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This work studies the three-dimensional flow dynamics around a rotating circular cylinder
of finite length, whose axis is positioned perpendicular to the streamwise direction. Direct
numerical simulations and global stability analyses are performed within a parameter
range of Reynolds number Re = DU∞/ν < 500 (based on cylinder diameter D, uniform
incoming flow velocity U∞), length-to-diameter ratio AR = L/D ≤ 2 and dimensionless
rotation rate α = DΩ/2U∞ ≤ 2 (where Ω is rotation rate). By solving Navier–Stokes
equations, we investigated the wake patterns and explored the phase diagrams of the lift
and drag coefficients. For a cylinder with AR = 1, we found that when the rotation effect is
weak (0 ≤ α � 0.3), the wake pattern is similar to the unsteady wake past the non-rotating
finite-length cylinder, but with a new linear unstable mode competing to dominate the
saturation state of the wake. The flow becomes stable for 0.3 � α � 0.9 when Re < 360.
When the rotation effect is strong (α � 0.9), new low-frequency wake patterns with
stronger oscillations emerge. Generally, the rotation effect first slightly decreases and then
sharply increases the Re threshold of the flow instability when α is relatively small, but
significantly decreases the threshold at high α (0.9 < α ≤ 2). Furthermore, the stability
analyses based on the time-averaged flows and on the steady solutions demonstrate the
existence of multiple unstable modes undergoing Hopf bifurcation, greatly influenced by
the rotation effect. The shapes of these global eigenmodes are presented and compared, as
well as their structural sensitivity, visualising the flow region important for the disturbance
development with rotation. This research contributes to our understanding of the complex
bluff-body wake dynamics past this critical configuration.
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1. Introduction

The study of flows around rotating bluff bodies, including cylinders and spheres,
constitutes a fundamental problem in fluid dynamics. It provides critical insights into
vortex formation and wake dynamics, which are relevant to various natural phenomena and
engineering applications. For instance, these flows are critical in circulation control on an
airfoil (Tennant, Johnson & Krothapalli 1976), heat exchangers (Roslan, Saleh & Hashim
2012), laminar/turbulence separation (Afroz, Lang & Jones 2017) and design of guided
rockets (de Celis, Cadarso & Sánchez 2017). Besides, the use of rotating effects to control
the wake flow past bluff bodies has attracted much attention (Gad-el Hak & Bushnell 1991;
Modi 1997), including its applications such as Flettner rotors utilising the Magnus effect
(Seifert 2012). However, there is a research gap in the study of flow past a rotating cylinder
with two free ends. Experimental studies and real-world applications typically involve
finite-length rotating cylinders. In contrast, theoretical and numerical studies traditionally
consider infinitely long rotating cylinders. This discrepancy highlights the need for further
investigation on the effect of aspect ratio and free ends. To address this research gap, our
study aims to examine the three-dimensional (3-D) flow past a short rotating cylinder, an
area that previous researchers have not explored. By investigating this problem, we hope
to contribute to the knowledge base on the flow around rotating bluff bodies and provide
insights that are relevant to various engineering applications.

For a non-rotating infinitely long circular cylinder, it is well known that the wake
first experiences a Hopf bifurcation at Re ≈ 46.7 and then a 3-D wake transition at
Re ≈ 190 (Williamson 1996a,b). The non-dimensional number Re quantifies the ratio
between inertia and viscosity. The rotation effect enriches the flow dynamics of the wake
flow. Kang, Choi & Lee (1999) conducted a two-dimensional (2-D) numerical study of the
flow past a rotating circular cylinder and showed that rotation could effectively suppress
the vortex shedding (mode I) found in the stationary cylinder at α > αc (where αc is
the critical dimensionless rotation rate), and the relationship between the lift/drag and
rotation rate in the range of 0 ≤ α ≤ 2.5 is significantly different from that predicted
by potential flow theory. Subsequently, the numerical studies of 2-D rotating cylinders
by Stojković, Breuer & Durst (2002); Stojković et al. (2003), Mittal & Kumar (2003)
and Mittal (2004) revealed that when the rotation rate α is relatively large, there is
a secondary instability phenomenon (model II) characterized by low-frequency vortex
shedding. Especially, Mittal & Kumar (2003) brought to light this instability mechanism
of 2-D perturbations by the global stability analysis, which will be extended in the
current study, focusing on a rotating finite cylinder, to account for 3-D perturbations.
Built upon the previous works, El Akoury et al. (2008) extended the neutral stability
curves for these wakes in the Re-α plane by direct numerical simulations (DNS) and the
Landau model. The experiments by Kumar, Cantu & Gonzalez (2011) provided evidence
of the existence of mode II at Re = 200, 300, 400 and 0 < α < 5. The experimental
study of Linh (2011) also reported observations of the low-frequency mode II vortex.
Their experimental Strouhal number and wake patterns agree well with numerical data
of Mittal & Kumar (2003). Later, Pralits, Brandt & Giannetti (2010); Pralits, Giannetti
& Brandt (2013) conducted an extensive study of the linear global dynamics of the 2-D
rotating cylindrical wake flow. The authors explored neutral stability curves on the (Re, α)

plane, providing a comprehensive understanding of this phenomenon. They also observed
multiple steady solutions at high α, explaining the decay of the secondary shedding wake.
More recently, Sierra et al. (2020) fully described the bifurcation, neutral curves and
global instability modes in the parameter space (Re, α) ⊂ [0, 200] × [0, 10], exploring the
relations among Takens–Bogdanov bifurcations, cusps and generalized Hopf bifurcations
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when varying the parameters in the rotating cylinder wake flow. To sum up, for the
infinitely long rotating cylinders, mode I and mode II are fundamentally different flow
phenomena. Mode I undergoes a supercritical Hopf bifurcation and becomes linearly
unstable at 0 ≤ α ≤ 2, which is related to the classical Bénard–von Kármán vortex street,
characterized by alternating vortices with opposite signs of spanwise vorticity. On the
other hand, the physical mechanism of the linear instability mode II (4.5 ≤ α < 6) is
featured by low-frequency vortex shedding with the same vorticity sign.

Further research has shown that rotation can lead to complex 3-D instabilities.
Numerical investigations by Rao et al. (2013a,b) demonstrated several 3-D modes
becoming unstable to spanwise perturbations in the steady and unsteady regimes of
Re = 400 flows. Five 3-D modes were identified to be unstable in the mode I shedding
regime, while four 3-D modes were observed in the steady flow regimes for α ≥ 2. Radi
et al. (2013) proved experimentally the existence of the above numerically predicted 3-D
modes. They additionally showed a highly 3-D wake and the absence of 2-D periodic
shedding at high α (i.e. Re = 200, α = 4.5) previously reported in Mittal & Kumar (2003).
Navrose, Meena & Mittal (2015) conducted 3-D numerical studies and found that the span
length of the rotating cylinder plays an important role in the evolution of the wake with
Re ∈ [200, 350], α ∈ [0, 5]. Specifically, only linear global modes with wavelengths that
are integer multiples of the cylinder span are selected for growth in nonlinear DNS. It is
thus necessary to consider 3-D configurations that take into account the spanwise length
in studies of rotating bluff-body flows.

Researchers have also studied the flow past a rotating bluff body of other forms. It is
instructive to review relevant works on these flows as they will also be discussed in this
study. The flow past a rotating sphere, along either the transverse axis or the streamwise
axis, received considerable attention. Citro et al. (2016) applied the global linear stability
analysis (LSA), adjoint-based structural sensitivity analysis and weakly nonlinear analysis
(WNL) to reveal the mechanism of flow instability around a rotating sphere around the
transverse axis. They characterized the evolution processes of the first (at low α) and
second (at high α) instability modes. Fabre et al. (2017) further improved the WNL from
that in Fabre, Tchoufag & Magnaudet (2012) to achieve a better comparison between the
WNL expansion result and the DNS. Namely, the comparison demonstrates that Fabre
et al. (2017)’s ε expansion (ε = √

Re − Rec/Rec, where Rec is the critical Reynolds
number of a pitchfork bifurcation in their work) provides a better reproduction of the DNS
results for both angular velocity and associated lift forces, compared with Fabre et al.
(2012)’s ω expansion (where ω represents the dimensionless rotation rate normalizing
the actual rotation with U0/D). The ω expansion failed to predict the DNS results for
Re around and beyond Re = 212, whereas the ε expansion accurately reproduces the
DNS results up to Re ≈ 225. For the flow past a sphere rotating along the streamwise
direction, Lorite-Díez & Jiménez-González (2020) conducted a DNS study on the wake
evolution of a strongly rotating sphere and observed a sequence of continuous bifurcations
from periodic, quasi-periodic and irregular states to chaos, over the parameter range
0 < α < 3 and Re = 250, 500, 1000. Later, Sierra-Ausín et al. (2022) employed global
LSA to determine the neutral curves of three non-zero frequency global modes on the Re-α
plane, and used the normal form expansion to reveal the nonlinear interactions among the
global modes. Their predictions of the normal form analysis were satisfactory and close
to the DNS results, which led to a more detailed phase diagram of the nonlinear patterns.
Besides, Jiménez-González et al. (2014) carried out global LSA of the wake flow past a
streamwise rotating bullet-shaped body and plotted the neutral curves on the Re-α plane.
Their work indicated that the streamwise rotation can also delay the Hopf bifurcation of
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a bluff body with a large aspect ratio (AR = 2) when increasing Re, which is different
from a sphere with an aspect ratio of 1. To sum up, in addition to the sphere rotating along
the streamwise direction, the aforementioned rotating bluff bodies of various shapes and
aspect ratios exhibit a moderate rotation regime in the Re-α plane where the neutral curve
of the Hopf bifurcation is significantly shifted to higher Re values. Therefore, the aspect
ratio plays a significant role in the wake transition of a rotating bluff body, which should
be further researched.

Our literature review has identified a research gap in the understanding of the dynamics
of uniform flow past a finite-length rotating cylinder along its cylinder axis. This flow
configuration is common in nature and engineering applications, but its instability
mechanism, bifurcation properties and transition path are still unclear. In a recent study
we conducted a detailed investigation of the wake flow around a non-rotating finite-length
cylinder (Yang, Feng & Zhang 2022). Building on this research, we aim to extend our
investigation to the wake flow around a rotating finite-length cylinder to explore its 3-D
effects, in line with other similar works focusing on the rotation effect in the wake flow
such as Pralits et al. (2010), Citro et al. (2016), Sierra-Ausín et al. (2022) and Zhao &
Zhang (2023), reviewed in Rao et al. (2015). The primary objective of this study is to
clarify the effect of rotation on the unsteadiness of finite-length cylinder wakes using
the (nonlinear) DNS method. Additionally, we aim to determine the instability threshold
at which the unsteadiness occurs using the global stability approach. To identify the
instability region responsible for the unsteadiness, we also probe the structural sensitivity
of the flow. Our work will contribute to a deeper understanding of the wake flow
around rotating finite-length cylinders and provide insights into the dynamics of this flow
configuration, which has practical implications for various engineering applications.

The paper is organised as follows. Section 2 introduces the configuration of a 3-D finite
rotating cylinder flow, the boundary conditions, the governing equations (i.e. nonlinear
Navier–Stokes (NS) equations and their corresponding linearised direct and adjoint
equations) and the numerical methodology. In § 3 we show the results and discuss the base
states (time-averaged flow or steady flow), nonlinear wake patterns, global eigenmodes,
neutral curves in parametric plane Re-α and bifurcations in this flow. Finally, the results are
summarised in § 4 and conclusions are provided. In the appendices we provide additional
results of the Stuart–Landau model, the global modes at different aspect ratios AR and a
verification step of the numerical codes.

2. Problem formulation

2.1. Flow configuration and governing equations
We study the 3-D stability of the flow around a finite-length rotating cylinder of length
L, diameter D and aspect ratio AR = L/D, subjected to a uniform incoming flow in a
Cartesian coordinate system. As shown in figure 1, the origin of the coordinate system
is located at the centre of the cylinder, the x axis points in the flow direction, the y
axis represents the transverse direction and the z axis extends along the centreline of the
cylinder. The non-dimensional NS equations for the unsteady Newtonian incompressible
flow read

∂U
∂t

+ (U · ∇)U = −∇P + 1
Re

∇2U, ∇ · U = 0, (2.1)

where U = (Ux, Uy, Uz) is the velocity vector and P is the pressure. The Reynolds
number Re = DU∞/ν is defined based on cylinder diameter D, the velocity of the uniform
incoming flow U∞ at infinity and the kinematic viscosity coefficient ν. Strouhal number
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Figure 1. The computational domain and boundary conditions (not to scale) (a) and mesh design (b). The
red unit vectors (en, eτ , eb) in panel (a) represent the directional vectors of the surface Sxy,t. The finite-length
cylinder is rotating around its axis that is perpendicular to the incoming flow.

St = fD/U∞ is defined based on the frequency f of vortex shedding. The dimensionless
rotation rate α = ΩD/2U∞, where Ω is the rotating angular speed of the cylinder along
the z axis, as shown in figure 1. Setting ρU2∞ as the reference dynamic pressure, the drag
and lift coefficients are defined respectively as

Cd = Cdp + Cdv = Fdp + Fdv

(1/2)ρU2∞A
and Cl = Clp + Clv = Flp + Flv

(1/2)ρU2∞A
, (2.2a,b)

where ρ is the fluid density, Fdp = ∫
Sc

Px dS and Fdv = ∫
Sc

τwx dS are the pressure drag and
friction drag on the cylinder surface Sc along the streamwise direction, Flp = ∫

Sc
Py,z dS

and Flv = ∫
Sc

τwy,wz dS are the pressure lift and wall shear stress lift acting in either y axis
or z axis (defined as Cly and Clz, respectively) and A is the reference area A = LD. Here
(Px, Py, Pz) are the components of the pressure acting on the cylinder surface along the
x, y and z axes, respectively. And τw is wall (surface) shear stresses. Furthermore, we will
also use the letters C̄d and C̄l to denote the time-averaged values of Cd and Cl, respectively.

As shown in figure 1, Sc represents the surface of the cylinder. Here Sin and Sout
represent the inlet and outlet surfaces of the rectangular computation domain, whose
normal is along the x direction; Sxy,t, Sxy,b, Sxz,f and Sxz,b denote the surfaces of the cuboid
on the top, bottom, front and back side walls, which are parallel to the xy, xy, xz and xz
planes, respectively. The boundary conditions of the system (2.1) are

U = (1, 0, 0) on Sin, (2.3a)

U = Ω êz × r = Ω(−yc, xc, 0) on Sc, (2.3b)

(−PI + Re−1∇U) · en = 0 on Sout, (2.3c)

U · en = 0, (∇U · eτ ) · en = 0, (∇U · eb) · en = 0 on Sxy, Sxz, (2.3d)

where êz = (0, 0, 1) is a unit vector aligned with the positive z axis. The vector r =
(xc, yc, zc) is the position vector of a point located on the cylinder surface, i.e. the vector
from the origin of the coordinate system to the point. Here en, eτ , eb are the unit normal,
unit tangent and unit bitangent vectors, respectively. As shown in figure 1(a), the vector
en of surfaces Sxy,t, Sxy,b, Sxz,f , Sxz,b and Sout points out the computational domain. The
directions of the vector eτ of surfaces Sxy,t, Sxy,b, Sxz,f , Sxz,b point along positive x axis,
negative x axis, negative x axis and positive x axis, respectively. The vector eb points in the
direction that is perpendicular to both the normal vector and the tangent vector. Here I is
the identity tensor.
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2.2. Linearisation
The global linear stability/instability of the flows past the finite-length rotating cylinder
will be studied. Reynolds decomposition U = Ub + u, P = Pb + p will be substituted
into the nonlinear governing equations (2.1). The base-state terms (Ub, Pb) satisfying
the steady NS equations and the nonlinear terms are neglected, yielding the linearised
equations for the infinitesimal perturbations (u, p) residing on these base states, i.e.

∂u
∂t

+ (Ub · ∇)u + (u · ∇)Ub = −∇p + 1
Re

∇2u, ∇ · u = 0, (2.4)

where u is the 3-D perturbation velocity vector u = (ux, uy, uz) and p is the perturbation
pressure. Homogeneous boundary conditions are applied for the perturbed variables as
follows:

u = 0 on Sc and Sin, (2.5a)

( pI − Re−1∇u) · en = 0 on Sout, (2.5b)

∂ux

∂y
= uy = ∂uz

∂y
= ∂p

∂y
= 0 on Sxz,f , Sxz,b, (2.5c)

∂ux

∂z
= ∂uy

∂z
= uz = ∂p

∂z
= 0 on Sxy,t, Sxy,b. (2.5d)

Linear equation (2.4) is rewritten in matrix form with q = (u, p)T as

M
∂q
∂t

= LUbq, (2.6)

where LUb is the linearised NS operator depending on the base states Ub. The elements of
mass matrix M and the Jacobian matrix LUb are

M =
(

I 0
0 0

)
, LUb =

(−Ub · ∇ − ∇Ub + Re−1∇2 −∇
∇· 0

)
. (2.7a,b)

As the considered base flow states are steady, we seek the wavelike solution q(x, y, z, t) of
the form

q(x, y, z, t) = q̂(x, y, z)eλt, where λ = σ + i2πω. (2.8)

Substituting this form (2.8) into (2.6), we can get the eigenvalue problem

LUb q̂ = λM q̂, (2.9)

where the stability of the base state Ub is dictated by the eigenvalues λ in the
linearised problem with σ being the temporal growth/decay rate of perturbations and
ω the eigenfrequency. The flow is linearly unstable if σ > 0; stable otherwise. The
eigenfrequency ω of the most unstable eigenvalue determines whether the base state Ub
experiences a regular bifurcation (ω = 0) or a Hopf bifurcation (ω > 0). Note that the flow
problem considered in this work is not spatially periodic or homogeneous in either x, y, z
directions, and q̂ depends on all the three coordinates, leading to a global stability problem
(Theofilis 2011).
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2.3. Sensitivity analysis
Sensitivity analyses based on the adjoint approach (Luchini & Bottaro 2014) will
be conducted to identify the instability mechanism responsible for the unsteadiness.
Following Giannetti & Luchini (2007), the adjoint equations of the linearised NS equations
read

− ∂u+

∂t
− Ub · (∇u+) + (∇Ub) · u+ = −∇p+ + 1

Re
∇2u+, ∇ · u+ = 0, (2.10)

where u+ and p+ are the adjoint vector of perturbation field u and p, respectively.
Following Giannetti & Luchini (2007), Marquet, Sipp & Jacquin (2008) and Citro et al.
(2016), the boundary conditions of the adjoint equations are set as

u+ = 0 on Sc, Sin, Sxz and Sxy, (2.11a)

p+n − Re−1(∇u+) · n = (Ub · n)u+ on Sout. (2.11b)

The identification of the core region of the instability can help to understand the
instability mechanism (Giannetti & Luchini 2007; Luchini & Bottaro 2014). According to
Giannetti & Luchini (2007), the sensitivity wavemaker ζ can be identified by overlapping
the direct eigenvector u and adjoint eigenvector u+,

ζ = |u||u+|
〈u, u+〉 . (2.12)

2.4. Numerical method
In order to obtain the accurate wake pattern and the base states of the fully 3-D flow past
a short rotating cylinder at medium and low Reynolds numbers, we adopt the high-order
parallelised open-source code Nek5000 (Fischer, Kerkemeier & Peplinski 2020) (version
19.0), which is based on the nodal spectral element method originally proposed by Patera
(1984). Hexahedral elements with a polynomial order N = 7 are used, which indicates
that there are eight points in each spatial dimension of the element (Fischer et al. 2020).
The time step Δt is determined by the Courant–Friedrichs–Lewy condition with the target
Courant number � 1.0. Following the practice in our previous work Yang et al. (2022),
the boundary layer elements in the vicinity of the rotating cylinder have been refined by
the O-type mesh (see figure 1b). The only difference lies in the enlarged computational
domain and increased number of elements to accommodate the rotational effects.

We focus on studying two types of base states (both of which are denoted as Qb =
(Ub, Pb)

T in the text to follow as long as there is no confusion) to analyse their global
dynamics. The flow will become unstable in a certain region of the parametric space. The
unstable base flow Qb in this case cannot be obtained directly by time evolving the NS
equations. For these unstable base flows, the selective frequency damping (SFD) method
proposed by Akervik et al. (2006) was used to obtain an equilibrium solution to the NS
equations (2.1). This type of base state will be called (SFD) base flow. Another base state of
interest is the mean flow, which is obtained by time averaging the periodic flow with vortex
shedding. For the present global stability analysis, at least ten vortex shedding cycles will
be used in the time-average procedure.

For a non-parallel 3-D flow past the finite rotating cylinder, the numerical discretisation
of linearised NS equation (2.4) will result in a large-scale Jacobian matrix LUb in the
generalized eigenvalue problem (2.9). It is impractical to solve a large-scale eigenvalue
problem for its whole eigenspectrum in a 3-D flow. Based on Nek5000 solver and
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the ARPACK package (Lehoucq, Sorensen & Yang 1998), the matrix-free time-stepper
method (Theofilis 2011; Doedel & Tuckerman 2012) will be adopted in the present work,
implementing the implicitly restarted Arnoldi method (Radke 1996; Lehoucq et al. 1998).

The validation of the nonlinear DNS code and the linear stability code is provided in
Appendix C together with a convergence study on the size of the computational domain.

3. Result and discussions

3.1. Base states

3.1.1. Base flows and pressure by SFD method
In this section we present the base state of the flow past a short rotating cylinder. We
focus on the case of AR = 1 and vary the values of Re and α. Both temporally mean flow
and the steady base flow (solved using the SFD method if unstable) will be displayed
and discussed. By extracting pressure field contours and streamlines, we show in figure 2
the typical unstable steady base flow obtained by the SFD method. First, we review the
flow past a finite-length cylinder without rotation (α = 0) in panels (a,b). For Re < Rec =
172.2 (figure 2a), the wake flow is steady, which has two mutually perpendicular symmetry
planes xy and xz, passing through the geometric centre of the cylinder (as also shown
in figure 5 of Yang et al. (2022); the value of Rec = 172.2 has also been determined
from this work). The wake consists of a recirculation region with closed streamlines,
characterized by planar symmetrical separation points and foci. For Re > Rec = 172.2,
the flow undergoes a regular bifurcation, resulting in spontaneous symmetry breaking
in the xz plane due to nonlinear wake dynamics, as shown in figure 2(b) for the case
Re = 330, α = 0. When viewed from the remaining symmetric xy plane with z = 0 (top
panel), one vortex structure in the wake becomes stronger than the other. Besides, the
positions of the two separation points slightly change, and the pressure contours indicate
that the pressure near the upper part of the cylinder arc surface is larger than that of the
lower part, which results in a negative lift coefficient Cly. The sign of the Cly in the case
of no rotation is unimportant because of the symmetric setting.

Figure 2(c,d) show respectively the base flow structures of cases Re = 160 (stable) and
Re = 330 (unstable) at a low rotation rate α = 0.1. Even for a low Re = 160, it can be seen
that the rotation breaks the symmetry of the wake, leaving the flow only symmetric with
respect to the oxy plane. Compared with the non-rotation case (figure 2a), the positions
of the upper and lower separation points shift significantly along the rotation direction.
Overall, the asymmetric recirculation region generated by the weak rotation is similar
to the asymmetric wake generated by regular bifurcation in the non-rotated case. The
counterclockwise rotation makes the flow velocity near the cylinder arc surface on the
lower side increase, and the velocity near the upper wall surface decrease. It can be
deduced that the pressure near the lower side wall will decrease, and the pressure near
the upper side wall will increase, so a negative lift Cly will be obtained, i.e. the Magnus
effect. It can be seen from figure 2(c–h) that the numerical results conform to the classical
Magnus effect. In the parameter space studied in this paper (especially relatively low Re),
there is no boundary layer transition from a laminar flow to turbulence, that is, there is
no inverse Magnus effect (Kim et al. 2014). As mentioned above, the symmetry breaking
effect caused by the regular bifurcation resembles that due to the rotation (see also the
rotating sphere by Citro et al. 2016). Therefore, the rotation ’strengthens’ the symmetry
breaking caused by the inherent wake mechanism observed in the regular bifurcation
without rotation, resulting in the lift force in the rotating cases in figure 2(c–h) being

975 A15-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.840


Numerical analyses of flow past a short rotating cylinder

–0.29 0.52 –0.28 0.51

–1 0.51

–0.38 0.52

–0.93 0.52

–0.36 0.51

–1 0.51–0.92 0.52

–0.82 0.5 –1.1 0.5 –1.1 0.5–0.79 0.51

–1 0.5 –0.82 0.48 –0.89 0.48–0.91 0.5

(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)

(i)

(ii)
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Figure 2. Steady SFD base flow past an AR = 1 short cylinder. The colour illustrates pressure contour
and the white lines streamlines. Results are shown for (a) Re = 160, α = 0; (b) Re = 330, α = 0;
(c) Re = 160, α = 0.1; (d) Re = 330, α = 0.1; (e) Re = 160, α = 0.6; ( f ) Re = 330, α = 0.6; (g) Re = 160,

α = 1.2; (h) Re = 330, α = 1.2. For each subgraph, plots (a i,b i,c i,d i,e i, f i,g i,h i) show the flow visualisation
at the plane z = 0 and plots (a ii,b ii,c ii,d ii,e ii, f ii,g ii,h ii) at the plane y = 0. The rotation direction of the
cylinder is counterclockwise. The black translucent thick solid lines denote the recirculating region separatrix,
which is identified by Ux = 0.

larger, to be shown in figure 4(b). On the other hand, the drag coefficient Cd is not very
sensitive to the rotation when at low rotation rate α < 0.3, as shown in figure 4(a).

Figures 2(e) (Re = 160) and 2( f ) (Re = 330) show the base states at moderate rotation
α = 0.6, and both their nonlinear saturation states are steady. So the base flow and mean
flow are the same for these cases. Compared with the previous low rotation case, the flow
topology further changes, i.e. the recirculation zone in the wake almost disappears, in
either the xy or xz plane. But a stagnation point (white point in the panel) similar to that
observed in the 2-D rotating cylinder (see figure 3b in Sierra et al. 2020) appears, which
is located in the second quadrant of the cylinder.

Continuing to increase the rotation rate, figures 2(g) (Re = 160) and 2(h) (Re = 330)
show the cases of a high rotation rate (α = 1.2), and their wake structure and pressure
distribution are similar to those of figures 2(e) and 2( f ), but the wakes are swung further
upwards. The hyperbolic stagnation point (see the white dot) on the upper side moves
forward along the direction of tangential velocity, which is similar to the results of Citro
et al. (2016) on a rotating sphere at a high rotation rate.

3.1.2. Separation bubble
Next, we discuss figure 3 where the streamlines are further analysed. Here, the separation
point is defined as the intersection between the envelope of the separation bubble
(indicated by the green curve with Ux(x, y, z = 0) = 0 in figure 3a) and the surface of the
cylinder, and thereby, the separation angle θs is defined as the angle from the negative x
direction to the separation point. In the present rotating cylinder, the values of parameters
Reynolds number, rotation rate and aspect ratio have no effect on the separation angle.
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α = 1.6

(a) (b)

–1.1 0.5
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x

xs
Ux = 0

θs = πθs

Figure 3. (a) A separation bubble under the effect of rotation in plane oxy, whose area is surrounded by the
green curve (Ux(x, y, z = 0) = 0) and the wall of the rotating cylinder. The white dot shows the position of
the hyperbolic stagnation point. The colour represents the pressure field. (b) Separation bubble length xs of
the SFD base flow as a function of Re, compared with a fixed sphere (Johnson & Patel 1999) and a sphere
(Sierra-Ausín et al. 2022) rotating along the streamwise (blue dashed lines). The blue and black dash-dotted
lines represent the xs obtained from the neutrally stable SFD base flow of a rotating sphere (Sierra-Ausín et al.
2022) and the present cylinder, respectively. The black and red thick lines represent the xs obtained from the
SFD base flow and the mean flow of a fixed finite cylinder (α = 0) (Yang et al. 2022), respectively.

The separation bubble is always confined between angles θs = 0 and θs = π, as shown
in figure 3(a). Note that in the case of a non-rotation cylinder (Yang et al. 2022), the
separation angles may be varying depending on Re and the aspect ratio. We define the
separation bubble length as xs = max{x − D/2 | Ux(x, y, z = 0) ≤ 0}; see figure 3(a).
Figure 3(b) shows xs as a function of Re for the AR = 1 cylinder, compared with the
separation length of a fixed sphere (Johnson & Patel 1999) and a non-rotating finite-length
cylinder (Yang et al. 2022). The effect of Reynolds number on xs is different for the high-
and low-rotation-rate cases. When the rotation rate is low, the increase of Reynolds number
makes xs increase monotonically, which is similar to the (mean flow) cases of the fixed
finite-length cylinder (Yang et al. 2022) at 0.5 ≤ AR ≤ 2 prior to Hopf bifurcation, the
sphere (Johnson & Patel 1999) and rotating sphere (Sierra-Ausín et al. 2022). The increase
of α decreases the value of xs for 0.025 ≤ α ≤ 1.2, which means that the rotation shortens
the recirculation length. It has been proposed that shortening the recirculation length
stabilises the flow; for example, Sierra-Ausín et al. (2022) discussed such a stabilising
control strategy.

When the rate α is high, xs slightly decreases with the increase of Re, for example, see
α = 0.6, 1.2 in figure 3(b). According to the above discussion on the relation between
rotation, recirculation length and flow stability, we cannot make the present rotating
cylinder flow more stable at high α ≥ 0.6-1.2 by shortening the base flow recirculation
region along the streamwise direction because the value of xs bounces back when α ≥
0.6–1.2. We provide a further mechanistic explanation of this result in the structural
sensitivity analysis § 3.2.3. Besides, the higher the rotation rate, the less sensitive the value
of xs is to the variation of the Reynolds number.

For fixed Re, the effect of rotation rate α on xs is not monotonous, unlike the sphere
rotating along the streamwise axis (Sierra-Ausín et al. 2022). Sierra-Ausín et al. (2022)
also suggested that xs does not have to increase monotonically as α increases after
the bifurcation, which can also be seen in the time-averaged recirculation length of
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Numerical analyses of flow past a short rotating cylinder

the sphere rotating along the streamwise direction (Kim & Choi 2002; Lorite-Díez &
Jiménez-González 2020).

3.1.3. Drag and lift coefficients
Now, we turn to figure 4 to discuss the drag and lift coefficients in the short rotating
cylinder flow. Starting from the fixed finite-length cylinder case (Yang et al. 2022),
figure 4(a) shows that the drag coefficient increases as the rotation rate increases, which
is caused by the fact that the rotation makes the negative pressure in the leeward area
smaller, but has little effect on the maximum positive pressure at the stagnation point
on the windward side. These can be seen from the pressure contour in panels (a,b) and
(c,d) of figure 2, and more quantitative results on the lift and drag coefficients varying
with α are shown in figure 28(a,b) in Appendix C. A comparative analysis reveals that
the augmentation of α increases the lift coefficient of both the 2-D infinite cylinder and
present 3-D finite-length cylinder. However, in the 3-D case the lift coefficient ceases to
increase further when α approaches 2, whereas in the 2-D case the lift coefficient increases
monotonically as α approaches 2.5 (Mittal & Kumar 2003; Stojković et al. 2003). The
effect of α on drag shows contrasting behaviours between the 2-D infinite cylinder and
present 3-D finite-length cylinder cases within α < 2.5. Note that our analysis is based
on the drag and lift in the SFD base flow, whereas the drag and lift for the 2-D infinite
cylinder are time averaged (Mittal & Kumar 2003; Stojković et al. 2003).

Despite the presence of rotation, it is evident from figure 28(a) that the predominant
contributor to the drag is the pressure differential. As the rotational speed increases, the
proportion of pressure drag C̄dp to total drag C̄d becomes greater. Similarly, the amplitude
of the time-averaged lift coefficient |C̄lp| generated by the pressure differential remains a
predominant component of the total lift coefficient |C̄l|. Furthermore, emphasis is placed
on the primary determinant of drag, namely, the pressure differential. As shown in figure 5,
the distribution of spanwise-averaged pressure Ps (panel a) acting on the upper surface,
as well as its component Psx = Ps cos θ (panel b) along the x axis, is characterized with
respect to the angle θ . As an example, the areas corresponding to the shaded regions in
panel (b) are denoted as Σ1, Σ2 and Σ3 for the case α = 2. So, the drag resulting from
the pressure differential can be regarded as the net area enclosed between the blue solid
line and the Psx = 0 axis, specifically Σ1 − Σ2 + Σ3. Consequently, it can be observed
that the increase in drag is primarily attributed to a significant reduction (see panel a) in
pressure Ps on the back surface of the cylinder due to rotation, resulting in a substantial
enlargement (see panel b) of the area Σ3.

As with a fixed infinite cylinder (Schlichting & Gersten 2016), a fixed sphere (Johnson &
Patel 1999) and a fixed finite-length cylinder (Yang et al. 2022), within the parameter range
shown in figure 4(a), an increase in Re generally leads to a decrease in drag coefficient.
On the other hand, unlike the drag coefficient Cd, the values of the lift coefficient Cly
in figure 4(b) present more variation when Re changes. At low rate α ≤ 0.3, Cly first
decreases with the increase of Re and then increases; at high rate α ≥ 0.6, Cly increases
monotonically as Re increases from 50 to 330. Besides, in the interval 0.2 < α < 0.6
of figure 4(b), Cly is relatively insensitive to Re, and the wake is steady (see the neutral
stability curves in the next section). It is worth noting that the lift coefficient Cly|α=c of the
rotating cylinder and the Cly|α=2c of the rotating sphere gradually coincide for Re � 270
(with c ≤ 0.1 in present works); see the top-right corner in panel (b). For example, the
values of Cly|α=0.025 of a rotating cylinder and Cly|α=0.05 of a rotating sphere, or Cly|α=0.05
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Figure 4. Drag (a) and lift (b) coefficients of the steady SFD base flow as a function of Re at AR = 1.
Comparison with a fixed sphere (Johnson & Patel 1999), a fixed finite cylinder (Yang et al. 2022) and a sphere
rotating about the transverse direction (Citro et al. 2016).
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Figure 5. The distribution of span-averaged pressure Ps (a) acting on the upper surface, as well as its
component Psx = Ps cos θ (b) along the x axis, is characterized with respect to the angle θ . The conditions
considered involve cases of (Re = 160, AR = 1, α < 2). As an example, the areas corresponding to the shaded
regions in panel (b) are denoted as Σ1 (coloured by red), Σ2 (coloured by green) and Σ3 (coloured by grey)
for the case α = 2.
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Numerical analyses of flow past a short rotating cylinder

of a rotating cylinder and Cly|α=0.1 of a rotating sphere, are approximately the same for
Re � 270.

3.2. Global stability analysis
In this section we discuss the Hopf bifurcation diagram for the AR = 1 case; the effect of
aspect ratio will be discussed in § 3.2.3. As the low- and high-rotation-rate flows present
different behaviours, we will discuss them separately.

3.2.1. At low rotation speed 0 ≤ α ≤ 0.3
We discuss figures 6 and 7 collectively, showing the eigenspectra and the eigenfunctions,
respectively. Figure 6 illustrates the influence of parameters (Re, α) on the leading
eigenmodes at low rotation rate α ≤ 0.3. The global LSA of the flow past the short rotating
cylinder shows that there exist two linear unstable modes (LA and LB) for Reynolds
numbers Re < 360. The linear growth rates σ of modes LA and LB increase linearly
with Re in the vicinity of the instability, as shown in figure 6(a). When increasing Re for
the cases (α = 0, 0.025 and 0.1), both mode LA and mode LB become unstable through
a Hopf bifurcation because the frequency at the neutrally stable condition is non-zero, as
shown in figure 6(b). Mode LA undergoes the Hopf bifurcation prior to mode LB at a lower
Re. At α = 0.15, the critical Re for mode LB is smaller. From panel b, one can also see
that the frequency of global mode LA is not sensitive to α or Re with an approximate value
around 0.14, while the frequency of global mode LB increases rapidly with the increase of
rotation ratio α. Combining the growth rate σ and the frequency St, we plot in panel 6(c)
the modes LA and LB for the representative points LP1–LP5 and the LT point (which can
be found in figure 8 for their Re, α values). The implication of panel (c) is similar and,
thus, we will not discuss it further.

Figure 7 plots four eigenmodes LA, LB, LC, LD at α = 0.1 and Re = 290. Only mode
LA is unstable; see also the solid green lines in figure 6(a) and one of the unnamed hollow
diamonds on the Re-α plane in figure 8(a). The structure of the low-frequency global
mode LA is shown in figure 7(a), corresponding to the periodic wake LA (to be discussed
in figure 13(a) obtained by DNS) and is mainly caused by the vortices shedding from the
flat ends of the cylinder (Yang et al. 2022). We loosely use the same name for the global
mode and the corresponding wake pattern observed in DNS, if their frequencies are close.
Global mode LB, as shown in figure 7(b), with a higher frequency is caused by the vortices
shedding from the curved surface and the associated nonlinear flow pattern wake LB is
shown in figure 13(b). In figure 7 we have additionally shown two additional modes (named
LC and LD) at α = 0.1 and Re = 290. Mode LC in panel (c) has zero frequency and
presents a long smooth streamwise structure. The leading eigenmode in some other cases,
such as LT, may take this form. As shown in figure 8(a), LT represents a low-rotation-rate
transition state where the LA and LB modes are both neutral, to be discussed further below.
Mode LD in panel (d) appears similar to mode B identified in Yang et al. (2022) for the
non-rotating short cylinder. Each global mode in figure 7 maintains the same symmetry as
the base flow, namely, symmetry with respect to the xy plane, consistent with that of the
non-rotating short cylinder (Yang et al. 2022).

Examining closely the solid and dashed lines in figure 6(a), when α is relatively small,
mode LA becomes unstable before mode LB when increasing Re. In the range of larger α,
mode LB starts to become unstable before mode LA. The intersection point of the σ–Re
lines of mode LA and mode LB denotes the condition where σLA = σLB, as represented by
the black stars in figure 6(a). This competitive phenomenon also exists in spheres rotating
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Figure 6. The growth rate σ (a) and frequency (b) of the leading global modes (of the SFD base flow) as a
function of Re at AR = 1. The position of the black star symbol ‘ ’ in panel (a) indicates that σLA = σLB.
(c) The eigenspectra of global modes LA (grey shaded area) and LB at points LP1, LP2, LT, LP3, LP4 and LP5
in figure 8(a).
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Figure 7. Four representative eigenmodes with weak asymmetry in the flow past a short rotating cylinder at
α = 0.1 and Re = 290. Mode LA (in panel a) and mode LD (in panel d) are similar to mode A and mode
B reported by Yang et al. (2022), respectively. The new mode LB (in panel b) with high frequency is more
asymmetric caused by rotation. The mode LC (in panel c) has zero frequency. The Q-criterion isosurfaces
Q = 0 are coloured by the x component of the vorticity ranging from −2 × 10−3 to 2 × 10−3. The
corresponding eigenvalues are (a) LA mode λLA = 4.120 × 10−3 + i0.8833, (b) LB mode λLB = −2.202 ×
10−2 + i1.176, (c) LC mode λLC = −6.295 × 10−2 + i0.0, (d) LD mode λLD = −8.683 × 10−2 + i0.8687.

along the streamwise direction (Sierra-Ausín et al. 2022), but differs from the single-mode
instability observed in spheres rotating along the transverse direction (Citro et al. 2016).
Note that our cylinder is rotating along its axis that is in the transverse direction.
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Figure 8. (a) Neutral stability curves undergoing the Hopf bifurcation for the flow past a finite rotating cylinder
at AR = 1 and the rotating sphere (the mode I by Citro et al. 2016). The specifications of the points LP1-5
and the codimension-two point LT are shown in table 1. The hollow symbols represent the corresponding
nonlinearly saturated wake that looks similarly to global mode LA, whereas the solid symbols denote the
nonlinearly saturated wake that more closely resembles global mode LB. (b) Plot of critical Strouhal numbers
St0 on the neutral stability curves against rotating ratio α.

No. Re α (σ + iω/2π)LA (σ + iω/2π)LB StDNS

LP1 290 0.05 1.4642 × 10−2 + i0.1394 −4.7063 × 10−2 + i0.1703 0.1406
LP2 305 0.05 3.3957 × 10−2 + i0.1411 1.6972 × 10−2 + i0.1782 0.1443
LT 297.9 0.1294 0.0 + i0.1422 0.0 + i0.2011 /

LP3 330.33 0.0 6.6731 × 10−2 + i0.1424 6.7834 × 10−2 + i0.1706 /

LP4 330 0.1 4.6550 × 10−2 + i0.1451 9.3466 × 10−2 + i0.2077 0.1977
LP5 330 0.2 −2.4274 × 10−2 + i0.1485 3.9667 × 10−2 + i0.2392 0.2358

Table 1. The specifications of the five typical points in the parameter space (Re, α) (see also figure 8a) for
the cylinder AR = 1. Subscripts LA and LB represent global modes LA and LB (figure 7a,b), respectively. The
eigenfrequencies marked in bold are close to the frequency StDNS in DNS (e.g., see also figure 14) of the
saturated nonlinear wake.

The neutral curves in the Re-α plane associated to the two most unstable modes LA
and LB are displayed in figure 8. The present asymmetric steady state is linearly stable
in the blank region and linearly unstable in the shaded region, as shown in panel (a).
With the rotation speed increasing, the threshold Reynolds number for the instability first
decreases slightly and then increases. The critical Reynolds number approximately reads
Rec = 279 at α = 0.0375. As the rotational speed continues to increase, the threshold
Reynolds number becomes less sensitive to the rotation speed. Thus, the result indicates
that the rotation of a short cylinder can influence and control the stability properties of the
flow.

The present work designates the overlapping area between the unstable regions of modes
LA and LB in figure 8(a) as the bi-unstable region, where points LP2, LP3 and LP4 are
located. In this study the intersection of the neutral curves of mode LA and mode LB is
denoted as the codimension-two point LT, where two different bifurcations (due to mode
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Figure 9. (a) Neutral stability curves undergoing the Hopf bifurcation for the flow past a finite rotating cylinder
at AR = 1 and the rotating sphere (the mode I by Citro et al. 2016). The shaded area indicates a region of linear
instability. The eigenvalues of points HP1–HP4 are shown in table 2. (b) Plot of critical Strouhal numbers St0
against rotating ratio α.

LA and mode LB) occur simultaneously. Similar to the rotating sphere (Sierra-Ausín et al.
2022), the present point LT, as the organizing centre of the linear system, represents a
turning point of competition between different modes and results in the generation of three
distinct wake patterns around it in the nonlinear system (to be discussed in figure 13). The
dotted line in figure 8(a) passes the codimension-two point LT in the bi-unstable region,
on which the growth rate σLA = σLB. Above this dotted line, the growth rate of mode LB
is greater than that of mode LA; vice versa.

The frequencies St0 corresponding to the neutral conditions in panel (a) are reported
in figure 8(b) as a function of α. As the frequencies are non-zero, the unstable flows will
undergo Hopf bifurcation, that is, the unstable mode will oscillate at a certain frequency.
Similar to the flow past a sphere rotating along the transverse (Citro et al. 2016) and
streamwise directions (Sierra-Ausín et al. 2022), the St0 of present rotating cylinders
increase rapidly as α increases in the regime of low rotation rates α < 0.3.

3.2.2. At high rotation speed 0.9 < α < 2
We consider relatively low Re in our work. Consequently, in the medium range of the
rotation rate α from 0.3 to 0.9 and Re < 360, the wake is steady without vortex shedding.
Thus, we will not discuss this range of parameters.

We continue to study high rotation speeds in the range of 0.9 < α < 2 and Re < 360,
where the flow may become linearly unstable as shown in figure 9(a). From this figure, one
can observe that the global LSA based on the asymmetric SFD steady state (see figure 2)
indicates three unstable modes in this space of parameters, namely HA, HB and HC, whose
critical conditions are depicted as three lines in the figure. Four typical pairs of Re and α in
this figure, denoted as HP1 to HP4, are highlighted and their HA, HB and HC eigenvalues
are quantified in table 2. The four probed points will be further analysed in figure 13.
From panel (a) one can see that higher rotation speeds in the range of 0.9 < α < 2 can
significantly lower the critical Reynolds number for instability, which is different from the
low-rotation-rate cases 0 ≤ α ≤ 0.3.

As shown in panel 9(b), the three eigenmodes HA, HB, HC are characterized by
different frequencies St0, namely, low frequency for HA, immediate frequency for HB
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No. Re α (σ + iω/2π)HA (σ + iω/2π)HB (σ + iω/2π)HC

HP1 290 1.2 2.6560 × 10−2 + i0.04063 3.4548 × 10−2 + i0.1971 /
HP2 260 1.2 −7.4985 × 10−5 + i0.04025 1.9047 × 10−3 + i0.1968 /
HP3 170 1.8 −2.2614 × 10−2 + i0.06755 −7.3908 × 10−2 + i0.1611 3.0499 × 10−2 + i0.2646
HP4 200 1.8 4.0641 × 10−2 + i0.05973 −1.3588 × 10−2 + i0.1651 8.8217 × 10−2 + i0.2542
HT1 202.8 1.64 0.0 + i0.05462 / 0.0 + i0.2966
HT2 223.3 1.44 0.0 + i0.04673 0.0 + i0.1852 /

Table 2. The location and eigenvalues of typical points in the parameter space (Re, α) (figure 9a). Subscripts
HA, HB and HC represent global modes HA, HB and HC (figure 10), respectively. The eigenfrequencies marked
in bold are identified in the frequency spectrum (figure 14b–f ) of the saturated nonlinear wake.

and high frequency for HC. The non-zero frequencies of these modes again indicate
that the unstable wake flow experiences Hopf bifurcation. By comparison to figure 8(b),
the influence of the rotation on the eigenfrequencies of HA, HB and HC is less
significant compared with the mode LB at low rotation rate. This indicates that in the
high-rotation-speed regime, changing the value of α affects less the frequency in the
flow. For the following discussions, when a nonlinear wake flow possesses multiple
characteristic frequencies of these global modes at the same time, we will name the
wake flow by combining the modes; for example, if both the eigenfrequencies of HA and
HB modes are observed in a nonlinear wake, we will call it HAB (see figure 13 to be
discussed).

Besides, the three unstable modes can also interact with each other, resulting in the
three turning points HT1, HT2, HT3 as shown in figure 9(a). In the parameter ranges
of 0.9 < α < 1.64 and 203 < Re < 335, the neutral curves of global modes HA and
HB almost coincide, that is, the low-frequency mode HA and mid-frequency mode HB
simultaneously become linear unstable. For α > 1.64 (see, e.g. the point HT1 in figure 9a),
the Hopf bifurcation in the flow begins to be dominated by the high-frequency mode HC.
In general, the differences of the Hopf bifurcation in our case and that in the rotating
sphere are summarised as follows. (1) When α > 0.7, Citro et al. (2016) reports only one
unstable mode in the flow past a rotating sphere. However, there are three unstable modes
in our case, indicating that the Hopf bifurcation process in the present finite cylinder may
be more complex. (2) The eigenfrequency of a sphere is in general higher than that of the
rotating cylinder (see the black line with circles in panel 9b).

In figure 10 we show the flow structure of the global eigenfunctions for the three
eigenmodes HA, HB, HC at the point HP3 in figure 9. It can be seen that global mode HA
(figure 10a) and mode LA (figure 7a) have a similar wake structure, and the difference
is that the greater rotation rate makes the transverse offset of mode HA larger. The
intermediate-frequency mode HB and the high-frequency mode HC have smaller flow
structures than those in mode HA.

3.2.3. Structure sensitivity
The global modes detailed above characterize the perturbation growth. The sensitivity of
the flow to the perturbation can be studied via the structural sensitivity analysis. To further
study the destabilization mechanism, such an analysis for the selected low rotation and
high rotation flows is conducted. Figure 11 depicts the case of Re = 290, α = 0.1, AR = 1
for a low rotation case. The transparent red and opaque blue isosurfaces, computed
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Figure 10. The global modes with strong asymmetry for the flow past a rotating finite cylinder at a high
rotation rate at Re = 170, α = 1.8 (point HP3). The Q-criterion isosurfaces Q = 0 are coloured by the x
component of the vorticity ranging from −2 × 10−3 to 2 × 10−3. The cylinder centroid is located at (0, 0, 0).
Results are shown for the (a) HA mode, (b) HB mode, (c) HC mode.
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Figure 11. Flow sensitivity in a low-rotation-rate case. The wavemaker isosurfaces are plotted for the first
two unstable modes LA (a,c) and LB (b,d) at Re = 290, α = 0.1, AR = 1. Transparent red is for ζ = 0.2 and
opaque blue is for ζ = 0.4. Panels (a,b) show the results of the global LSA based on the SFD base flow and
panels (c,d) on the time-mean flow.

according to ζ in (2.12), delimit the wavemaker region, which is the superposition of the
leading global mode and its adjoint mode. For both the unstable LA and LB modes, we
compute their adjoint modes in the global LSA based on the SFD base flow and time-mean
base flow, respectively. In general, the wavemaker region is located in the near wake region
of the cylinder (in the top-right region of the xy plane). Its structure remains the same
symmetry as the base state, being symmetric with respect to the Oxy plane. The spatial
distributions of wakemakers based on mean flow and base flow are similar. Since the
wavemaker region indicates the most sensitive region in the flow, one can infer from these
observations that (i) the region responsible for the instability is located in the recirculation
region behind the cylinder, and (ii) the instability mainly amplifies the perturbations near
the cylinder surface (Citro et al. 2016).

Figure 12 presents the flow sensitivity for the high rotation case of HP3, showing
the superposition of the global modes HA, HB, HC based on the SFD base flow with
their respective adjoint modes. One can see that the three wavemaker regions differ
significantly, in contrast to the low rotation case. The wavemaker region for the HB mode
is located further downstream of the rotating cylinder compared with the other two modes,
whose sensitivity regions are close to the cylinder. This implies that the control of the
unstable modes in the high rotation case can be treated separately; especially, control of
the HB mode may be achieved more easily as it is not mingled with other modes in the
spatial distribution.
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Figure 12. Flow sensitivity in a high-rotation-rate case. The most unstable wavemaker isosurfaces are plotted
based on the SFD base flow of a rotating cylinder at point HP3. Transparent red is for ζ = 0.2 and opaque blue
is for ζ = 0.4. Panels (a–c) correspond to global modes HA, HB and HC, respectively.

3.3. Comparison with nonlinear results
In the previous sections we identified the global modes in the linearised wake flow past a
short rotating cylinder. The relevance of these global modes in the nonlinear simulations of
the flow should be established and confirmed. Thus, in this section we analyse the results
of 3-D nonlinear simulations of the flow past a short rotating cylinder and find the trace of
the identified global modes therein. Both high and low rotating speeds are considered.

3.3.1. Wakes behind the short rotating cylinder
Some representative spatial structures and the phase diagrams of the lift-drag coefficients
are depicted in figure 13 for the short rotating cylindrical wake flow, obtained by the
nonlinear DNS. To analyse the wake structure and compare with the results of the global
stability analysis, the frequency in the nonlinear saturated system is also computed, i.e. the
power spectral density (PSD) in figure 14. The spectra are obtained by calculating the
oscillatory part in the time series of the drag coefficient, e.g. C′

d = Cd − C̄d. We calculate
the PSD from the drag coefficient, instead of the lift coefficient, because the vortex
shedding can take place from the end plates and also the curved surface of the short
cylinder, as depicted in figure 1. When the vortices shedding from the end plates (causing
spanwise oscillations) are much weaker than those shedded from the curved surface,
we noticed that the corresponding oscillation frequencies cannot be observed clearly in
the fast Fourier transform (FFT) spectra of the lift coefficient Cly. Compared with the
lift coefficient, the drag coefficient seems to be a more robust option for analysing the
time-history data in our case. When the vortices shed alternately, the frequency of the
drag coefficient is twice that of the lift coefficient.

At low rotation, panels 13(a,b) show that the saturated states at points LP2 and LP4
are a limit cycle. Wakes LA and LB represent the wake dominated by vortices shedding
from the cylinder’s flat ends and the circular arc surface, respectively. Both types of wake
structures, LA and LB, are also observed in the fixed cylinder flow (see wake patterns
P3-2 and P3-1 in figure 10 of Yang et al. 2022, respectively). The difference is that, due to
the rotation effect, wake LB undergoes a Hopf bifurcation and becomes a saturated wake
state. In the non-rotating cylinder flow, wake LB is only an intermediate transitional state.

The results of high rotation speeds are shown in panels (c–f ). Three frequencies of
oscillations, including low (HA), medium (HB) and high (HC), are identified in the
present nonlinear wakes; see previous discussions on figure 9. Wake HA pertaining to
the point HP1 (figure 13c) is characterized by a low-frequency oscillation in the spanwise
direction and its higher-order harmonics (see figure 14c). Its phase diagram of the lift-drag
coefficient is also a limit cycle. Wake HAB (figure 13d) is identified with both a low-
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Figure 13. (a i,b i,c i,d i,e i, f i) The nonlinear wakes spatial structure obtained by DNS. The Q = 0 isosurfaces
are coloured by the streamwise vorticity ranging from −0.1 to 0.1. (a ii,iii,b ii,iii,c ii,iii,d ii,iii,e ii,iii, f ii,iii)
The corresponding phase diagrams of Cd − Cl for a rotating cylinder. (a) Wake LA at point LP2, (b) wake
LB at point LP4, (c) wake HA at point HP1, (d) wake HAB at point HP2, (e) wake HC at point HP3 and
( f ) chaotic wake HAC at point HP4. The corresponding Re, α and eigenvalues for each case are shown in
tables 1 and 2.

and a medium-frequency oscillation at point HP2. The phase diagram indicates a limit
torus with two incommensurate frequencies; see also the PSD result in figure 14(d). From
the perspective of the flow structure, the medium-frequency oscillation (HB) is caused by
the vortices shedding from the cylindrical arc surface, while the low frequency (HA) is
associated to the oscillation of the vortices in the z direction. Currently, we are not able
to identify a monochromatic wake HB with only a medium frequency. From the vortex
street structure of the wake HAB at point HP2, it can be seen that the medium-frequency
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Figure 14. The PSD for the cases (a) LP2, (b) LP4, (c) HP1, (d) HP2, (e) HP3 and ( f ) HP4. The PSD is
calculated based on the oscillatory part of the time series of the drag coefficient.

content exists (referring to the grey-coloured structure in the upper part). In § 3.3.2 we
further use the DMD method to decompose the main components in the HAB wake to
understand wake HB. Wake HAC (figure 13e) is identified with a high frequency and a low
frequency at point HP3, and its phase diagram of the lift-drag coefficient is also a limit
torus (see figure 14(e) for the PSD result). Finally, in figure 13( f ) a main low-frequency
oscillation and its higher harmonics are identified at point HP4, along with a broadband
of high-frequency oscillations, leading to a very chaotic signal. Point HP4 is located at
the region where the modes HA and HB are both unstable from the linear analysis. The
corresponding phase diagram is also more chaotic compared with the previous cases.

3.3.2. Comparison with DMD modes
According to the global LSA results of a non-rotating 3-D finite-length cylinder flow (Yang
et al. 2022), at the Hopf bifurcation point, we can accurately predict the vortex shedding
frequency through the LSA of the time-mean flow. Moreover, the eigenfrequency of the
steady base flow (solved using the SFD method if unstable) does not differ too much
from the nonlinear vortex shedding frequency. In the present work we want to establish
a qualitative/quantitative relationship between nonlinear and linear systems by comparing
the frequency and shape of the dynamic mode decomposition (DMD) modes with the
linear global modes. The DMD (Rowley et al. 2009; Schmid 2010, 2022) and its extensions
have been applied extensively in flow analyses, and have been tested and proven useful to
identify the spatiotemporal patterns of nonlinear flow associated with periodic (Bagheri
2013, 2014) and quasiperiodic oscillations (Sierra-Ausín et al. 2022), transitional regimes
(Le Clainche & Vega 2017) and turbulent channel flows (Le Clainche et al. 2020). The
DMD analysis enables a better understanding of the influence of the linear instability
on the onset of vortex shedding of the short rotating cylinder flow. For the data to be
processed in the DMD analyses, we typically utilised 150 snapshots over five periods of
vortex shedding. We made sure that the simulations reached a steady-state vortex shedding
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Figure 15. The DMD spectra of point LP2 in panels (a,c) and of point LP4 in panels (c,d). See figure 8(a) and
table 1 for the definitions of points LP2 and LP4. Panels (a,c) are on the unit circle and panels (b,d) are on the
growth-rate-St plane, where the DMD modes 0, 1, 2 and 3 are marked in red, to be discussed in figure 16.

state before capturing the data. In cases where the wake exhibited multiple cycles, we
considered the longest cycle when determining the period of interest.

We first recall the results in figure 8(a) that below the codimension-two point LT for
α < 0.1294, the steady-state flow transitions supercritically to a wave LA as Re exceeds
Rec (represented by the LA curve in this range of α). To demonstrate the supercriticality,
we have calculated the Landau coefficient c1 and c3 in Appendix A; see figure 24. Above
the codimension-two point, i.e. α > 0.1294, the steady-state flow transitions to a wave LB
with high frequencies. That is, the codimension-two point corresponds to a double Hopf
bifurcation, which characterizes the interaction between mode LA and mode LB. In the
overlap shaded area shown on the Re-α plane in figure 8(a), where modes LA and LB both
are linearly unstable in the rotating cylinder flow, we cannot obtain the single-periodic state
corresponding to LA or LB separately for low α < 0.3 by using different initial conditions.
That is, regardless of the initial conditions, our nonlinear flow in the low-rotation-rate
regime always converges to the most unstable mode. This is in contrast to the results of
Sierra-Ausín et al. (2022) on a rotating sphere, where they identified a bi-stable region
where a single-mode state can be obtained separately and different initial conditions may
lead to different flow modes. In figure 15 the DMD spectra of the flows with low rotation
rates corresponding to the points LP2 and LP4 in figure 8 are displayed. The results feature
fully saturated modes located on the unit circle.

Figures 16 and 17 show the comparison of the DMD modes with the global modes
based on the SFD base flow and time-mean base flow at selected points LP2 and LP4,
respectively. Figure 16 shows that DMD mode 0 is the time-averaged flow filed. The DMD
mode 1 presents alternated flow structures downstream. According to the imaginary part of
the DMD eigenvalues, DMD modes 2 and 3 are the second and third harmonics of mode
1, respectively. At point LP2, the frequencies of the leading DMD mode (panel b) and
the leading global eigenmode based on the SFD base flow (panel e) are 0.1436 and 0.1411,
respectively, with a difference of 1.7 %. But there is no DMD mode with a frequency close
to ω = 0.1782, which is also a linearly unstable mode (figure 16f ). In the global stability
analysis, the (unstable) base flow is solved by the SFD method, whereas our DMD method
analyses the saturated flow regime, which hints that the difference in the frequencies in the
two methods may be reduced if we use the time-mean flow of the saturated regime in the
global stability analysis. This has been carried out and the results are shown in the last row
of figure 16 with the subscript MF. Now we can see that the frequency of the leading global
mode based on the time-mean flow is indeed closer to the leading DMD mode, comparing
panel (g) with panel (b).
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Figure 16. Comparison of the DMD modes with the global modes at the point LP2 (α = 0.05, Re = 305).
Global modes LA (e,g) and LB ( f,h) in the global stability analysis based on the SFD base flow (e, f ) and mean
flow (g,h). All figures coloured by streamwise vorticity. The eigenfrequencies of the DMD modes are in good
agreement with those obtained from the FFT method (figure 14a), with a relative error of 0.48 %. Moreover,
the eigenfrequencies of the DMD modes match well with the eigenfrequencies of the mean flow global modes
(panel g, f ), with a relative error of 0.83 %. However, the difference between the characteristic frequencies of
the DMD modes and the eigenfrequencies of the SFD base flow global mode is slightly larger, with a relative
error of 2.22 %. Additionally, the topological structure of the DMD modes is almost identical to that of the
mean flow global modes. The corresponding eigenvalues are (a) mode 0, σ + iω = 4.5919 × 10−8 + i0.0; (b)
mode 1, σ + iω = −1.436 × 10−6 + i0.1436; (c) mode 2, σ + iω = −3.5685 × 10−5 + i0.2872; (d) mode 3,
σ + iω = −6.4764 × 10−5 + i0.4309; (e) modeLA (σ + iω)BF = 3.3957 × 10−2 + i0.1411; ( f ) modeLB,
(σ + iω)BF = 1.6972 × 10−2 + i0.1782; (g) modeLA, (σ + iω)MF = 8.4211 × 10−3 + i0.1431 and (h) modeLB,
(σ + iω)MF = −4.3530 × 10−2 + i0.1915.

Similarly, the DMD and global LSA results for the point LP4 are shown in figure 17.
One can see that the frequencies of the leading DMD mode (panel b) and the global mode
based on the SFD base flow (panel e) are 0.1976 and 0.2077, respectively, with a difference
of 4.9 %. Also, there is no DMD mode with a frequency close to ω = 0.1451, which is a
linearly unstable mode (figure 17f ). The leading global mode based on the time-mean flow
in panel g has a closer frequency (0.1917) compared with that based on the SFD base flow
to the DMD mode. The global eigenfunction based on the time-mean flow also looks more
similar to the DMD mode.

The above results pertain to the low-rotation-rate cases. Next, we compare the linear
and nonlinear results for the high-rotation-rate flows. We plot the DMD eigenspectra in
figure 18 for the selected HP2 and HP3 cases. We discuss the DMD modes labelled in red
in the figures. For HP2, the DMD modes are plotted in figure 19(a,b) along with the global
modes based on the SFD base flow (c,d) and the time-mean flow (e, f ). Compared with
the case of a low rotation rate in figures 16 and 17, the similarity of the DMD modes with
the global modes in the high-rotation-rate case is greater; for example, the first column in
figure 19 shows that the three modes look similar, and the global mode based on the mean
flow is again slightly better compared with the DMD mode. In the second column, we can
also find DMD mode 2 that resembles the global modes in the global stability analyses,
where the global mode based on the time-mean base flow looks closer to the DMD mode.
The same conclusion can be drawn for the HP3 point in figure 20. As the discussions are
similar, we will not go into detail about them. To sum up, through the comparison of the
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Figure 17. Comparison of the DMD modes with the global modes at the point LP4 (α = 0.1, Re = 330).
Global modes LA ( f,h) and LB (e,g) in the global stability analysis based on the SFD base flow (e, f ) and mean
flow (g,h). All figures coloured by streamwise vorticity. The eigenfrequencies of the DMD modes are in good
agreement with those obtained from FFT analysis (figure 14a), with a relative error of 0.05 %. However, the
characteristic frequencies of DMD modes are not in complete agreement with those of mean flow and SFD base
flow, with errors of 3.03 % and 4.81 %, respectively. Additionally, the topological structure of DMD modes is
nearly identical to that of mean flow global modes, as compared with the SFD base flow. The corresponding
eigenvalues are (a) mode 0, σ + iω = 3.7369 × 10−8 + i0.0; (b) mode 1, σ + iω = −5.2874 × 10−6 + i0.1976;
(c) mode 2, σ + iω = −1.9908 × 10−5 + i0.3953; (d) mode 3, σ + iω = −3.8395 × 10−5 + i0.5929;
(e) modeLB, (σ + iω)BF = 9.3466 × 10−2 + i0.2077; ( f ) modeLA, (σ + iω)BF = 4.6550 × 10−2 + i0.1451;
(g) modeLB, (σ + iω)MF = 5.7977 × 10−3 + i0.1917 and (h) modeLA, (σ + iω)MF = 6.8022 × 10−3 + i0.1481.
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Figure 18. The DMD eigenvalues spectrum of points HP2 (a,b) and HP3 (c,d) on the unit circle and on the
growth-rate-St plane.

frequencies and the shapes of the linear global modes and DMD modes, we can establish
a connection between the linear and nonlinear systems.

3.4. Effect of AR

In this last section we discuss the effect of AR on the global modes in a short rotating
cylinder wake flow, as this information seems to be scarce in the literature on the short
(rotating) cylinder flows.

Figure 21 shows the neutral stability curves in panel (a) and the shedding frequency
in panel (b) for the case of AR = 0.75. The results of the flow past a sphere (Citro et al.
2016) are also shown for a comparison. Similar to the AR = 1 results in figures 8 and 9,
the low and high rotation flows at AR = 0.75 present dissimilar behaviours. In the case of
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Figure 19. Comparison of the DMD modes (a,b) with the global SFD base flow modes (c,d) and mean
flow modes (e, f ) at point HP2. All figures coloured by streamwise vorticity. The eigenfrequencies of the
DMD modes are in good agreement with those obtained from FFT analysis (figure 14d), with a relative
error of 0.05 %. Because the point HP2 is very close to the neutral curve, the eigenvalues of both mean
flow and SFD base flow can predict the true frequency well, with errors of 0.2 % and 0.8 %, respectively.
The corresponding eigenvalues are (a) mode 1, σ + iω = −9.660 × 10−7 + i0.03994; (b) mode 2, σ + iω =
7.360 × 10−6 + i0.1963; (c) modeHA, (σ + iω)BF = −7.499 × 10−5 + i0.04026; (d) modeHB, (σ + iω)BF =
1.905 × 10−3 + i0.1968; (e) modeHA, (σ + iω)MF = 7.740 × 10−4 + i0.04004 and ( f ) modeHB, (σ + iω)MF =
−3.019 × 10−3 + i0.1964.
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Figure 20. Comparison of the DMD modes (a,b) with the global SFD base flow modes (c,d) and mean
flow modes (e, f ) at point HP3. All figures coloured by streamwise vorticity. The eigenfrequencies of
the DMD modes are in good agreement with those obtained from FFT analysis (figure 14e), with a
relative error of 0.7 %. However, the frequencies of DMD modes are not in complete agreement with
those of mean flow and SFD base flow, with errors of 5.8 % and 6.6 %, respectively. Additionally, the
topological structure of DMD modes is nearly identical to that of mean flow global modes, as compared
with the SFD base flow. The corresponding eigenvalues are (a) mode 1, σ + iω = 3.307 × 10−6 + i0.06350;
(b) mode 2, σ + iω = −1.165 × 10−6 + i0.2686; (c) modeHA, (σ + iω)BF = −2.261 × 10−2 + i0.06755;
(d) modeHC, (σ + iω)BF = 3.050 × 10−2 + i0.2646; (e) modeHA, (σ + iω)MF = −5.764 × 10−2 + i0.06698
and ( f ) modeHC, (σ + iω)MF = 1.673 × 10−2 + i0.2707.

low rotation speeds, the two modes LA and LB undergo Hopf bifurcation due to linear
instability around Re = 330, 340, respectively. The linear unstable region of mode LB is
very small as shown in panel 21(a), almost completely inside the unstable region of mode
LA. In the case of high rotation speeds, four global unstable modes are identified up to
α = 2, successively experiencing Hopf bifurcation, resulting in three turning points (TP2
to TP4). All these modes are characterized by different frequencies as shown in panel (b).
The frequencies in the low-rotation-rate flows are close to the frequencies of the slowly
rotating sphere, whereas the frequencies of the high-rotation-rate modes are smaller than
those of the corresponding sphere. The structures of the global modes at low and high
rotation rates are shown in figures 25, 26 and discussed in Appendix B.
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Figure 21. Neutral stability curves and the corresponding frequencies for the flow past a short rotating
cylinder at AR = 0.75, compared with a vertically rotating sphere (Citro et al. 2016).
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Figure 22. Neutral stability curves and the corresponding frequencies for the flow past a short rotating
cylinder at AR = 2, compared with a vertically rotating sphere (Citro et al. 2016).

The results of AR = 2 are shown in figure 22. In this case, the calculation seems to be
more difficult to converge. We will interpret the results with caution. The shapes of the
corresponding global modes are shown in figure 27 in Appendix B. When the rotation
rate is small in this case, we can identify an unstable mode appearing similarly to the LD
mode in AR = 1; this mode will be similarly called LD. Further increasing α, the shape
of the most unstable global mode changes, see the colour transition from orange to purple
in panels 22(a,b) and the comparison between figures 27(a) and 27(b). In the higher α

regime, the most unstable global mode changes abruptly, denoted by green and blue lines in
figure 22. We tried to converge as many unstable modes as we could, but some calculations
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Figure 23. Neutral stability curves of Hopf bifurcation for the flow past a rotating finite cylinder at AR =
0.75, 1, 2. Comparison with streamwise rotating infinite cylinder (Pralits et al. 2010; Rao et al. 2015),
sphere (Citro et al. 2016), and streamwise rotating sphere (Sierra-Ausín et al. 2022) and bullet-like body
(Jiménez-González et al. 2014).

were not converged. Thus, we will not go into details for the high-rotation-rate cases in
AR = 2. Such difficulty in converging the 3-D wake flow is not uncommon, reflecting the
complex nature of these flows and highlighting more research efforts to decipher their
dynamics.

In the end, we consolidate and compare all the significant results in this work spanning
a large parameter space with Re ∈ [100, 500], α ∈ [0, 2] for AR = 0.75, 1, 2 in figure 23.
To place our results in a more general context, we also compare our results with other
rotating bluff-body flows such as 2-D rotating cylinders (Pralits et al. 2010; Rao et al.
2015), spheres (Citro et al. 2016; Sierra-Ausín et al. 2022) and a bullet-like body
(Jiménez-González et al. 2014). It can be seen from figure 23 that in the low-rotation-rate
regime, larger AR renders the flow more unstable as the critical Re decreases from
Rec = 340 for AR = 0.75 to Rec = 50 for AR = ∞ (2-D case, Pralits et al. 2010). In
the high-rotation-rate end (with the maximum rotation rate being α = 2 in our work),
it is difficult to summarise a trend of increasing AR from our finite-length cylinders to
the infinitely long cylinder. As discussed above, the computations in this regime are more
difficult, calling for more research efforts to elucidate the difference. The 3-D instability in
the infinitely long cylinder (Rao et al. 2015) presents a smoother transition in the range of
α ∈ [0, 2], different from our 3-D results where distinct behaviours in the low- (α � 0.6)
and high-rotation-rate (0.6 � α � 2) cases can be identified. This is because α = 2 is not
a high rotation rate for infinitely long cylinder flows; in figure 10 of Rao et al. (2015),
dissimilar wake behaviours in this flow are separated by α ≈ 2.5. The dynamics of the
rotating sphere wake flow along the transverse direction (Citro et al. 2016) is similar to that
of the short rotating cylinder with AR slightly larger than 1, whereas the rotating sphere
wake along the streamwise direction (Sierra-Ausín et al. 2022) looks more dissimilar than
ours. This is likely because our cylinder is also rotating along a transverse axis. In the
end, the flow past a spinning bullet-shaped bluff body (Jiménez-González et al. 2014) is
also shown for a comparison and its low-rotation-rate behaviour appears similarly to our
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flow. By studying the effect of AR, we can qualitatively connect our results with those for
the sphere, the cylinders of infinite length, etc.and explain the difference between these
benchmark flows in a large parameter space.

4. Conclusions

In this work a 3-D flow stability problem past a short rotating cylinder has been studied.
The motivation for considering this flow configuration is due to its applications in various
engineering settings and its relevance to flow control strategy by rotation. New flow modes
have been identified in our DNS and global stability analyses of this flow. The linear results
have also been compared with the nonlinear results to find their traces in real flows. The
wavemaker region responsible for the instability generation has been delimited. We have
also studied the effect of aspect ratio AR to understand how the 3-D flows change with its
geometry parameters.

Firstly, for a cylinder with AR = 1, when the rotation rate α is slower than 0.3, the
rotation effect only trivially affects the flow past a short cylinder. The two unstable global
modes (see figure 8a) in the low-rotation-rate cases resemble those in the non-rotating
flows, corresponding to the vortices shedding from the flat ends of the cylinder and the
vortices shedding from the curved surface, respectively. The rotating effect swings the
recirculation region towards the rotating direction and, in general, decreases the separation
bubble length, defined in our work. Besides, the rotation also casts its effect on the flow
instability and bifurcation. For example, the rotation strengthens the symmetry breaking
caused by the inherent wake mechanism observed in the regular bifurcation without
rotation, leading to a similar asymmetric recirculation region in the non-rotating flows
generated by the regular bifurcation. We have also investigated the lift and drag coefficients
in the short rotating cylinder flow. Larger rotation rates both increase the absolute value
of the drag coefficient and lift coefficient in the transverse direction. An interesting
correspondence of the lift coefficients between the short rotating cylinder and the rotating
sphere with a doubled rotation rate is observed when Re is relatively large.

The global stability analyses reveal that the parameter space α can be divided into low
and high regimes when Re is relatively low < 500. When the rotation rate is smaller than
approximately 0.3, two unstable global modes exist with non-zero frequencies undergoing
Hopf bifurcation, whose interaction and competition giving rise to a codimension-two
transition state where the two Hopf bifurcations can occur simultaneously. The critical Re
at a certain α slightly decreases and then obviously increase with increasing α. When the
rotation rate is large, more unstable modes are observed experiencing Hopf bifurcations.
The critical Re in this case decreases with increasing α, highlighting the different effects
of Re in the two rotation regimes. The eigenvectors as well as their superposition with
the corresponding adjoint modes have also been probed. Especially, we observed that the
sensitivity region of mode HB (with a high rotation rate) is distinguished from other modes
close to the cylinder, indicating that its control may be achieved separately.

The comparison of the linear and nonlinear results aims to attach more physical
significance to the linear analyses. The traces of the global modes are identified in the
nonlinear simulations by comparing their frequencies (i.e. eigenfrequency in the linear
analysis and the shedding frequency in the nonlinear DNS). The DMD method is employed
to conduct the comparison with the global stability analysis based on the steady flow and
the time-mean flow (averaged over several oscillating periods). In general, we can find
better correspondence of the time-mean flow results with the DNS results, simply because
both analyses were applied to the nonlinear saturated oscillation. In term of the phase
diagram, the low-rotation-rate cases characterize limit cycles whereas high-rotation-rate
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cases present an increasing degree of complexity, encompassing limit cycles, limit torus
and chaos, reflecting more complex flow structures and dynamics when the cylinder rotates
faster.

Then, the effect of the aspect ratio AR has also been investigated. The aim of this
investigation is to compare our flow configuration with other bluff-body wake dynamics in
a large parameter space. Even though more data points are needed, we can find the trend
of how increasing AR renders the short rotating flow more unstable in the low-rotation-rate
cases α < 0.6. When the rotation rate is large but less than α = 2, the critical Re decreases
with increasing α. Compared with other bluff-body dynamics, we found that the dynamics
of the rotating sphere wake flow along the transverse direction is similar to that of the
short rotating cylinder with AR slightly larger than 1, and the rotating sphere wake along
the streamwise direction differs more significantly than our results due to the different flow
configuration.

The current work focuses on the first instability in the short rotating cylinder wake
flow. The flow dynamics already presents a high degree of complexity. In order to
further understand the underlying mechanism, as a future direction, the subsequent flow
bifurcations in this flow can be studied in detail by employing the global linear stability
and weakly nonlinear stability analyses.
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Appendix A. Landau model

Section 3.3.2 mentions that the steady-state flow transitions supercritically figure 24.
The calculation of the Landau coefficient is presented in this appendix. The growth rate
(c1 = 1.4473 × 10−2) obtained by nonlinear DNS is in good agreement with the growth
rate (1.4642 × 10−2 in table 1) of SFD base flow LSA. The coefficient c3 = −3.673
indicates that the Hopf bifurcation caused by mode LA is supercritical. This is the same
as the bifurcation property of the non-rotating cylinder (Yang et al. 2021), also caused
by mode LA. Now, based on the Stuart–Landau equation dAm/dt = c1Am + c3Am|Am|2
(where Am can be viewed as the amplitude of Clz) or, equivalently, d(ln |Am|)/dt =
c1 + c3|Am|2, the Landau coefficients c1 and c3 can be calculated by plotting d(ln |Am|)/dt
vs |Am|2 (Thompson, Leweke & Provansal 2001; Sheard, Thompson & Hourigan 2004),
as shown in panel (c). Therefore, the transverse intercept point gives an estimation of
c1 = 1.4473 × 10−2 and the gradient near this point is an approximation of c3 = −3.673.

Appendix B. Global modes for the cases AR = 0.75 and AR = 2

Figures 25 and 26 display the structures of global linear modes for AR = 0.75 at low and
high rotation rates, respectively. In figure 25 modes LA and LD are presented. They are
named as such because they resemble the LA and LD modes in the AR = 1 flow as shown
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Figure 25. The global mode LA (a) and LD (b) for the flow past a rotating finite cylinder at (AR = 0.75,

Re = 365, α = 0.05). The Q = 1 × 10−6 isosurfaces are coloured by the streamwise vorticity ranging from
−2 × 10−3 to 2 × 10−3. The corresponding eigenvalues are (a) LA mode λLA = 4.062 × 10−2 + i0.1749 and
(b) LD mode λLD = −5.222 × 10−3 + i0.1431.
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Figure 26. The global modes HA1 (a), HA2 (b), HB (c) and HC (d) for the flow past a rotating finite cylinder
at (AR = 0.75, Re = 330, α = 1.5). The Q = 1 × 10−6 isosurfaces are coloured by the streamwise vorticity
ranging from −2 × 10−3 to 2 × 10−3. The corresponding eigenvalues are (a) HA1 mode λHA1 = 6.177 ×
10−2 + i0.07840; (b) HA2 mode λHA2 = 9.240 × 10−3 + i0.08931; (c) HB mode λHB = 0.1078 + i0.1950;
(d) HC mode λHC = 0.1146 + i0.3012.

in figure 7(a,d). Figure 26 features the global modes HA1, HA2, HB and HC. Again,
comparison can be made to the global modes for the AR = 1 flow in figure 10 at a similar
rotation rate.

The structures of some selected global linear modes for AR = 2 are displayed in
figure 27. Panel (a) shows an unstable mode at a low rotation rate α = 0.1. It is called
the LD mode because the wake structure looks very similar to the LD mode in figure 7
for AR = 1, Re = 290, α = 0.1. Under the action of enhanced speed ratio, mode LB in
panel (b) can be regarded as the result of mode LD losing the vortex shedding from
the cylinder’s arc surface that rotates along the streamwise direction. It closely resembles
mode HB in figure 10 for AR = 1, Re = 170, α = 1.8 at a high rotation rate. Mode HB1 in
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Figure 27. Selected global modes (SFD base flow) for AR = 2. (a) Mode LD (Re = 150, α = 0.1, which is
similar to mode LD in figure 7d). (b) Mode LB (panel (b) at Re = 130 and α = 0.4), mode HB1 (panel (c) at
Re = 310 and α = 0.6) and mode HB2 (panel d at Re = 190 and α = 1.5). The Q = 1 × 10−7 isosurfaces are
coloured by streamwise vorticity ranging from −0.02 to 0.02. The corresponding eigenvalues are (a) LD mode
λLD = 1.105 × 10−2 + i0.1255, (b) LB mode λLB = 9.314 × 10−3 + i0.1470, (c) HB1 mode λHB1 = 2.899 ×
10−2 + i0.2720 and (d) HB2 mode λHB2 = 2.028 × 10−2 + i0.1562.
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Figure 28. Validations by comparing the lift and drag coefficients of a 2-D rotating cylinder flow between the
present DNS code results with those in Kang et al. (1999) and Stojković et al. (2002). (a) Time-averaged drag
coefficient; (b) time-averaged lift coefficient; (c) amplitude of Cl; (d) amplitude of Cd; (e) Strouhal number
calculated using the Cl signal. Besides, the drag and lift coefficients of steady SFD base flow are added in
panels (a,b) for comparative analysis, and decompose them into C̄l = C̄lp + C̄lv , C̄d = C̄dp + C̄dv for the case
(AR = 1, Re = 160).
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Figure 29. Comparison of the wavemaker region ζ between the results generated by the present code (panels
a,c) and those in Marquet et al. (2008) (panel b), Giannetti & Luchini (2007) (panel d) for 2-D non-rotating
cylinder flows at Re = 46.8 (panels a,b) and Re = 50 (panels c,d).

Mesh La × Lo Ntot.(Nord.) C̄d C̄ly ACd AClz StCly StClz

M1 10 × 40 6350 (7) 1.412 −0.8991 0.01537 0.01618 0.1848(0.1456) 0.04049
M2 15 × 50 10 928 (7) 1.409 −0.8964 0.01525 0.01604 0.1876(0.1433) 0.04054
M3 15 × 50 10 928 (9) 1.408 −0.8961 0.01528 0.01606 0.1876(0.1431) 0.04049
M4 12 × 50 15 804 (7) 1.410 −0.8974 0.01529 0.01609 0.1876(0.1428) 0.04055
M5 15 × 60 18 648 (7) 1.409 −0.8963 0.01527 0.01605 0.1874(0.1432) 0.04053

Table 3. A grid sensitivity test for the nonlinear DNS case Re = 290, α = 1.2, AR = 1, Δt = 10−3. As shown
in figure 1, La is the length from surfaces Sin, Sxz and Sxy to the cylinder centre; Lo is the length from surface
Sout to the cylinder centre. Here Ntot. is the total number of hexahedral elements inside the computational
domain; Nord. is the polynomial order of each hexahedral element.

panel c exhibits similar vortex structures to mode LB, but with smaller vortices, resulting
in higher oscillation frequencies. Mode HB2 in panel d can be regarded as the result of a
stronger lateral deflection of mode LB due to the stronger rotation.

Appendix C. Validation of numerical codes

This appendix demonstrates the validation of the numerical codes used in the present
work. The results of α = 0 connects smoothly with the non-zero-α results in the main
text as qualitative proof of the accuracy of our codes. To further test the accuracy in a
quantitative manner, we compare our simulated results of the lift and drag coefficients
in the 2-D rotating cylinder flow with those in Kang et al. (1999) and Stojković et al.
(2002). Figure 28 displays a good comparison of our results with theirs at Re = 60 and
100, indicating the accuracy of the used nonlinear numerical code in the current work. For
the verification of the linear code, figure 29 presents the wavemaker region in the classical
2-D cylindrical wake flow in Giannetti & Luchini (2007) and Marquet et al. (2008). We
can see a very good comparison is achieved between our results (top) and theirs (bottom).
This good comparison entails the linear code solving correctly both the global modes and
the adjoint modes.

In the end, we furnish a test study on the size of the computational domain. In our
previous work on the 3-D non-rotating short cylinder (Yang et al. 2021), we converged a
suitable computational domain balancing the computational efficiency and accuracy. With
the rotation effect, we found that the size of the computational domain should increase to
accommodate the swinging effect brought by the rotation. The result is shown in table 3
for different values of La and Lo; see their definitions in figure 1. The symmetry boundary

975 A15-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.840


Numerical analyses of flow past a short rotating cylinder

condition is imposed on the surfaces Sxy,t, Sxy,b, Sxz,f and Sxz,b, where the position is set to
a range of ±10D to ±15D, that is, La = 10 − 15.

As shown in table 3, unlike the non-rotating cylinder (Cadieux, Sun & Domaradzki
2017), the drag coefficient is more sensitive to the domain size than St number. The relative
errors of the drag, lift coefficients and the frequencies from mesh M2 to M4 are less
than 1 % compared with the reference results of mesh M5. Thus, in order to balance the
efficiency and accuracy, mesh M2 and the order Nord. = 7 are adopted in the present work
to compute all computational instances.
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