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The first nonlinear gyrokinetic simulations obtained using a moment approach
based on the Hermite–Laguerre decomposition of the distribution function are
presented, implementing advanced models for the collision operator. Turbulence in
a two-dimensional Z-pinch is considered within a flux-tube configuration. In the
collisionless regime, our gyromoment approach shows very good agreement with
nonlinear simulations carried out with the continuum gyrokinetic code GENE, even
with fewer gyromoments than required for the convergence of the linear growth rate.
By using advanced linear collision operators, the role of collisions in setting the level
of turbulent transport is then analysed. The choice of collision operator model is shown
to have a crucial impact when turbulence is quenched by the presence of zonal flows.
The convergence properties of the gyromoment approach improve when collisions are
included.
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1. Introduction

The understanding of the dynamics in the tokamak boundary, the region that
encompasses the edge and scrape-off-layer (SOL), is crucial to predict the performance of
future tokamak devices. Although gyrokinetic (GK) models provide accurate simulations
of the plasma dynamics in core conditions, they come at a high computational cost.
Alternatively, fluid approaches are computationally less expensive but, being limited
to evolving a finite number of moments of the distribution function, their results are
questionable when the hypothesis behind the closure (such as the high collisionality
closure) do not hold. To overcome the limitations of current models, Frei, Jorge & Ricci
(2020) propose an extension of the SOL drift-kinetic model presented in Jorge, Ricci
& Loureiro (2017) and develop a GK model based on the projection of the velocity
space dependence of the distribution function onto a Hermite–Laguerre polynomial basis.
Extending previous full-F gyrofluid models (Strintzi, Scott & Brizard 2005; Madsen 2013;
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Held, Wiesenberger & Kendl 2020), for instance in the number of evolved gyromoments,
this set of fluid equations converges to the description of the evolution of the distribution
function provided by the full-F GK Boltzmann equation, as the number of moments
increases. In the Hermite–Laguerre framework, advanced collision operators such as the
full nonlinear Coulomb collision operator (Jorge, Frei & Ricci 2019) as well as linearized
ones (Frei et al. 2021), can be used to model collisional effects. In the δf limit of the
full-F model presented by Frei et al. (2020), the Hermite–Laguerre decomposition can
be interpreted as an extension of the previous gyrofluid model (Brizard 1992; Hammett,
Dorland & Perkins 1992; Beer, Cowley & Hammett 1995; Snyder & Hammett 2001;
Scott 2005) to an arbitrary number of moments. This approach, also pursued by Mandell,
Dorland & Landreman (2018a) with the GX code (Mandell, Dorland & Landreman
2018b; Mandell et al. 2022), yields an infinite set of fluid equations for the basis
coefficients, the gyromoments, which describe the deviations of the distribution function
from a Maxwellian distribution. The efficiency of the δf Hermite–Laguerre gyromoment
approach is demonstrated by Frei, Hoffmann & Ricci (2022a) focusing on the linear
properties of the ion temperature gradient (ITG) instability in the slab limit, as well as
in a flux-tube geometry (Frei et al. 2022b), including the use of the linearized GK Landau
form of the Fokker–Planck collision operator. These works demonstrate the improvement
of convergence properties of the gyromoment method with collisions, i.e. when deviations
from a Maxwellian distribution function are reduced. In addition, even in the collisionless
case, it is shown that the number of gyromoments needed for linear convergence is less
than the number of grid points necessary for convergence in the state-of-the-art continuum
GK code GENE (Jenko, Dorland & Kotschenreuther 2000).

Here, nonlinear simulations are presented for the first time using a Hermite–Laguerre
gyromoment approach. We consider a local Z-pinch geometry which is characterized by
a cylindrically symmetric plasma confined by a purely azimuthal, radially dependent,
magnetic field with equilibrium radial gradients in temperature and density. In the
presence of a background density gradient, an entropy mode (Ricci et al. 2006b) develops
in the Z-pinch that can be modelled by using a local δf GK approach with a kinetic
treatment of the electrons. This mode develops perpendicularly to the magnetic field and
persists in the k‖ = 0 limit, where k‖ denotes the perturbation wavenumber along the
magnetic field, allowing simulations to be performed for a limited computational cost.
While the Z-pinch geometry is considerably simpler than, e.g. the one in a tokamak (for
instance, it does not have magnetic shear nor toroidal effects such as particle trapping), it
still allows for the study of complex nonlinear phenomena, such as the emergence of zonal
flows (ZF) (Fujisawa et al. 2004; Diamond et al. 2005) that lead to the Dimits shift (Dimits
et al. 2000), which role continues to challenge our understanding of tokamak physics.

The first nonlinear simulations in a Z-pinch, presented by Ricci, Rogers & Dorland
(2006a), study the level of transport induced by the entropy mode as a function of the
density gradient, showing that ZF can regulate the level of turbulent transport. However,
the effect of ZF can be reduced either as the result of collisions, modelled in Ricci et al.
(2006a) through a drift-kinetic (DK) Lorentz operator, or by a tertiary Kelvin–Helmholtz
instability (KHI), destabilized in scenarios characterized by a sufficiently large density
gradient drive. These results are confirmed by Kobayashi & Rogers (2012) using a GK
single-species collision operator described in Abel et al. (2008) and Barnes et al. (2009).

At low-density gradient drive, i.e. under the tertiary KHI instability threshold, transport
regimes characterized by bursts rising from the competition between ZF collisional
damping and quenching of the primary instability are identified and modelled with
a predator–prey cycle by Kobayashi, Gürcan & Diamond (2015). In order to explore
the mechanisms behind the ZF formation and damping, Ivanov et al. (2020) use a
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fluid-diffusive collision operator obtained by integration of the linearized Coulomb
collision operator and derive a three-field, two-dimensional fluid model directly from
the GK equation in a Z-pinch geometry, later extended to three dimensions (Ivanov,
Schekochihin & Dorland 2022). This model includes first-order finite Larmor radius
(FLR) effects in the long-wavelength, cold-ion limit and allows exploration of the
ZF dynamics within an analytical framework. The simulations show good qualitative
agreement with modified Hasegawa–Wakatani simulations (Qi, Majda & Cerfon 2020).
Similarly, Hallenbert & Plunk (2021) derive a fluid model in a Z-pinch geometry in
the collisionless limit, including second-order FLR effects. This allows the numerical
prediction of the Dimits threshold, i.e. the gradient level below which transport is strongly
reduced by the presence of ZF (Hallenbert & Plunk 2022). The prediction is confirmed by
comparison with GENE simulations.

The present paper reports on the first nonlinear GK simulations carried out with the
Hermite–Laguerre gyromoment approach using advanced collision operators (Hoffmann
& Frei 2020). These simulations include nonlinear E × B advection, FLR effects of
arbitrary order, kinetic electrons and, leveraging the work in Frei et al. (2021), a set
of advanced linear GK collision operators. These operators include the single-species
Dougherty model (Dougherty 1964), the multi-species Sugama model (Sugama, Watanabe
& Nunami 2009), the single-species pitch-angle scattering operator with a restoring
momentum term, denoted as the Lorentz operator (Helander & Sigmar 2002), and the
Landau form of the multi-species Fokker–Planck model that we denote as the Coulomb
operator (Rosenbluth & Longmire 1957; Hazeltine & Meiss 2003). We consider a local
δf flux-tube approach that separates equilibrium and fluctuating quantities, assuming
constant equilibrium gradients across the domain. By imposing k‖ = 0, we evolve the
turbulent dynamics on a perpendicular plane. This set-up provides an ideal framework to
compare the gyromoment model with a continuum code in a nonlinear turbulent regime,
and to study the effect of advanced linearized collision models in ZF-dominated systems.

Our results demonstrate, first, the ability of the gyromoment approach to retrieve linear
and nonlinear collisionless results obtained with the GK continuum code GENE. In
particular, we observe that the number of gyromoments needed for convergence increases
while approaching the linear marginal stability conditions, and that underresolved
collisionless simulations present predator–prey cycles, typically observed in collisional
GK simulations (Kobayashi et al. 2015) and fluid-reduced models (Qi et al. 2020). The
same dynamics is observed when increasing significantly the numerical dissipation acting
on the velocity space in GENE. Secondly, we present a set of simulations at different
instability drives in the collisionless limit and in the presence of collisions, which are
modelled using the Dougherty, Sugama, Lorentz and Coulomb collision operators. The
particle flux reveals a Dimits threshold in the collisionless limit. For gradient levels
above the Dimits threshold and at finite collisionality, we observe negligible differences
between the different collision operators. Shear flow stabilization effects are negligible
and turbulence is fully developed. The transport is well approximated by a mixing-length
argument, Γx ∼ γ 2/k3 (Ricci et al. 2006a), where Γx is the saturated particle transport
level along the radial direction, while γ and k are the peak linear growth rate and
wavelength of the entropy mode, respectively. Below the Dimits threshold, turbulence is
quenched by ZF, which may be damped by collisions, and the choice of collision model
affects significantly the transport level. A study of the ZF collisional damping provides
and explanation for the differences observed between the collision operators.

The paper is organized as follows. In § 2, we briefly describe the nonlinear GK model
in Z-pinch geometry and develop the gyromoment approach in this configuration. Section
3 presents linear and nonlinear benchmarks of the gyromoment approach with GENE in
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the collisionless limit. The dependence of the transport level with the instability drive and
the role of collisions is investigated in § 4. The conclusions follow in § 5. In Appendix A,
we show that a gyrofluid model as well as an extended Hasegawa–Wakatani model can be
obtained by properly truncating the gyromoment equation hierarchy.

2. Gyrokinetic model of a Z-pinch configuration based on the gyromoment model

In this section we present, first, the GK model in the Z-pinch geometry, considering
the local δf flux-tube limit. Second, we project the Z-pinch GK equation on a
Hermite–Laguerre polynomial basis in velocity space, thus obtaining an infinite set of
two-dimensional equations for the gyromoments, which we denote as the gyromoment
equation hierarchy. Finally, we present the numerical implementation of this hierarchy of
equations.

2.1. Gyrokinetic model in a Z-pinch configuration
We consider the GK approach (Catto 1978; Frieman & Chen 1982; Hazeltine & Meiss
2003) to study turbulence in a Z-pinch geometry. Using the standard δf approach, we
decompose fa, the gyrocentre distribution function of species a (a = e for electrons and
a = i for ions), as the sum of a time-independent background Maxwellian component
and a perturbation, fa = FaM + δfa, where the Maxwellian distribution for a species a is
defined as FaM = Na/(π

1/2vtha)
3 exp(−mav

2
‖/2Ta − μB/Ta), with B = Bb the equilibrium

magnetic field (B = |B|, b = B/B), Na the equilibrium density, Ta the equilibrium
temperature, ma the particle mass, v = v‖b + v⊥ the particle velocity, μ = mav

2
⊥/B the

particle magnetic moment and v2
tha = 2Ta/ma the thermal velocity. We assume small

fluctuations, δfa/FaM ∼ Δ � 1, where the scaling parameter Δ measures the perturbation
amplitude relative to the background (Hazeltine & Meiss 2003).

We focus here on the Fourier representation of the perturbed gyrocenter distribution
function at the gyrocentre position R and a time t,

ga(k, v‖, μ, t) :=
∫

δfa(R, v‖, μ, t) e−ik·R dR, (2.1)

using Fourier modes k = k⊥ + k‖b. The electrostatic GK Boltzmann equation
determining the evolution of ga writes (Brizard & Hahm 2007)

∂tga + 1
B

{J0φ, ga + FaM} + iωBaha =
∑

b

Cab, (2.2)

where we introduced the Poisson bracket operator, { f1, f2} = b · (∇f1 × ∇f2) for two
generic fields f1, f2, to describe the effect of the background density and temperature
gradients, and of the quadratic nonlinearities, of order Δ2, rising from the E × B drift.
In (2.2) the magnetic drift frequency iωBa contains the magnetic curvature and gradient
drifts, i.e.

ωBa = b × 1
Ωa

[v2
‖(b · ∇)b + v2

⊥∇B/B] · k⊥, (2.3)

where Ωa = qaB/ma is the cyclotron frequency with qa the particle charge. Following
previous work (Ricci et al. 2006a; Ivanov et al. 2020), we assume k‖ = 0 in (2.2), and
therefore we consider a two-dimensional domain that extends perpendicularly to the
magnetic field line. The electrostatic potential φ is evaluated at the gyrocentre position
through the gyroaveraging operator expressed, in Fourier space, with the zeroth-order
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FIGURE 1. Illustration of the Z-pinch magnetic geometry considered and the simulated
perpendicular plane (grey area). The field-aligned coordinate system and a magnetic field line
B (blue arrow) are depicted. We also indicate the direction of the density and temperature
equilibrium gradients, ∇N and ∇T , in addition to the magnetic equilibrium gradient and
curvature, ∇B and b · ∇b, respectively (orange arrow). The symmetry axis of the cylinder is
represented by the dashed-dotted line and LB denotes the distance between the cylinder axis of
symmetry and the flux tube.

Bessel function of the first kind, J0 = J0(ba) with ba = |k⊥||v⊥|/Ωa, containing FLR
effects at all orders in ba. Finally Ca,b is the collision operator between species a and b.

The electrostatic Poisson equation, in the quasi-neutrality limit, allows us to close the
system by expressing the fluctuation of the electrostatic potential according to

∑
a

q2
a

NaTa
(1 − Γ0(ba,th))φ =

∑
a

qa

∫
dvJ0ga, (2.4)

where ba,th = (k⊥vtha/Ωa)
2/2 and Γ0(x) = I0(x) e−x with I0 the zeroth-order modified

Bessel function of the first kind.
Equation (2.2) is now simplified considering the Z-pinch magnetic field and geometry.

Using local field-aligned coordinates (x, y, z), with ex the radial, ey the binormal and
ez the azimuthal directions, the Z-pinch magnetic field can be expressed as B =
Bez. The magnetic field presents a radial gradient, ∇B/B = −1/LBex, and curvature,
(b · ∇)b = −1/LBex, which are assumed constant within the flux-tube approach. The
length LB denotes the distance between the flux tube and the symmetry axis of the
Z-pinch (see figure 1). We also consider constant background density and temperature
gradients, ∇Na/Na = −1/LNex and ∇Ta/Ta = −1/LTex, for both electrons and ions. For
comparison with common tokamak configuration, we note that, in the present geometry,
all components of the metric tensor gij, for i, j = x, y, z, vanish except for gxx = gyy = 1 and
gzz = 1/L2

B. In addition, one can express the Jacobian of the coordinate system as Jxyz = LB
and the curvature operator as [b × ∇B] · ∇ = −B/LB∂y where ∂y denotes the derivative in
the ey direction. We note that in the flux-tube framework, all background quantities (B,Na
and Ta) and their associated gradients length (LB, LN and LT) are considered constant in
time and in space.

Throughout the rest of this work, we use the following dimensionless units. The
dimensionless parallel and perpendicular velocity coordinates are defined by s‖a = v‖/vtha
and xa = μB/Ta, respectively. The perpendicular spatial scales are normalized to the
sound Larmor radius ρs = cs/Ωi, with cs = √

Te/mi the sound speed. Time is normalized
to LB/cs. The electrostatic potential is normalized to Te/e with e the elementary charge,
which allows us to define the normalized particle charge, za = qa/e, as well. We define the
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temperature and mass ratio τa = Ta/Te and σa = √
ma/mi, respectively, and we introduce

the dimensionless density gradient drive, κN = LB/LN , the dimensionless temperature
gradient drive, κT = LB/LT , and their ratio, η = |∇ ln T|/|∇ ln N|. It is worth noting that
the flux-tube limit in a Z-pinch is valid for ρs/LB � 1.

Considering purely perpendicular Fourier modes k = k⊥ = kxex + kyey, the GK
equation for ga, (2.2), writes

∂tga + {J0φ, ga} − τa

za
[2s2

‖a + xa] ikyha +
[
κN + κT

(
s2
‖a + xa − 3

2

)]
ikyJ0φ =

∑
b

Cab,

(2.5)

where we introduced the non-adiabatic part of the distribution perturbed function

ha(k, s‖a, xa, t) = ga(k, s‖a, xa, t) + za/τaJ0φ(k, t). (2.6)

The Poisson bracket in the Z-pinch geometry writes as {f1, f2} = ∂xf1∂yf2 − ∂yf1∂xf2 in real
space. In the Fourier, this yields a convolution expressed as

{f1, f2} =
∑
k′

x,k′
y

kx(ky − k′
y)f1[k − k′] f2[k] − ky(kx − k′

x)f1[k − k′]f2[k]. (2.7)

Finally, we close our system with the dimensionless Poisson equation, i.e.

∑
a

z2
a

τa
(1 − Γ0(ba,th))φ =

∑
a

za

∫
ds‖a dxaJ0ga. (2.8)

2.2. Nonlinear gyromoment hierarchy
In order to solve (2.5) by using the gyromoment framework, we expand the distribution
function on a Hermite–Laguerre polynomial basis (Jorge, Ricci & Loureiro 2017; Frei
et al. 2020), i.e.

ga(k, s‖a, xa, t) =
∑

p,j

Npj
a (k, t)Hp(s‖a)Lj(xa)FaM(s‖a, xa). (2.9)

In (2.9), we introduce the gyromoment of order ( p, j), i.e. the basis coefficient

Npj
a (k, t) =

∫ ∞

0
dxa

∫ ∞

−∞
ds‖aga(k, s‖a, xa, t)Hp(s‖a)Lj(xa), (2.10)

where

Hp(s‖a) = (−1)p

√
2pp!

es2
‖a

dp

dsp
‖a

e−s2
‖a, (2.11)

and

Lj(xa) = exa

j!
d j

dx j
a
x j

a e−xa, (2.12)

are the physicist’s Hermite polynomial of order p and the Laguerre polynomial
of order j, respectively (Gradshteyn & Ryzhik 2014). The Hermite polynomials of
(2.11) are normalized such that

∫∞
−∞ ds‖aHpHp′ e−s2

‖a = δpp′ where δpp′ denotes the
Kronecker delta. Similarly, the Laguerre polynomials satisfy the orthogonality relation
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0 dxaLjLj′ e−xa = δjj′ . The use of Hermite polynomial projection is common in the

literature, particularly for projecting the one-dimensional velocity space Vlasov–Poisson
system (Armstrong 1967; Grant & Feix 1967; Joyce, Knorr & Meier 1971; Gibelli &
Shizgal 2006; Parker & Dellar 2015). On the other hand, Laguerre polynomials are not
as frequently used in plasma physics compared with Hermite polynomials. Aside from
spanning fluid equations (Manas et al. 2017), their main application is in expressing
collision models in a spectral framework (Brunner, Valeo & Krommes 2000; Belli &
Candy 2012).

We now project the Boltzmann GK equation, (2.5), onto the Hermite–Laguerre basis.
We expand the Bessel function of the first kind in terms of Laguerre polynomials as

J0 = J0(
√

laxa) =
∞∑

n=0

Kn(la)Ln(xa), (2.13)

with the kernel functions Kn(la) = ln
a e−la/n!, being la = σ 2

a τak2
⊥/2 (Frei et al. 2020). The

projection of (2.5) yields the gyromoment nonlinear hierarchy in a Z-pinch configuration,
which can be expressed as

∂tNpj
a + Spj

a + Mpj
a + Dpj

a = Cpj
a , (2.14)

where the term related to the magnetic gradient and curvature drifts yields

Mpj
a = −τa

za
iky[

√
( p + 1)( p + 2)np+2,j

a + (2p + 1)np,j
a +

√
p( p − 1)np−2,j

a ]

− τa

za
iky[(2j + 1)npj

a − ( j + 1)np,j+1
a − jnp,j−1

a ]. (2.15)

The term related to the density and temperature gradients writes

Dpj
a = κN ikyφ[Kjδp0 + ηKj

√
2

2
δp2 + η(2jKj − [ j + 1]Kj+1 − jKj−1)δp0]. (2.16)

In (2.15) and (2.16), we introduce the non-adiabatic gyromoments npj
a (k, t) = Npj

a +
za/τaKjφδp0.

The Hermite polynomial product rule, s‖aHp = √
( p + 1)/2Hp+1 + √

p/2Hp−1, and the
Laguerre polynomial product rule, xaLj = (2j + 1)Lj − ( j + 1)Lj+1 − jLj−1, are used to
deduce (2.15) and (2.16).

The nonlinear term related to the E × B drift is expressed in terms of gyromoments by
using the Bessel–Laguerre decomposition, (2.13), and the Poisson bracket, (2.7), which
yields

Spj
a =

∞∑
n=0

{
Knφ,

n+j∑
s=0

dnjsNps
a

}
. (2.17)

To obtain (2.17), we expressed the product of two Laguerre polynomials as a sum of single
polynomials using the identity

LjLn =
n+j∑
s=0

dnjsLs, (2.18)
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with

dnjs =
n∑

n1=0

j∑
j1=0

s∑
s1=0

(−1)n1+j1+s1

n1!j1!s1!

(
n
n1

)(
j
j1

)(
s
s1

)
. (2.19)

This choice differs from the representation in the GX code that evaluates the Laguerre
product with a pseudo-spectral algorithm in the velocity space (Mandell et al.
2018a, 2022).

The Poisson equation, (2.8), is also projected onto the Hermite–Laguerre basis. This
yields (Frei et al. 2020)[∑

a

z2
a

τa

(
1 −

∞∑
n=0

K2
n

)]
φ =

∑
a

za

∞∑
n=0

KnN0n
a , (2.20)

where the quasi-neutrality approximation is used, i.e. (k⊥λD)2 � 1 with λD the Debye
length. In the collisionless limit (Cpj

a = 0), the gyromoment hierarchy, (2.14), combined
with the Poisson equation, (2.20), can be considered as an extension of the gyrofluid model
to an arbitrary number of moments. In Appendix A, we demonstrate that the formerly
derived gyrofluid model in Brizard (1992) can be retrieved by properly truncating the
collisionless gyromoment hierarchy. We also show how an extended Hasegawa–Mima
model (Hasegawa & Mima 1978; Dewhurst, Hnat & Dendy 2009) can be obtained. It
is worth noting that the gyromoment approach presented here conserves free energy in
the collisionless limit and when driving gradients are neglected, even when closure by
truncation is used (Mandell et al. 2018a).

Finally, we note that we characterize the turbulent transport in a Z-pinch by considering
the dimensionless ion particle flux, Γ = nivE×B, with vE×B = −∇φ × b the E × B
velocity and ni = ∑∞

n=0 KnN0n
i the ion particle density perturbation. In the following, we

analyse the time series of the spatially averaged radial ion particle flux, Γx(t) = 〈Γ · ex〉xy,
which can be expressed, using the Fourier modes of the gyromoments, as

Γx(t) =
∑
kx,ky

(ikyφ)∗
∞∑

n=0

KnN0n
i . (2.21)

The saturated radial particle transport, Γ ∞
x , is analysed by evaluating the convergence of

the quantity Γx(t) = ∫ t
t0

Γx(t′) dt′/(t − t0) as t increases, considering t0 sufficiently large
that the initial transient present in the simulation is not considered. The value of Γ̄x(t)
provides an estimate for the saturated transport level, Γ ∞

x = limt→∞Γ̄x(t).

2.3. Linear collision operators
The Cpj

a term in (2.14) represents the effect of collisions through the projection of a
collision operator model onto the Hermite–Laguerre basis. Any linearized Fokker–Planck
collision operator can be written as the sum of a test part CT

ab and a field part CF
ab, i.e. Cab =

CT
ab + CF

ab (Helander & Sigmar 2002; Hazeltine & Meiss 2003), with CT
ab = C( fa, FbM)

and CF
ab = C(FaM, fb) for any species a and b.

We consider here the Coulomb, Sugama, Lorentz and Dougherty operators. For
the case of the Coulomb collision operator, we introduce the Rosenbluth potentials,
H( f ) = 2

∫
d3v′f (v′)/|v − v′| and G( f ) = ∫

d3v′|v − v′|f (v′), as well as the phase space
coordinates (r, v, ξ, θ), where r denotes the particle position, v the magnitude of its
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velocity, ξ = v‖/v the pitch angle and θ the gyro-angle. In this framework, the test part of
the Coulomb collision operator can be expressed as (Frei et al. 2021)

CT
ab = maνab

Nb

{[
2
v2

G(FbM) +
(

1 − ma

mb
∂vH(FbM)

)]
∂vfa

− 1
v3

∂vG(FbM)L2fa + ∂2
v G(FbM)∂2

v fa + ma

mb
8πFbMfa

}
, (2.22)

where Lf = ∂ξ [(1 − ξ 2)∂ξ f ] + ∂2
θ f /(1 − ξ 2) is the pitch-angle operator. On the other

hand, the field part yields

CF
ab = 2νabvthaFaM

Nb

[
2

v2

v2
tha

∂2
v G( fb) − H( fb) −

(
1 − ma

mb

)
v∂vH( fb) + ma

mb
4πv2

thafb

]
.

(2.23)

It is worth noting that the computation of the field term is particularly costly because of
the velocity integrals of the perturbed distribution function contained in the Rosenbluth
potentials. However, the projection of this operator on the Hermite–Laguerre basis enables
the expression of these integrals as a linear combination of gyromoments. In this work,
the Coulomb operator refers to the gyro-averaged version of the linearized Fokker–Planck
collision operator, (2.22) and (2.23).

The Sugama collision model (Sugama et al. 2009) is a multi-species generalization of
the Abel operator (Abel et al. 2008). While the Sugama operator considers the test part
of the Fokker–Planck operator, (2.22), which includes pitch-angle scattering and energy
diffusion, the field term is replaced by an ad hoc term derived from a fluid approach to
conserve particle, momentum, energy and satisfy the H-theorem.

The Lorentz model considers like-particle collisions, i.e. a = b, and it is based on the
small mass ratio limit, which simplifies the test part of (2.22) to the pitch-angle operator
term only. The field part is adapted to conserve particles, momentum and energy. Ricci
et al. (2006a) observe that this operator does not provide sufficient damping to avoid the
use of artificial dissipation in nonlinear simulations. This is in contrast to the Sugama and
Abel operators.

Finally, the Dougherty model consists of kinetic and spatial second-order diffusion
terms (Lenard & Bernstein 1958) with corrections involving the density, velocity and
temperature fluid moments in order to conserve particle, momentum and energy. The
details of the Dougherty, Sugama, Lorentz and Coulomb GK operators as well as their
projection onto the Hermite–Laguerre basis can be found in Frei et al. (2021). We set
the intensity of the collisions through the normalized ion–ion collision frequency ν. The
collision frequencies among the different species are thus given by νii = ν, νee = σeτ

3/2
e ν,

νei = ν and νie = σeτ
3/2
e ν.

2.4. Numerical approach
To solve (2.14) numerically, we evolve a finite set of gyromoments Npj

a (k, t) with 0 ≤
p ≤ P and 0 ≤ j ≤ J and consider the Fourier modes with kx = mΔkx, with 0 ≤ m ≤ M,
and ky = nΔky, with −N/2 + 1 ≤ n ≤ N/2, using a standard explicit fourth-order
Runge–Kutta time-stepping scheme. In the Z-pinch geometry, the gyromoments hierarchy
decouples odd and even Hermite gyromoments, which is a consequence of the k‖ = 0
assumption. This allows us to evolve only the even gyromoments Npj

a , with p = 2l, l ∈ N.
The hierarchy is closed by using a simple truncation, i.e. Np,j

a = 0 for all p > P or j > J.
In the following, we denote this truncated gyromoment set as a (P, J) basis. The use and
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analysis of more advanced closure schemes, e.g. the semi-collisional closure proposed by
Zocco & Schekochihin (2011) and Loureiro et al. (2016), are left for future work.

Focusing on the nonlinear term in (2.17), we first observe that any truncation of the sum
over s must be avoided in order to prevent polynomial aliasing. Hence, to guarantee the
exact Laguerre product identity in (2.18), we truncate the sum over n in (2.17) to n ≤ J − j.
Second, we note that the computation of the dnjs coefficients is challenging since they
involve sums and differences of large numbers. To avoid the overflow of the floating point
representation, we use an arbitrary precision library for our calculations (Smith 1991).
Finally, we note that the convolutions in Fourier space are treated with a conventional
pseudo-spectral method, i.e. the backward fast Fourier transform (Frigo & Johnson 2005)
of the fields to convolve, the multiplication in real space and the forward fast Fourier
transform of the result, including the usual 2/3 Orszag rule for anti-aliasing (Orszag 1971).

Regarding the collision operators, the Dougherty operator, which has a light
computational cost, is directly implemented in the gyromoment hierarchy. On the
other hand, the evaluation of the Sugama, Lorentz pitch-angle and Coulomb collision
terms is reduced to a four-dimensional matrix-vector operation, i.e. the pjth collision
term is written as Cpj

a = ∑
b

∑Pb
p′=0

∑Jb
j′=0 Cpj,p′j′

ab Np′j′
b with a precomputed collision matrix

Cpj,p′j′
ab of size (Pa × Ja) × (Pb × Jb). The projection of the collision operators on the

Hermite–Laguerre basis and the details of the computation of the matrix coefficients
for each collision operator considered in the present work can be found in Frei et al.
(2021). It is worth noting that the GK corrections create a k⊥ dependence of the matrix
coefficients, i.e. Cpj,p′j′

ab = Cpj,p′j′
ab (k⊥), that calls for the precomputation of the coefficients

for each k⊥ present in the simulations. The computational cost of evaluating the GK
matrix coefficients increases with k⊥. Indeed, at large k⊥, accurate FLR effects ask for
larger bounds in the truncated sums used to approximate Bessel functions and basis
transformations (see Frei et al. (2021) for more details). We ensured the convergence of
our matrix evaluation by analysing the eigenvalue spectrum and the matrix symmetry.

3. Collisionless limit and comparison with the GENE code

In the present section, we analyse the results of the gyromoment simulations in the
collisionless limit and demonstrate the ability of this approach to retrieve the results of
the continuum GK code GENE in a collisionless two-dimensional Z-pinch configuration
considering an equilibrium plasma with τ = 1, and a realistic electron–proton mass ratio,
σ = √

me/mi = 0.023. GENE simulations are set up by closely following Hallenbert &
Plunk (2022).

3.1. Entropy mode instability
At density gradients below the magneto-hydrodynamic (MHD) interchange instability
threshold, a small-scale non-MHD instability, the entropy mode, can be destabilized in the
Z-pinch configuration. The region of stability of the entropy mode is presented in Ricci
et al. (2006b). Our analysis focuses on density gradient values 1.6 ≤ κN ≤ 2.5, while the
temperature density gradient ratio is constant, η = 0.25. This parameter encompasses an
unstable region of the entropy mode, which extends, indeed, from κN � 2.5, where the
ideal MHD interchange mode is destabilized, to κN � 1.6, which is close the analytical
stability limit found by Ricci et al. (2006b), that is κN = π/2 for η = 0.

We start the analysis of the collisionless case by focusing on the linear growth rate of the
entropy mode. The entropy mode instability growth rate is obtained by solving the initial
value problem associated with the gyromoment hierarchy, (2.14), coupled to the Poisson
equation, (2.20), and where the nonlinear terms, developed in (2.17), are neglected. In
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(a) (b) (c)

FIGURE 2. Growth rates of the linear entropy mode in the collisionless case (ν = 0) for three
different drive values, κN = 1.6 (a), κN = 2.0 (b) and κN = 2.5 (c), keeping η = 0.25. The
growth rates are obtained with GENE with Nv‖ = 32 and Nμ = 16 velocity grid points (black
diamonds) and different gyromoment sets: (4, 2) (blue), (10, 5) (red), (20, 10) (yellow) and
(30, 15) (purple).

particular, we evolve φ and Npj
a as a function of ky modes, setting kx = 0 where the entropy

mode growth rate peaks (Ricci et al. 2006b). We compute the growth rates, γ (ky), by
fitting the slope of the time evolution of ln |φky | over a time window. The convergence is
tested by checking that the results are independent of the size of the time window.

Considering the results presented on figure 2, we first note that the gyromoment
approach retrieves the converged results obtained with GENE, given a sufficiently large
polynomial basis. The convergence properties of the gyromoment model depend on the
strength of the gradients and improve at steep gradients, confirming previous results
obtained for the slab (Frei et al. 2022a) and the toroidal ITG instability (Frei et al.
2022b). Second, the results obtained with a number of polynomials below convergence
show a stabilization of the high ky tail of the entropy mode and a larger peak growth
rate. Third, it is worth noting that, independently of the polynomial resolution, the growth
rates obtained with a small number of polynomials agree with the converged results in the
long-wavelength limit, ky � 1, highlighting the fact that the gyromoment method retrieves
the fluid limit, even when a small set of gyromoments is used.

3.2. Nonlinear collisionless simulations
Let us now consider the nonlinear case by including the E × B term in (2.17). GENE
results are used to benchmark our implementation (the GENE simulations presented
here closely recall those by Hallenbert & Plunk 2022). We focus on three values of
the density background gradient, κN = 1.6, 2.0 and 2.5, with η = 0.25 and ν = 0. The
system is evolved in a periodic box of dimensions Lx × Ly = 120 × 80, for the lowest
gradient value, and Lx × Ly = 400 × 240, for the highest gradient value. In terms of
spatial resolution, we consider a Fourier grid with N = 128 and M = 32 Fourier modes
along the x and y directions, respectively, except for the steepest gradient case where we
increase the resolution to N = 256 and M = 128 in order to reduce the need of artificial
numerical dissipation. The velocity space is represented by the Hermite–Laguerre basis
(P, J) = (4, 2) extended up to (P, J) = (20, 10) at the lowest gradient. GENE results are
obtained using the same Fourier modes as the gyromoment simulation and a velocity
grid resolution of Nv‖ × Nμ = 32 × 12 points for the (v‖, μ) velocity space in a box of
dimension Lv‖ × Lμ = 6 × 4. This ensures convergence of GENE results and that the
results obtained by Hallenbert & Plunk (2022) are retrieved. It is worth noting that
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FIGURE 3. Comparison of the time-averaged transport level Γ ∞
x = 〈Γx〉t obtained with the

gyromoment (GM) approach for (P, J) = (4, 2) (blue), (10, 5) (red) and (20, 10) (yellow) and
GENE, η = 0.25. The time traces are presented on figure 5.

Hallenbert & Plunk (2022) present the velocity space resolution we use as the minimum
necessary not to compromise key results. We confirm their claim by observing spurious
predator–prey cycles when running lower resolution simulations at κN = 1.6.

When running the collisionless cases, GENE uses a kinetic artificial diffusion term,
νv(Δv‖/2)4∂4

v‖ga, with the diffusion parameter fixed to νv = 0.2 (Pueschel, Dannert
& Jenko 2010). Both codes use a spatial fourth-order hyperdiffusion term in both
perpendicular directions μHD(k/kmax)

4, with 0.5 ≤ μHD ≤ 5.0, adjusted on the drive level
in order to avoid energy pile up without compromising the accuracy of results. For the
intermediate values of the equilibrium gradient strength, we perform two simulations with
GENE. The first simulation considers a constant level of numerical diffusion, while the
second takes advantage of the adaptive numerical diffusion feature in GENE, as described
in Hallenbert & Plunk (2022). This is done to ensure that the effect of the adaptive
diffusion feature is not significant. This test allows us to confirm that the level of transport
is resilient to spatial hyperdiffusion.

While a comparison of the computational cost of the two approaches is not
straightforward, we note that the number of gyromoments evolved is given by NP,J =
(P/2 + 1) × (J + 1) (we take into account that only the even p gyromoments are evolved
in the Z-pinch geometry). Therefore, 9 and 25 gyromoments are evolved in the (P, J) =
(4, 2) and (20, 10) simulations, respectively. This compares with the, approximately, 102

velocity grid points used by GENE.
We now focus on the quasi-steady turbulent state that is established after an initial

transient following the initialization of the simulation. In particular, we measure the
saturated time-averaged turbulent transport level, Γ ∞

x . We observe that the gyromoment
approach retrieves the saturated turbulent transport level obtained by GENE for all gradient
values, given a sufficient number of gyromoments, over four orders of magnitudes (see
figure 3). As for the linear case, faster convergence with the number of gyromoments is
observed in the case of the strongest gradient, with a set of (P, J) = (4, 2) gyromoments
being sufficient for convergence. This result might be surprising, considering the linear
growth rate obtained with the same gyromoment resolution, significantly broader and
showing a higher peak value than the converged value (see figure 2). Even the results
obtained with (P, J) = (4, 2) at the lowest gradient are surprisingly accurate when
considering the accuracy of the linear growth rate.
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FIGURE 4. Spectrum of the radial particle flux, 〈|Γx(kx = 0, ky)|〉t for the highest resolution
simulations presented in figure 6 for κN = 2.5 (solid squares), κN = 2.0 (dashed diamonds) and
κN = 1.6 (dotted circles), η = 0.25.

One can explain the faster convergence of the nonlinear simulations with respect to
the evolution of the linear growth rate by considering the Fourier spectrum of the radial
particle transport, 〈|Γ · ex|〉t, at kx = 0 (see figure 4). It is found that transport is driven
by fluctuations that occur on scale lengths that are larger than the ones at the peak growth
rate of the entropy mode (see figure 2). The peak of the transport spectrum shifts towards
smaller wavelengths when the density gradient is reduced, in good agreement with the
transport scaling, Γx ∼ γ 2/k3, derived in § 4. In addition, the turbulent quasi-steady state
at low driving gradients is dominated by ZF which result from the growth of a KHI
rising from E × B shear flow produced by the primary instability. The growth rate of
the KHI typically peaks at wavelengths that are twice as long as the primary instability
(Rogers & Dorland 2005), thus pushing the dynamics towards larger spatial scales,
where convergence of the gyromoment approach is achieved with a smaller number of
gyromoments.

Comparing the convergence of the entropy mode growth rate (figure 2), the convergence
of saturated transport level (figure 3) and the spectrum of the radial particle transport
(figure 4), one can infer that the gyromoment simulations yield an accurate nonlinear
transport level when the linear growth rate of the entropy mode is converged at the
wavenumber of the transport spectrum peak. For example, considering the κN = 2.0 case,
we note that the transport spectrum peaks at ky � 0.3. The (P, J) = (4, 2) gyromoment
result provides accurate growth rates for ky � 0.2, thus yielding an inaccurate transport
level. On the other hand, the (P, J) = (10, 5) gyromoment set is linearly accurate for
ky � 0.5, which explains the correct saturated transport result.

For a finer analysis of our simulation results, we study the time dependence of the
turbulent transport for the three equilibrium gradient values (see figure 5). For instance,
we note a negligible variation of the transport level with respect to the hyperdiffusion
parameter, which mostly affects small-scale fluctuations, confirming Ricci et al. (2006a)
and Hallenbert & Plunk (2022). At a large gradient level, κN = 2.5, the gyromoment
approach qualitatively and quantitatively agrees with GENE, showing an approximately
constant transport. The analysis of the turbulent eddies shows fully developed turbulence,
with a negligible role of ZF (see figure 6). At the intermediate gradient value, κN = 2.0,
time intervals characterized by a high turbulent transport level (Γx ∼ 1) alternate with
quiescent periods (Γx � 1), as shown in figure 6. The (P, J) = (10, 5) simulation is in
good agreement with GENE results, while the (P, J) = (4, 2) results underestimate the
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FIGURE 5. Radial particle transport Γx(t) (see (2.21)) from our nonlinear simulations. GENE
results are obtained with constant μHD (black) and μHD set by an adaptive hyperdiffusion
algorithm (grey). The gyromoment results are shown for (P, J) = (4, 2) (blue), (P, J) = (10, 5)
(red) and (P, J) = (20, 10) (yellow). In all cases η = 0.25.

average Γx value because of longer low-transport intervals and lower burst level. However,
our numerical tests show that the level of agreement between the gyromoment approach
and GENE is within an uncertainty similar to the one related to the use of a constant
hyperdiffusion or an adaptive numerical diffusion algorithm in GENE. Finally, at the
lowest gradient value considered, κN = 1.6, the system is dominated by strong ZF that
quench the turbulence reducing drastically the transport (see figure 6). As expected, the
gyromoment method shows the largest discrepancies with respect to GENE in this case.
GENE simulation results in transport with small amplitude fluctuations occurring on long
time scales around a plateau value, Γ ∞

x ∼ 10−2. On the other hand, the gyromoment
approach shows bursts related to the damping of the ZF, for both the (P, J) = (4, 2)
and (10, 5) resolutions. Hence, even though the (P, J) = (10, 5) simulation results in
an averaged transport level similar to GENE, an accurate description of the turbulent
dynamics requires a larger number of gyromoments. This is demonstrated by a (P, J) =
(20, 10) simulation (see yellow line in figure 5), which agrees better with GENE results
and does not produce the spurious bursts observed when a lower number of gyromoments
is used.

We note that bursts can also be obtained with GENE by reducing the (v‖, μ) velocity
grid resolution to 16 × 8, keeping νv = 0.2. Bursts are also obtained with a 32 × 16
resolution when the velocity diffusion parameter is increased by a factor of 16, i.e.
νv = 3.2, which ensures the same level of dissipation as in the coarser velocity resolution
case. Thus, predator–prey cycles appear when a large level of diffusion is present in the
velocity space. This diffusion can also be introduced through simple collision models, such
as the Lenard–Bernstein operator (Lenard & Bernstein 1958). Our results thus demonstrate
that the effect of using a reduced number of gyromoments is comparable to the presence
of diffusion in velocity space, with the level of diffusion that depends on the highest
gyromoment considered.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 6. Snapshots of the electrostatic potential (a,c,e) and the charge density ni − ne (b,d, f )
in the collisionless case at the three drive values considered, i.e. κN = 2.5 (a,b) with (P, J) =
(4, 2), κN = 2.0 with (P, J) = (10, 5) (c,d) and κN = 1.6 with (P, J) = (20, 10) (e, f ). In all
cases, η = 0.25.

Since the representation of the velocity dependence of the distribution functions
differs fundamentally between gyromoments and continuum approaches, we compare the
time-averaged velocity distribution functions obtained by the gyromoments and GENE
codes. Within the gyromoments method, one can reconstruct the distribution function by
using the gyromoments as coefficients of the Hermite–Laguerre basis. This yields the
averaged velocity distribution

gv,a(s‖a, xa, t) =
P∑

p=0

J∑
j=0

〈Npj
a (k, t)〉kx,ky Hp(s‖a)Lj(xa)FaM. (3.1)

The results are presented in figures 7 for the ion distribution functions, considering κN =
1.6 and 2.5. As for the transport properties, the agreement of the distribution functions
between both codes depends on the gradient value. At all gradient values considered, the
(P, J) = (4, 2) gyromoment simulations lead to a smoothing of the distribution functions,
reducing the sharp feature that appears around the thermal velocity (see figure 7, around
s‖a = 1). This feature can be seen also in the lowest drive simulation in figure 7 where
the (P, J) = (10, 5) gyromoment results present finer structures than the (4, 2) resolution.
This smoothing effect confirms the hypothesis that the use of a reduced number of
gyromoments yields an effective diffusion in the velocity space.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 7. Time-averaged normalized ion velocity distribution function |gv,i(s‖,i, xi)/
gv,i(0, 0)|. The results from GENE (a,d) and from the gyromoment approach (P, J) = (4, 2)
(b,e), (P, J) = (10, 5) (c, f ), are presented for κN = 2.5 (a–c) and κN = 1.6 (d– f ) keeping
η = 0.25 and ν = 0.

In conclusion, we remark that the gyromoment method shows its ability to simulate
the Z-pinch nonlinear turbulent dynamics in the collisionless limit, which represents the
most challenging regime for this approach. Valid results are obtained at large gradient
drives with a velocity space represented by only 9 gyromoments per species, compared
with the, approximately, 102 velocity grid points used in GENE simulations. On the other
hand, at the weakest gradient drive studied, convergence is obtained with a number of
gyromoments approximately equal to the number of points used by GENE. In all cases,
results obtained with a lower number of gyromoments still provide a reasonable prediction
of the time-averaged level of transport.

4. Collisional turbulent transport

Building on the benchmark of our gyromoment solver with the GENE code in the
collisionless limit, we now study the gyromoment method at finite collisionality, in
particular ν = 0.1 and ν = 0.01. These values encompass the typical collision rate in the
core of a tokamak device (e.g. the collision frequency estimate in the DIII-D cyclone base
case corresponds to ν ∼ 0.05 in our normalized units Lin et al. 1999). We first present
the impact of collisions on the convergence of the Hermite–Laguerre basis using the
Sugama collision operator. Then, we investigate the properties of turbulence in a Z-pinch,
as obtained by using different linear collision operators.

4.1. Collisions and convergence
Adding collisions to our system helps significantly the convergence of the moment
approach. Figure 8 shows the linear growth rates of the entropy mode for various
Hermite–Laguerre bases, two collision frequency values, ν = 0.01 and 0.1, and two
gradient levels, κN = 1.6 and 2.2. This illustrates that convergence is obtained at high
collisionality and high gradient levels with a low number of polynomials.

Similarly, figure 9 shows the nonlinear transport level for the parameters of figure 8. One
can observe, in particular, that the (P, J) = (2, 1) basis is sufficient at high collisionality
and high gradient values. In the other cases, nonlinear simulations carried out with this
reduced polynomial basis overestimate the level of transport when the linear growth rate
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(a) (b)

(c) (d )

FIGURE 8. Convergence study of the entropy mode growth rate for κN = 2.2 (a,b) and κN = 1.6
(c,d) using the GK Sugama collision operator with ν = 0.01 (a,c) and ν = 0.1 (b,d) for η = 0.25.
The colour indicates the polynomial basis used: (P, J) = (2, 1) (cyan), (P, J) = (4, 2) (blue),
(P, J) = (6, 3) (pink), (P, J) = (8, 4) (red) and (P, J) = (10, 5) (black).

(a) (b)

(c) (d )

FIGURE 9. Convergence study of the turbulent transport time traces for κN = 2.2 (a,b) and
κN = 1.6 (c,d) using the GK Sugama collision operator with ν = 0.01 (a,c) and ν = 0.1 (b,d).
The colour indicates the polynomial basis used, (P, J) = (2, 1) (cyan), (P, J) = (4, 2) (blue):
(P, J) = (6, 3) (pink), (P, J) = (8, 4) (red). The other parameters are η = 0.25 and Nx = 200,
Ny = 64 for the spatial resolution.

is overestimated if evaluated with the same number of polynomials, and vice versa. Finally,
the linear and nonlinear results presented in figures 8 and 9, respectively, demonstrate that
the basis (P, J) = (4, 2) is sufficient to obtain accurate results in the parameter region of
interest. Thus, the linear and nonlinear collisional simulations are performed using the
polynomial basis (P, J) = (4, 2) in the following. As an indication of the computational
cost of our nonlinear simulations, we notice that one Runge-Kutta 4 time-step for (P, J) =
(4, 2) and 200 × 64 spatial points is performed, on average, in 48 ms (wall clock time)
when run on one Marconi node, i.e. 2 × 24-cores Intel Xeon 8160 (SkyLake) at 2.10 GHz.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 10. Linear growth rate of the entropy mode for different collision models and
comparison with the collisionless results (black) for two different collision frequencies, ν = 0.1
(a–c) and ν = 0.01 (d– f ) and for three different drive values, κN = 1.6 (a,d), κN = 2.0 (b,e)
and κN = 2.5 (c, f ), keeping η = 0.25. The different lines denote the Dougherty (red), Sugama
(blue), Lorentz (yellow) and Coulomb (green) operators used in the gyromoment approach with
a (4, 2) Hermite–Laguerre basis.

4.2. Impact of collisions on the entropy mode and the Dimits shift
Figure 10 shows the impact of collisions on the entropy mode linear growth rate for
the cases considered in § 3. Collisions stabilize the tail of the entropy mode present at
high ky in the collisionless regime because of diffusion in phase space, as observed in
Ricci et al. (2006b). This effect is recovered for both collision frequencies and by all
the operators considered here, which also include GK effects that induce strong damping
for ky � 1. At low ky and in the proximity of its peak value, one can observe that the
growth rate is affected by collisions in different ways, depending on the collision model.
On the one hand, large-scale fluctuations are destabilized by collisional effects in the
case of the Dougherty and Sugama collision operators for κN = 2.0 and κN = 2.5. In this
case, an increase of the growth rate at ky ∼ 0.5 is observed. This effect is similar to the
one observed in instabilities that have a fluid nature, such as the drift waves, which are
destabilized by resistivity (Goldston & Rutherford 1995). On the other hand, the collisional
growth rate is smaller or close to the collisionless case when the Coulomb and Lorentz
collision operators are used, for all values of κN and ky considered.

We now turn to the nonlinear results that include finite collisionality, and we discuss
two scans of simulations, for ν = 0.1 and ν = 0.01, where the drive value is varied from
κN = 1.6 to κN = 2.5, being η = 0.25. The results are shown in figure 11, where they
are compared with the collisionless limit, which shows a Dimits threshold value κN � 2,
similarly to Hallenbert & Plunk (2022), below which ZF suppress turbulence. We observe
that the effect of collisions vanishes at large drive values, where the ZF do not play a
crucial role, in agreement with the observations in Ricci et al. (2006a). This suggests that
the effect of collisions is mostly related to the ZF dynamics and, as we show later, through
their damping and related weakening of the associated transport barrier.

When turbulence is fully developed, the amplitude of the fluctuations can be estimated
considering a balance between the nonlinear saturating terms and the linear drive,
∂t ∼ vE×B · ∇. This yields γ ∼ k2φ and, thus, φ ∼ γ /k2, considering the peak linear
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(a) (b)

FIGURE 11. Collisional saturated transport level for different collision operators at ν = 0.01 (a)
and ν = 0.1 (b): Dougherty (red triangles), Sugama (blue squares), modified Sugama (light blue
squares), Coulomb (green diamonds) and Lorentz (yellow triangles). The collisionless results are
also reported (black stars) with the mixing length estimate Γ ∞

x ∼ γ 2
p /k3

p (dashed black line). In
all cases, η = 0.25.

growth rate, γ , the associated wavenumber, k, and with the assumption of circular eddies
(kx ∼ ky ∼ k). Using the Poisson equation, one observes that the particle density scales
with the potential fluctuations, n ∼ φ, which leads to the estimate of the radial particle
transport Γx ∼ γ 2/k3. This scaling, based on the collisionless peak value of the entropy
mode instability, is shown in figure 11, revealing that it captures well the dependence of Γx
at strong gradients, where the effect of ZF is weak. On the other hand, the reduction of the
transport by the ZF cannot be captured by this mixing-length estimate at a low gradient
value.

At medium and low levels of the driving gradient, where ZF are expected to play a role,
according to the collisionless values, the different collision models lead to significantly
different results, for both the ν = 0.01 and ν = 0.1 cases. In particular, the Sugama and
Dougherty tend to differ from the Lorentz and Coulomb operators. The difference cannot
be explained solely in terms of linear growth rate since the Coulomb operator linear results
differ from the Lorentz results at lower gradient values (see figure 10). In fact, the ZF
quenching of the turbulence (Kobayashi & Rogers 2012) has a strong dependence on the
collision model.

Decreasing the collision frequency by a factor of ten, i.e. between ν = 0.1 and ν = 0.01
(see figure 11), reduces the gap between collisional and collisionless results in the majority
of parameters and collision models studied. However, it is worth noting that, at a high
gradient value, the transport does not approach the collisionless value monotonically with
resistivity. This phenomenon is due to a combination of the tertiary instability affecting the
ZF and the damping of turbulence due to collisions. In fact, Ricci et al. (2006a) observed
a non-monotonic dependence of transport to collisionality at large gradient values as well.
We note that this feature does not depend on the chosen collision model.

The results obtained with the Dougherty operator appear to most closely approach the
collisionless case, with Dougherty being the only operator that shows a Dimits shift at
κN � 2.1 for ν = 0.1 and κN � 2.3 for ν = 0.01. This similarity can be explained by
the simplicity of the Dougherty model, which is mainly composed of kinetic and spatial
diffusion terms that are present, albeit at smaller amplitude and for numerical reasons,
also in the collisionless case. Concerning the collisionless case, we expect that the slight
reduction of transport at the lowest drive level is due to the reduced linear drive. When
reducing the collisionality at κN ≤ 1.7, we observe that transport is significantly reduced
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FIGURE 12. Amplitude of the normalized spectral energy for zonal modes (
∑

ky=0 |φk|; blue),
non-zonal modes (

∑
ky �=0 |φk|; red) and transport level (Γx; yellow) obtained for a simulation

with the Sugama collision operator for κN = 1.6, η = 0.25 and ν = 0.01, with (P, J) = (4, 2)
gyromoments.

in comparison with the collisionless case. In this regime, the ZF are stable and yield
small bursts of transport occurring over large time intervals, approximately 2000LB/cs. We
report that increasing the polynomial basis to (P, J) = (8, 4) does not affect significantly
the result obtained with the (P, J) = (4, 2) basis at these lower gradient values.

Similarly to the Dougherty operator, the Sugama operator yields a regime of suppressed
transport at low gradient values and a regime of fully developed turbulence at large
gradient values. However, at intermediate gradient levels, transport is remarkably larger
in comparison with the collisionless results and Dougherty operator, with the oscillations
between quiescent and turbulent periods (see figure 3) being replaced by fluctuations
around a plateau value with persistent ZF structures. This feature, also observed with
the Lorentz and Coulomb operators, can be explained by a ZF damping sufficiently
strong to continuously allow fluctuations to grow in the ZF regions where the E × B
velocity shear vanishes (Ivanov et al. 2020). In the context of the predator–prey cycles,
this case corresponds to an overlap of bursts. This effect is reduced when the collision
frequency is decreased to ν = 0.01 where cyclic transport dynamics, previously identified
by Kobayashi & Gürcan (2015) and shown in figure 12, is obtained. The frequency of
these bursts is directly related to the ZF damping rate due to the collision operator that
dissipates the ZF structures (highlighted by the decreasing phase of the zonal energy, blue
line of figure 12), and the primary instability growth rate (underlined by the slope of the
increasing part of the non-zonal energy, red line in figure 12). The fact that the burst period
is shorter with the Sugama operator than the Dougherty operator indicates that a strong
ZF damping mechanism resides in the higher gyromoment coupling present in the Sugama
operator.

The reduction of the transport level with respect to the mixing length estimate at the
lowest gradients is less pronounced with the Lorentz operator than with the Dougherty and
Sugama operators. The difference between the Sugama and the Lorentz model is mainly
due to the energy diffusion term contained in the field part of the former collision operator.
In fact, the pitch-angle scattering Lorentz operator does not contain any energy diffusion
term, while the Sugama model uses an ad hoc energy diffusion term in the field part
of the collision operator (on the other hand, the spatial diffusion terms of the Lorentz
and Coulomb operators coincide). Confirming the importance of having an accurate
description of the energy diffusion, we note that tests at low drive values, where we modify
the Sugama operator by zeroing out the ad hoc energy diffusion term (while also breaking
the Sugama conservation properties), show a significant increase of the transport level
(light blue squares in figure 11). It is worth noting that no bursts are observed in Lorentz
simulations even in the low collisionality case.
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(a)

(b)

(c)

(d)

FIGURE 13. Time evolution of the y-averaged ZF profile, 〈∂xφ〉y, for the Dougherty (a), Sugama
(b), Lorentz (c) and Coulomb (d) collision operators, using the saturated state of the collisionless
simulation at t0 = 5000 for κN = 1.6, ν = 0.1 and η = 0.25 as initial conditions.

The Coulomb collision operator simulations do not show remarkable differences in
comparison with the Lorentz collision operator in the high collisionality case. Both
operators maintain a high level of transport, even at low gradient values. It is worth
noting that the Coulomb collision operator induces the largest level of transport than all
other collision operators for almost every κN , which can be surprising since the related
linear growth rate is smaller than the one yielded by the other collision operators (see
figure 10). In particular, in the low collisionality case the Coulomb operator maintains a
high transport level also with respect to the Lorentz operator.

Confirming that collisions regulate transport through the ZF damping, we now describe
a detailed study of this mechanism, as induced by the different collision models. We
consider the nonlinear collisionless saturated states for κN = 1.6, 2.0, and 2.5 (see figure 5)
as initial conditions for a set of simulations that use different collision models. We
isolate the damping effect by removing the entropy mode drive, κN = 0, and we use
a (P, J) = (4, 2) gyromoment set with ν = 0.1. We let the system evolve and follow
the damping of the ZF profile. The results of this numerical experiment can be first
observed qualitatively in figure 13 where the averaged radial ZF profile, 〈∂xφ〉y, is plotted
as a function of time for each collision operator considered. Figure 13 reveals that the
effect of collisions on the ZF profile is highly dependent on the operator model. The
Dougherty model does not significantly affect the ZF structure, while the Sugama operator
leads to their damping. The Lorentz operator filters the initial ZF structure, decreasing
the amplitude of short-wavelength ZF, while a long-wavelength mode survives. Finally,
the Coulomb operator strongly damps the ZF at all wavelengths. Thus, confirming our
hypothesis that the different ZF damping is responsible for the different level of transport,
the smallest transport values observed in figure 11 correspond to the operators that allow
the smallest scale of the ZF structure to survive.
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(a) (b) (c)

FIGURE 14. Time evolution of A2
ZF (see (4.1)) for the Dougherty (red), Sugama (blue), Lorentz

(yellow) and Coulomb (green) collision operators used in the gyromoments approach with a
(4, 2) Hermite–Laguerre basis. The ZF initial conditions are the ones obtained from the κN = 1.6
(a), κN = 2.0 (b) and κN = 2.5 (c) collisionless simulations. In all cases η = 0.25.

As a further confirmation and a more quantitative analysis of the results shown in
figure 13, we define the normalized ZF energy, i.e.

A2
ZF(t) =

∫
dx〈φ〉2

y(t)∫
dx〈φ〉2

y(0)

, (4.1)

and study its time evolution for each collision operator in figure 14. As initial conditions,
we consider the ZF obtained in the κN = 1.6, κN = 2.0 and κN = 2.5 collisionless
simulations. Focusing on the damping at early times, ∂tA2

ZF|t=0 (the growth of the linear
instability alters the ZF damping at time scales 1/γ ∼ 10), this analysis unveils a clear
difference between Dougherty and Sugama operators, while these operators provide very
similar linear growth rates. We also observe that the Lorentz and Coulomb operators yield
similar damping, corresponding to a similar transport level in the nonlinear simulations.
Thus, we can deduce that, unlike the linear growth rate, the saturated transport level is
directly related to the ZF damping rate.

5. Conclusions

In the present paper, the first nonlinear GK simulations carried out using a gyromoment
approach and including advanced collision models are presented. By implementing the
moment hierarchy in (2.14), turbulence in a two-dimensional Z-pinch geometry is studied.

We first present a benchmark with the continuum GK code GENE that demonstrates the
ability of the gyromoment approach to simulate accurately the nonlinear evolution of the
entropy mode, even in the collisionless limit. We show that the convergence behaviour of
the nonlinear results follows the same trend as the linear ones, i.e. convergence properties
improve with the increase of the gradient strength. However, accurate nonlinear results
require only that the linear growth rate of the modes developing at large scales are
accurately resolved.

We then extend the nonlinear results, adding collisions with the use of four different
collision operator models. We observe that the gyromoment simulations converge with a
lower number of gyromoments than in the collisionless case. With a Dimits threshold
identified around κN ∼ 2 in the collisionless case, the influence of collisions on the
transport level becomes particularly evident for κN < 2. This confirms previous studies
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(Lin et al. 1999; Ricci et al. 2006a; Ricci, Rogers & Dorland 2010) pointing that collisional
effects are mainly related to the dynamics of the ZF. Our results highlight the disagreement
between Dougherty, Sugama, Lorentz and Coulomb GK collision models, in the linear
growth rate and, even more, in the level of nonlinear transport. We show that the analysis
of the linear results is not sufficient to predict the difference observed in the saturated
transport level. However, we observe a direct link between ZF damping and transport
level, which could be used to develop a reduced model of the transport level in a future
work. By demonstrating for the first time that the transport level in ZF dominated regime
is highly dependent on the collision model in use, we point out that the choice of the
collision operator should be properly considered in GK turbulence simulations where ZF
are present.

In a more general context, the present study is a first step towards the nonlinear
simulation of the tokamak boundary based on the use of the gyromoment approach. Our
plan is to consider nonlinear simulations in the s − α flux-tube geometry as a next step,
expanding the linear study presented in Frei et al. (2022b). Using the cyclone base case as a
reference (Dimits et al. 2000), we will have a benchmark for evaluating the performance of
the gyromoment approach. In particular, the ability of the Hermite–Laguerre approach to
accurately resolve nonlinear trapped-particle dynamics remains an open area of research.
We will then turn to the simulation of the tokamak boundary. According to Frei et al.
(2022b), we anticipate that the high pressure gradient and level of collisionality present in
the tokamak edge will improve the convergence of the nonlinear gyromoment hierarchy
with respect to core conditions. However, the δf assumption will need to be relaxed when
simulating the SOL. The convergence behaviour of a Hermite–Laguerre moment approach
in a full-F nonlinear framework and the influence of its closure model remains a central
question.
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Appendix A. Truncated gyromoment hierarchy and comparison with gyrofluids and
reduced fluid models

This appendix focuses on the link between the gyromoment model and other
moment-based models, in particular, the gyrofluid models of Brizard (1992) and
the further simplified models of Hasegawa & Mima (1978), Hasegawa & Wakatani
(1983) and Dewhurst et al. (2009). We write the two-dimensional Z-pinch truncated
gyromoment hierarchy, (2.14), explicitly for the Hermite–Laguerre basis (P, J) = (4, 2) in
the collisionless limit and zero truncation closure. We then identify the set of gyromoments
required to obtain the gyrofluid model of Brizard (1992) in the same geometry. Finally, we
take the long-wavelength, cold-ion, DK limit to obtain a single vorticity equation similar
to the extended Hasegawa–Mima model.

A.1. Truncated reduced moment hierarchy in a two-dimensional Z-pinch
The collisionless gyromoment hierarchy in a Z-pinch, (2.14), writes explicitly

∂tNpj
a +

∞∑
n=0

{
Knφ,

n+j∑
s=0

dnjsNps
a

}
− τa

za
iky[(2j + 1)npj

a − ( j + 1)np,j+1
a − jnp,j−1

a ]

− τa

za
iky[

√
( p + 1)( p + 2)np+2,j

a + (2p + 1)np,j
a +

√
p( p − 1)np−2,j

a ]

+ κN ikyφ[Kjδp0 + ηKj

√
2

2
δp2 + η(2jKj − [ j + 1]Kj+1 − jKj−1)δp0] = 0. (A1)

Defining Dt(Npj
a ) = ∂tNpj

a +∑∞
n=0{Knφ,

∑n+j
s=0 dnjsNps

a } and considering only even-p
gyromoments due to the Z-pinch symmetry, the truncated hierarchy up to (P, J) = (4, 2)
writes

DtN00
a − τa

za
iky[2N00

a +
√

2N20
a − N01

a ] + [(κN − 2)K0 + (1 − κT)K1] ikyφ = 0, (A2)

DtN20
a − τa

za
iky[

√
2N00

a + 6N20
a +

√
12N40

a − N21
a ] +

√
2

2
(κT − 2)K0 ikyφ = 0, (A3)

DtN01
a − τa

za
iky[−N00

a + 4N01
a +

√
2N21

a − 2N02
a ]

+ [(1 − κT)K0 + (κN + 2κT − 4)K1 + (2 − 2κT)K2] ikyφ = 0, (A4)

DtN40
a − τa

za
iky[

√
12N20

a + 10N40
a − N41

a ] = 0, (A5)

DtN21
a − τa

za
iky[−N20

a +
√

2N01
a + 8N21

a +
√

12N41
a − 2N22

a ]

+
√

2
2

(κT − 2)K1 ikyφ = 0, (A6)

DtN02
a − τa

za
iky[−2N01

a + 6N02
a +

√
2N22

a ] + [2K1 − 6K2] ikyφ = 0, (A7)

DtN41
a − τa

za
iky[−N40

a +
√

12N21
a + 12N41

a − 2N42
a ] = 0, (A8)
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DtN22
a − τa

za
iky[−2N21

a +
√

2N02
a + 10N22

a +
√

12N42
a − 3N23

a ] −
√

2K2 ikyφ = 0, (A9)

DtN42
a − τa

za
iky[−2N41

a +
√

12N22
a + 14N42

a +
√

30N62
a − 3N43

a ] = 0. (A10)

In ((A2)–(A10)), the moments N60
a , N03

a , N61
a , N23

a , N62
a and N43

a are set to vanish by
truncating the moment hierarchy. Consequently, the Poisson equation is now a truncated
version of (2.20), i.e.[∑

a

z2
a

τa

(
1 −

J∑
n=0

K2
n

)]
φ =

∑
a

za

J∑
n=0

KnN0n
a . (A11)

A.2. Comparison with gyrofluid model
Direct comparison with the gyrofluid model in Brizard (1992) is obtained by expressing
the gyrofluid moments (na, u‖a, P⊥a, P‖a) in terms of Hermite–Laguerre gyromoments. By
expressing the canonical polynomial basis {xn} for n = 0, 1, 2 into Hermite and Laguerre
polynomials, we deduce for the gyrofluid density na = N00

a , for the parallel pressure
P‖a = √

2N20
a + N00

a , for the perpendicular pressure P⊥a = N00
a − N01

a and for the
components of the energy-weighted pressure tensor R‖

‖a = √
3/2N40

a /2 − 3
√

2N20
a /4 −

3N00
a /8, Rxa = −N21

a /
√

2 and R⊥
⊥a = N02

a . We notice that the other gyrofluid moments,
i.e. the fluid velocity and heat flux, vanish due to the symmetry rising from the k‖ = 0
assumption in the Z-pinch geometry. In terms of gyrofluid moments, ((A2)–(A7)) write

Dtna − τa

za
iky(P‖a + P⊥a) + [(κN − 2)K0 + (1 − κT)K1] ikyφ = 0, (A12)

DtP‖a − τa

za
iky(−4na + 7P‖a + P⊥a + 2R‖

‖a + Rxa)

+ [(κN + κT − 4)K0 + (1 − κT)K1] ikyφ = 0, (A13)

DtP⊥a − τa

za
iky(−3na + P‖a + 5P⊥a + Rxa + R⊥

⊥a)

+ [(κN + κT − 3)K0 + (5 − κN − 3κT)K1 + (2κN − 2)K2] ikyφ = 0. (A14)

The linear terms in ((A12)–(A14)) are equivalent to the gyrofluid equations presented
in Brizard (1992), by replacing L⊥ = LB and considering electrostatic fluctuations in the
Z-pinch geometry (i.e. ηB = 1, εβ = 0, V‖ = 0, ∂‖ = 0 and ω∇ = ωκ , adapting Brizard
(1992) notations). Expressing the equilibrium FLR differential operator as Δ⊥ = −ba, we
deduce for the first kernels K0 = eΔ⊥ , K1 = −Δ⊥ eΔ⊥ , K2 = Δ2

⊥ eΔ⊥/2. Thus, by setting
higher-order kernels to zero, we retrieve the FLR correction terms present in the gyrofluid
model. Finally, the total derivatives Dt. yield the nonlinear gyrofluid terms

Dtna = ∂tna + {K0φ, na} + {K1φ, na − P⊥a} + 1
2 {K2φ, R⊥

⊥a}, (A15)

DtP‖a = ∂tP‖a + {K0φ, P‖a} + {K1φ, na − P⊥a}
− {K1φ, Rxa} + 1

2 {K2φ, R⊥
⊥a +

√
2N22

a }, (A16)

DtP⊥a = ∂tP⊥a + {K0φ, P⊥a} + {K1φ, 2na − 3P⊥a} + {K2φ, 2P⊥a − 2na}
− {K1φ, R⊥

⊥a} + {K2φ, 5/2R⊥
⊥a + 3N03

a }. (A17)
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In Brizard (1992), only density and temperature fluctuations contribute to the nonlinear
terms. This is equivalent to setting R‖

‖a = Rxa = R⊥
⊥a = N22

a = N03
a = 0 in ((A15)–(A17)).

Thus, in this limit, our gyromoment hierarchy, ((A12)–(A14)) is equivalent to the δf
gyrofluid framework for the description of the ion dynamics. The electrons are modelled
adopting a DK limit in the gyrofluid equations, which can be easily obtained from our
gyromoment framework by setting Kn = δn0.

A.3. Relation with Hasegawa–Mima model
The Hasegawa & Mima (1978) and Hasegawa & Wakatani (1983) models consider cold
ions, adiabatic electrons, za = τa = 1 and the long-wavelength limit k⊥ � 1. By applying
these assumptions, the gyromoment hierarchy, (A1), reduces to a single moment model

∂tN00
i + {φ, N00

i } − 2 ikyn00
i + ikyκNφ = 0, (A18)

where the k⊥ � 1 limit allows us to approximate Kn = δn0. Introducing the ion perturbed
density, n = N00

i , (A18) writes in real space

∂tn + {φ, n} − κB∂y(n + φ) + κN∂yφ = 0, (A19)

where we set κB = 2LB/L⊥. Using the modified adiabatic electron response ne = φ −
〈φ〉z = 0 in a two-dimensional Z-pinch, the Poisson equation yields ni = −∇2

⊥φ. This
leads to an extended Hasegawa–Mima equation for the vorticity, ∇2

⊥φ, containing magnetic
curvature and gradient effects

∂t(∇2
⊥φ) + {φ,∇2

⊥φ} − κN∂yφ + κB∂y(φ − ∇2
⊥φ) = 0. (A20)

Equation (A20) correspond to the model deduced by Dewhurst et al. (2009) when
imposing k‖ = 0 or neglecting the resistive coupling between φ, n and the parallel current.
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