the Galerkin equation to establish relations between the existence
of the attractor for the Galerkin equation and the attractor of the partial differential
equation. For reaction-diffusion equations Dikansky [2] used the Lyapunov functions
defined outside of some bounded sets to deduce uniform-boundedness and uniform-
ultimately-boundedness of solutions of the full system from the analogous properties
of its Galerkin equation. He also obtained a result similar to one in [1] using spectral
properties of linearised operators.

Here for the reaction-diffusion equations we show that if the Galerkin equation
with a sufficiently large number of retained eigenfunctions has an asymptotically stable
stationary solution um, then the reaction-diffusion system has a nearby stationary
solution. Using the Lyapunov function defined in a neighbourhood of the stationary
solution for the Galerkin equation it is proved that the stationary solution for the
reaction-diffusion equation is asymptotically stable. Thus we independently obtain
part of the results of [2] to illustrate the broad applicability of the Lyapunov second
method to the reaction-diffusion equations. This applicability is especially important
when the spectral perturbation methods fail to apply, for example, for more complicated
attractors.

In section 2 we outlined necessary results on the Lyapunov second method for
stationary solutions as well as reaction-diffusion equations and their Galerkin approxi-
mations. Section 3 contains our main result and its proof.

2. PRELIMINARIES

A solution of an initial value problem for the ordinary differential equation

Tt=f(v)'

will be denoted by v(t;v0).
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[3] Stable stationary solutions 275

A stationary solution v of (2.1) ( f(v) — 0 ) is (exponentially) asymptotically stable,

if there exist constants 7 > 0 and K > 0 and a small neighbourhood N of v such that
if VQ G N, then the solution v(i;i>o) exists for all t > 0 and

(2.2) |K*;wo) - v\\ < Ke-111|v0 - v\\.

Here and elsewhere for v £ Rn, \\v\\ is any norm in Rn. In order to test the stability of
the stationary solution v with respect to initial disturbances we introduce the pertur-
bation w(t) = v(t) — v into the problem (2.1) and arrive at the following problem for
w(t):

(2.3) ~=H{w), ™(O)=«;o.

Here H(w) = f(v + w) — f(v) and wo = vo — v, so that, in particular, H(0) = 0 and

wo is the initial disturbance away from v.

The idea of the Lyapunov second method is to detect stability of the zero solution
of system (2.3) by means of properties of so called Lyapunov function Vr(ju>) and to
do this, not directly from a knowledge of the solutions, but indirectly from the sytem
(2.3). A Lyapunov function V(w) will be assumed to be a scalar Lipschitz continuous
nonnegative function defined in a small neighbourhood N of the asymptotically stable
zero solution of the equation (2.3). Corresponding to V(w) , we define the derivative
VL 3\(w) of the function V along solutions of equation (2.3):

VL s)(w) = limsup \[V(w + hH(w)) - V(w)]
h_o+ h

= limsup ^[F(™(* + h)) - V{w(t))].
A-.0+ h

For the proof of the next result see [8].

Necessary and sufficient conditions for the asymptotic stability of the stationary
solution w are as follows: There exists a Lyapunov function V(w) which satisfies the
following conditions:

(2.4) |HI<VH<A-|H|;
(2.5) \V(w) - V{w')\ < K H | , w,w' 6 N;

(2-6) V^3)(w) < -yV(w), 7 > 0 .

We note that the constants K and 7 are the same as in the definition of asymptotic
stability of the stationary solution.
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Let fi denote an open bounded set of Rn with boundary F . For (x,t) G £1 x R+
we consider the following reaction-diffusion system involving a vector function u =

(2.7) ^

We assume that the nonlinear term F is a C2-function. Since we are interested in the
long-time behavior of the solutions of (2.7) we modify the nonlineaxity in equation (2.7)
near oo assuming that the nonlinear term F{u) satisfies the following condition:

There is R > 0 such that

(2.8) f(ti) = 0 ior\\u\LOO>R.

Let

(2.9) Nj. = snp{\F(u)\}, N, = sup{|*»|}.

Equation (2.7) is supplemented with an initial condition

(2.10) u(x,0)=uo(x), zGfi,

and a boundary condition of either Dirichlet type or of Neumann type

(2.11) B[u(x,t)] = 0, x&T, < > 0 ,

where the boundary operator B is either the identity or du/dv. In the case of zero
Dirichlet boundary condition we impose a compatibility condition F(0) = 0.

As usual let i °° (Q) be the space of functions which are defined on il and bounded
almost everywhere with norm |'|iOo and let H = £ j (n ) be the space of square integrable
functions defined on il with the norm \-\H. We denote by A the linear positive self-
adjoint operator on H given by Au = —Aw supplemented with boundary conditions
(2.11) and having the domain D(A) = {<!><= W2-2(fi), (2.11) holds } . Then AD<j> =

—DAS is a sectorial operator and one can define the fractional powers A^ of AD, 0 ^ a
and the space Xa = D(AD) with the graph norm, | | a . If n < 3, and 3/4 < a < 1,
then Xa C £°°(fl) with continuous inclusion and

One can then show (see [4]) that this initial-boundary value problem defines a local
C1'1 semigroup 5« on Xa defined by StUo = u(t,x;tio), where u(t,x;uo) is a solution
of the initial boundary-value problem (2.7), (2.10), (2.11). We shall assume throughout
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[5] Stable stationary solutions 277

the paper that n ^ 3, and 3/4 < a < 1. For linear semigroups with the generator L
we shall use the exponential notation eLt.

It is well known that the operator A is self-adjoint as an operator in Lz(VL) and
the spectrum of A consists of an infinite sequence of eigenvalues 0 < Ai ^ A2 ^ . . . .
Because the matrix D is diagonal, each eigenvalue of A corresponds to TV eigenvalues
of the operator AD therefore there are N eigenvalues \](D), A?(Z>),... .Af^D) of the
operator AD with corresponding eigenfunctions <p\ D(X)I<P* o(x)f- iVfoC1)

AiiD = min(Aj(D),A?(^),... ,W{D)), (i = 1,2,...)-

We fix an integer m and denote by Pm the projection in £2(0) onto the space spanned
by the first m eigenvectors of AD , and we set Qm = I — Pm. We recall that Pm

and Qm commute with AD- If u(z,i) is a solution of the initial-boundary value
problem (2.7), (2.10), (2.11) we write p(x,t) = Pmu(x,t), q{x,t) = Qmu(x,t), so
that u(x,t) = p(x,t) + q(x,t). Whenever possible we shall omit the index m. Let
Xa = PXa © QXa. By projection of the equation (2.7) on the invariant subspaces
PXa and QXa we shall find that p(t) and q(x,t) are solutions for t ^ 0 of the
coupled system of equations

(2.12) ^ = A D p + P.F(p + 9) , p(0)=Po=Puo,

(2.13) ^=DAq + QF(p + q), q(x,0) = qQ(x) = Quo(x).

Here pk{x,t) = X > * ( 0 P ? , D ( * ) . (* = 1.2,... ,N), where pj(<) satisfies

Using the variation of constant formula we see that the initial-boundary value problem
(2.12), (2.13) is equivalent to the problem

(2.14) ^ = A I ) p + PF(p + 9 ) , p(0)=P O )

(2.15) q{x,t) = eLtq0{x) + f eL«-\QF{p + ,)] ds.
Jo
f
o

Here eLt is the linear semigroup corresponding to the problem

dv nA-^- =DAv
dt
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in QXa with corresponding boundary conditions. The estimate

(2.16) \*LtO\a Z d i ^ e - W . W t | U ( . } | H f t>0>

follows from [5, Theorem 1.5.4]. Using the above notation, the Galerkin approximation
of the problem (2.7), (2.10), (2.11) leads to the following system of ordinary differential
equations for um(t)

(2.17) ^ - KDum + PF(um), «m(0) - po = Put.

m
A stationary solution «m(x) = (u1(x),u2(x),... ,^"(a;)), where uk(x) = £) u*(<)p*D(z

of the Galerkin system (2.17) satisfies the following equation

(2.18) ADum + PF(um) = 0.

3. MAIN RESULT.

THEOREM. For every e > 0 sufficiently small, there exists a natural number M =
M(e) such that if the Galerkin equation (2.18) for some m ^ M has an asymptotically
stable stationary solution um> then

(a) tiere exists a stationary solution u(x) € X"(il) of the reaction-diffusion

system (2.7) with the boundary conditions (2.11) such that

(b) the stationary solution u(x) is asymptotically stable.

PROOF: The proof consists of three parts.

The first part is to show that p(t;po), the P—projection of a solution u(x,t;uo) of
the initial-boundary value problem (2.10), (2.11) for the reaction-diffusion system (2.7)
with the initial function uo(z) near um, exists for all t ^ 0 and remains close to um,
that is,

(3-1) \\um - p(t;pO)\\ < Si

if

(3.2) | « m ( ) - « o ( ) l x - ^ £ i »

where Si = O(ei) with e\ small enough.
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In order to show that p(t;p0) exists for all t > 0 we introduce the perturba-
tion p(t) — um into problem (2.12), (2.13) and arrive at the following problem for

(3.3) < f ( P ~ " m ) = A D (p - um) + P[F(p + q)- F(um)\,

p(0) -um =p0 -um,

(3.4) q(x,t) = eLtq0(x) + f eL«-\QF{p + q)} da.
Jo

We rewrite the nonlinear term in the right-hand side of (3.3) as follows

(3.5) P[F{p + q)- F(um)} - P[F'(um)(P - um))

+ P[F(p + q)- F(um) - F'(um){p + q - um)} + P[F'(um)q).

It follows from (3.2) that if t is small enough then there is a small number 62 > 0 such
that

(3-6) \\p(t)-um\\,\q(;t)\Xa<S2.

Because F(u) £ C2 and due to the representation

/•1

(37) 5(3/1) - g(y2) = g'(yi + r(y2 - yi))(y2 - yi)dr
Jo

we get
\\P[F(p+q) - F(um) - F'(um)(p + q -um)}\\ ^ o(\p + q-um\xa)

where 771 is small enough since

IK-,*) + q(;t) ~ um(-)\LOO < |n|1/2 ||p(t) - «m|| + k \q(;t)\X~ < «3

with 63 sufficiently small. The last term in the right-hand side of (3.5) is estimated as

(3.9) \\P[F\um)q)\\ < N2 \Q\1/2 | 9(-,*) |L» ^ kN2 \n\1/2 \q(;t)\xa .

Using (3.7) and the Holder inequality we get

(3.10) \QF(p + q)\H = \Q[F{P) + F(p + q)- F(P)]\H
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Defining for 0 < a < Am+i(£>)

z(t) = e**\q(.,t)\xa,

from (2.16) and (3.10) we get the following estimate for z(t)

(3.11) z{t) < iCie-^+iW-*)**^)

+ kCiN2 |fi|
1/2 f (t - ,)—e-(*«.+i(i»-»)(«-)a(,) ds

Joat I*
Jo

Therefore for

y(t) = sup z(s)

from (3.11) we deduce for 0 ̂  a < t that

(3.12) y(t) ^ C2e-(^+l(D)-.)tz{0) +

where

t°° — (1— —^-rrrt I* t°°
K1= a-ae V W W ^ ds, K2 = s^e'' ds,

Jo Jo

Inequality (3.12) implies that

(3.13) »(t)(l - Ci) < C72z(0) + be".

Therefore

if (1 < 1. Taking M large enough we shall have d < 1, because in the expression
defining the constant £1 all constants except (Am+i(D))a~ do not depend on m.

Under the hypothesis that the stationary solution um is asymptotically stable,
there exist positive constants C3 and 71 such that

(3.15) ||ej4"[B«l1i»|| < Ce-** \\v\\, v 6 PXa,

where -4m[ilm] = AD + PF'(um). It easily follows that the constant <7j does not
depend on m. Actually, since the operator A[«m] = DA + F'(um) is a uniformly
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strongly elliptic operator in n then the operator A[um] with corresponding boundary
conditions is a sectorial operator in Xa with the norm of its resolvent bounded by a
constant C4 for large |A| (see [3]). Therefore according to [5, Theorem 1.3.2], the norm
of the resolvent of the operator

AD + PF'(um) = DA + F'(um) - Q\DA + F'{um)}

is bounded by the constant C3 which does not depend on m, u (^ m) is large enough.

As long as (3.6) is satisfied, using the variation of constant formula for (3.3) and

estimates (3.5), (3.8), (3.9), (3.15) we have

(3.16)

\\p(t) -um\\ < p - ^ ' t p o -um)\\

-um\\ + kN2Cs \Q\1/2 \q(;s)\x«) ds

< C3e~71' ||po - um|| + T)2 sup ||p(a) - um|| + Cs < 61,

when 772 and £3 are small enough. If \\p(t) — um|| < Si on 0 ^ ( < i i , then either
<i — 00 or \\p(t) — um\\ = Si. But the second case contradicts (3.16), so p(t) exists for
all t > 0 with the estimate ||p(f) — um| | ^ Si.

The second part of the proof is to show that the full system of reaction-diffusion
equations (2.3) has a stationary solution u(x) nearby the stationary solution um of the
Galerkin equation (2.18) when M is sufficiently large. The stationary solution v(x)

satisfies the equation

(3.17) DAu + F(u) = 0,

or after projection on the subspaces PXa and QXa, w(x) = (p,?) satisfies the coupled
system of stationary equations

(3.18) ADp + PF(p + q) = 0,

(3.19)

Subracting (2.18) from (3.18) we get the system

(3.20) AD(p - um) + PF(p + q)- PF(um) = 0,

(3.21) DAq + QF(p + q) = 0.

https://doi.org/10.1017/S0004972700012508 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012508


282 A. Dikansky [10]

The function u(x) = p(x) + q(x) is a solution of (3.18), (3.19) if and only if w(x) =

u{x) — um(x) is a solution of (3.20), (3.21). So the problem of finding a solution u(x)

to equation (3.18), (3.19) is equivalent to the one for small solutions w(x) to equation
(3.20), (3.21). We rewrite system (3.20), (3.21) as follows

(3.22)

AD(P - um) + P[F'(um)(p - um)}

= P[F'(um)(p -um + q)- F(p + q) + F(um)\ - P[F'(nm)q],

(3.23)
DAq + QF'(u)q = Q[F'(u)q - F(p)], u(x) e F .

Due to the asymptotic stability of the stationary solution um the linear operator
on the left-hand side of (3.22) has an inverse operator from PmXa onto PmXa, with
its norm bounded by a constant which is independent of m as was explained in the first
part of the proof. Using (2.16) and repeating the considerations from the first part of
the proof we see that the linear operator in the left-hand side of (3.23) has an inverse
operator from QXa onto itself bounded by Ci/{\^^\ — N2) which is small enough if
M is large enough. Therefore system (3.22), (3.23) can be written in the form suitable
to apply a fixed-point theorem:

(3.24) Wm=JF1(5Jm,9m),

(3-25) qm = F2(wm,qm),

with the nonlinear operator F = (JFi, Ft) satisfying the conditions of a fixed-point
theorem. Thus the fixed point u =p + q is then obtained with||p —wm|| and |9(-)lx*"
small enough provided M is sufficiently large.

The third part of the proof is to show that the'stationary solution u(x) is asymptot-
ically stable if M is large enough (the definition of asymptotic stability of the stationary
solution for the reaction-diffusion equations is analogous to the one for the ordinary dif-
ferential equations).

The perturbation v(x, t) = u{x, i) — u(x) = p — p~ + q — q~ of a solution u(x, t) from
the stationary solution u(x) satisfies the system

(3.26)

(3.27) fc^ = DA(q -q) + Q[F(p + q) - F(p + q)],

9(0) -q = qo=qo-q.
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We rewrite system (3.26), (3.27) as follows

(3.28) fc^ = AD(p - p) + P[F(P) - F(f)]

+ P[F(p + q)- F(p + q)- F(p) + F(j>)),

p(0)-p = po,

fc^ = DA(q -q) + Q[F{P + q)- F{p + q)},

(3.29) g(0) - 9 = 90-

From parts 1 and 2 of the the proof and the fact that |tt(-,i) —u(-)\xa , \um(-) — u(-)\x

are small enough, it follows that p(t) and q[x,t) exist for all t > 0 and |9(-,0lx
|9(-)|_ya are small enough provided M is large enough. Using (3.7) we get

(3.30)
F{p + q)- F{p + q) - F(P) + F{p)

= /
Jo

= /
Jo

+ /
Jo
/

Jo
Because F 6 C2 the norm of the difference F'(p + q + r(p + q)) - F'(p + rp) is small
enough provided M is large enough. Therefore it follows from (3.30) that

(3.31) \\P[F{p + q) - F(p + q) + F(p) - F(p)}\\ < Vi \\p(t) - p\\ + Cs \q(;t) - q(-)\a ,

where the constant 774 is small enough provided M is large enough. From (3.26)
repeating the considerations from the first part of the proof for the 9—equation we
conclude that

(3.32) | 9 ( , 0 - 9()lx« < toe-** \qo{) -q{-)\x* +Vs \\p(t)-p\\,

where 72 > 0 and the constant rjs^— O(A^. \ ) ) is small enough provided M is large
enough.

We shall consider equation (3.28) as a perturbation of the ordinary differential
equation (2.3) with w(t) = p(t) - p , H{u) = PF(p) - PF{p). Due to Yoshizawa's
theorem there exists the Lyapunov function V(iu) which according to (2.5), (3.26),
(3.31) satifies the inequality

(3-33) V(iM){p - p) ^ V('2.18)(p - p) + KCsr,s \\p(t) - p\\
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Using property (2.6) of the function V(w) we conclude from (3.33) that

V(3.26)(P - P) ^ - 7 s ||P - P\\ + KC5r,s ||p - p\\ + KCse'^ \qo(-) - q(-)\xa ,

where 73 > 0. If K does not depend on m with m > M and M is large enough then
we can make

(3.34) •nsKCs - 73 < -74, 74 > 0,

since 775 = O(A^j_1
1) which is small provided M is sufficiently large. Therefore

(3-35) F('3.26)(p - p) < -74 ||p(0 - f\\ + C7e-^ \qo(-) - q()\xa .

Inequality (3.35) leads to

(3.36) V(p-p)«JC7,e-™*|t«o(-)-=(-)lx«. 7s > 0.

Because of property (2.4) for the function V(tu) we deduce from (3.36) that

(3.37) ||p(0 - p\\ < C9e-^« |Uo(-) - u()\x~ •

Finally, combining (3.32) and (3.37) we have

(3.38) \u(-,t) - u{-)\xa ^ Ce~* |«0(.) - u()\xa , 7 > 0

which proves the asymptotic stability of the stationary solution u(x) of the reaction-
diffusion system under the assumption that condition (3.34) is satisfied. In the case
of the Navier-Stokes equations Kloeden [7] required that it satisfy a condition analo-
gous to condition (3.34) and he called such a stationary solution a sufficiently strongly
asymptotic stable solution. Unlike the case of the Navier-Stokes equations, for the
reaction-diffusion equations it is easy to show that the constants K and 7J do not
depend on m if M is large enough, and consequently (3.34) is satisfied. We shall show
it using a simple perturbation technique for ordinary differential equations similar to
one used in [2] for parabolic equations.

Actually, since the constants K and 7 in properties (2.4), (2.5), (2.6) of the Lya-
punov function are the same as in the definition of asymptotic stability of the stationary
solution we shall show that these constants in the definition do not depend on m if M

is large enough. We repeat here briefly some considerations from [2].

From the second part of the proof it follows that for each I > m there exists a

stationary solution uj(z) for ltk— order Galerkin equation closed to um. We consider
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the following equation for perturbations V((t) around the stationary solution U((as) in
PiXa

(3.39) d{Vl-u{) = ^ _ + _
at

We shall begin with essentially a linear stability analysis of the stationary solution
ui, following by a nonlinear analysis. The coupled system of linearised equations around
the stationary solution on the decomposition PiXa = PmXa @ Pi-mXa is

(3.40) ^ ^ - = ADwm + Pm{F'(u,)(w
at

(3.41)
= ADWl

at
|-m(0) = Wl-m.

From the assumptions of the theorem (see (3.15)) using Gronwall's inequality it follows
that

with wm(t) G Pm.Xa, 7a = 7 i /2 , when ||uj — um\\ is sufficiently small. Hence analo-
gously to the first part of the proof we deduce through the variation of constant formula
for (3.40) that

(3.42) ||«,TO(t)|| ^ Cioe"^ 1 ||i»ra(0)|| + Cn f e~^-^ ||w,_TO(«)|| da,
Jo

and from (3.41) that

(3.43) l|wi-m(*)|| < C12e-^81 ||ii»i-m(0)|| + V* ||™m(<)ll.

where 7s > 0 and 77s is small enough when M is large enough. Substituting the esti-
mate for ||-u>j_m(<)|| from (3.43) in the right-hand side of (3.42) and applying methods
similar to the ones from the first part of the proof we get the estimate

(3-44) \\wm(t)\\ < Clte-»* \\w,(0)\\,

where 79 > 0. Hence from (3.43), (3.44) we have

||wi-m(*)ll < C w e - ™ ' ||t»j(O)||, 710 > 0,
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and therefore

IMOKCwe-™* MOMI, Til >0,

where CiS,7n do not depend on m if M is large enough.
After having obtained the estimate for the linearised equation the proof of the

analogous estimate for the nonlinear ordinary differential equation follows the standard
pattern (see [5, Theorem 5.1.1]). Thus

where Ci6 and 71 2 = 7 u / 2 do not depend on m if M is large enough. Because /
is any natural number greater than m the constants K and 7 in the definition of
the asymptotic stability of the stationary solution wj in (2.2) and consequently in the
properties of the Lyapunov function (2.4), (2.5), (2.6) do not depend on m.

The theorem has been proved. D
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