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Abstract
Many bilateral relationships requiring mutual agreement produce observable networks that are symmetric

(undirected). However, the unobserved, asymmetric (directed) network is frequently the object of scientific

interest. We propose a method that probabilistically reconstructs the latent, asymmetric network from the

observed, symmetric graph ina regression-based framework.Weapply thismodel to thebilateral investment

treaty network. Our approach successfully recovers the true data generating process in simulation studies,

extracts new, politically relevant information about the network structure inaccessible to alternative

approaches, and has superior predictive performance.

Keywords: networks, latent variables, binary responses, Bayesian estimation

1 Introduction

Social actors are often embedded in webs of relationships that profoundly shape political and

economic outcomes (Franzese and Hays 2008; Ward, Stovel, and Sacks 2011). One challenge

in analyzing networks arises in situations where an analyst cannot fully observe the nature

of relational ties. In many dyadic interactions—treaties, marriages—outsiders can observe

ties only if both agents agree, that is, the payoff for forming a tie exceeds its cost for both

members of a dyad (Jackson and Wolinsky 1996). The observed network is therefore composed

of symmetric (“undirected”) ties even though the social process at work contains important

relational asymmetries. The pursuit of a tie by one party may not be reciprocated to the same

extent by another.

As an illustration, suppose A, B , and C are three warring factions deciding whether to

sign bilateral peace agreements. We observe a network in which dyads (A,C ) and (B ,C ) have

signed agreements, but the dyad (A,B ) continues fighting. This observed network of “peaceful”

ties could be generated from any of three unobserved sets of relations: it may be that B

failed to reciprocate A’s pursuit of peace, or vice versa, or neither A nor B pursued peace.

To identify conditions that drive factions to sign peace agreements we must account for these

unobserved asymmetries. Here, the observed symmetric graph is an incomplete representation

of the underlying, asymmetric network, which is frequently the object of scientific interest. We

refer to this situation as “partial observability.”

We present the partial observability generalized bilinear mixed effects model (P-GBME) to

address this challenge. The model is a synthesis of the generalized bilinear mixed effects

(GBME) model (Hoff 2005) and the bivariate or “partial observability” probit model (Poirier 1980;

Author’s note: Versions of this paper were presented at the 2015 meetings of the International Political Economy

Society, the 2016 meetings of the Society for Political Methodology, and WardFest. We thank James Fowler, Jenn

Larson, and Mike Ward for useful comments. Micah Dillard provided excellent research assistance. Ahlquist benefitted

from a fellowship at Stanford’s Center for Advanced Study in the Behavioral Sciences during the writing of this paper.

Installation instructions for the P-GBME package and files to replicate the analyses in this paper are available at

http://github.com/s7minhas/pgbmeRepl and on the Dataverse associated with this paper (Rozenas, Minhas, and Ahlquist

2018).
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Przeworski and Vreeland 2002). Themodel can probabilistically reconstruct the directed network

from which the observed, undirected graph emerged. The model enables the study of network

ties in a regression framework by accounting for interdependencies as well as unobserved

asymmetries in network relations. The stochastic actor-oriented model (SAOM) for networks

(Snijders and Pickup 2017) also allows for partial observability. However, SAOM was designed to

assess how specific network features (e.g., k -star triangles) give rise to an observed network. The

latent network approach is not used to study the role of specific network statistics. Rather, latent

network models aim to account for broad patterns of network interdependence using a variance

decomposition regression framework.1

We illustrate the P-GBMEmodel by applying it to the bilateral investment treaties (BIT) network

for each year in 1990–2012. Themodel substantially improves predictive accuracy relative to both

conventional logit and standard GBME. P-GBME extracts new information about the factors that

drive treaty preferences, identifies important structural changes in the network, and highlights

possible “hidden” agreements that are easily overlooked when latent network asymmetries are

ignored.

2 The Model

Building on the random utility framework (McFadden 1980), we model an actor i = 1, . . . ,N as

having net utility from forming a tie with another actor j : zi j = μi j + εi j with μi j representing the

systematic component (that depends on observables) and εi j representing the stochastic error.

To account for interdependencies in actors’ utilities from having ties, we use the “latent space”

approach (Hoff 2005) andmodel these utilities as follows:

��
�
zi j

zj i

��
�
∼ N ��

�
μi j + ai + bj + u′i vj
μj i + aj + bi + u′j vi

,

⎡⎢⎢⎢⎢⎢⎣
σ2 ρσ2

ρσ2 σ2

⎤⎥⎥⎥⎥⎥⎦
��
�
. (1)

The correlation, ρ, captures the “reciprocity” between the utilities that actors derive from tie

formation. Parameters ai and bj are sender- and receiver-specific random effects, respectively,

and they capture second-order network dependencies. The vectors ui and vi represent the
location of actor i in the latent space of “senders” and “receivers,” respectively. These random

effects capture higher-order dependencies in network ties: i derives a large utility from forming a

tie with j , if i ’s location in the latent space of “senders” ui is close to j ’s location in the latent space
of “receivers” uj (so that the cross product u′i vj is large).

2 We express the systematic components

of actors’ utilities as linear functions of predictors:

μi j = β (s )x(s )
i

+ β (r )x(r )
j

+ β (d )x(d )
i j
, (2)

μj i = β (s )x(s )
j

+ β (r )x(r )
i

+ β (d )x(d )
j i
. (3)

A researcher cannot directly observe net utility (the z ’s). We only observe agents’ behaviors, in

this case undirected bilateral ties. A directional tie i → j is formed if and only if i ’s net gain from

doing so is strictly positive, zi j > 0. Accordingly, the bilateral tie i ↔ j is formed if and only if

both actors derive a net positive payoff from having a tie so that zi j > 0 and zj i > 0. A researcher

observes an undirected (bilateral) tie yi j = yj i = {0, 1} arising from the following data generating

1 See Minhas, Hoff, and Ward (2016) for detailed discussion. Other approaches based on generalized spatio-temporal

dependence can also recover directed predicted probabilities Franzese, Hays, and Kachi (2012).

2 As in previous literature, these random effects are modeled as (ai , bi ) ∼ N (0,Σ ab ), ui ∼ NK (0,σ
2
u I), and vi ∼ NK (0,σ

2
v I),

where Σ ab , σ
2
u , and σ2

v are unknown parameters. The choice of K , dimensionality of the latent space, is discussed
supplementary materials https://doi.org/10.1017/pan.2018.41.

Arturas Rozenas et al. � Political Analysis 232

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
8.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2018.41


process:

yi j = yj i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if zi j > 0 and zj i > 0,

0 else.

(4)

Under a standard identifying restriction σ2 = 1, the model is a partially observable probit

regression (Poirier 1980), augmented with random effects to capture unobserved heterogeneity

and interdyadic dependencies. Vectors x(s )
i
and x(r )

i
represent the sender-specific and receiver-

specific covariates, respectively. Amodel for thedirectional link i → j (Equation (2)), uses variables

xi as sender-specific predictors, but these same predictors become receiver-specific in themodel
for the directional link j → i (Equation (3)). Vector x(d )

i j
contains dyad-specific variables. These

dyad-specific variables might be symmetric, xi j = xj i (e.g., distance between countries), or not

(e.g., export–import).

A partially observed probit model requires at least one of the following identifying restrictions:

(a) regression Equations (2) and (3) must have the same parameters and/or (b) one equation

contains a predictor not included in another equation (Poirier 1980). If the dyadic predictors

are asymmetric, xi j � xj i , then condition (2) is satisfied. Furthermore, regression Equations (2)
and (3) have the same parameters, and so condition (1) holds as well; thus, the above model is

parametrically identified. However, we impose an additional restriction that ρ = 0. While this

restriction is not required for parametric identification, Rajbhandari (2014) showed that finite

sample estimates of ρ are sensitive to the starting values and generally cannot be treated as

reliable.3

We estimate the model in a Bayesian framework using Markov chain Monte Carlo. In the

supplemental materials give a more detailed exposition of the model, prior assumptions, the

sampling algorithm. We also provide results from a simulation study demonstrating that the

model successfully recovers true parameter values.

3 Application: Bilateral Investment Treaties

Weapply theP-GBMEmodel to thenetworkofbilateral investment treaties (BITs) from1990 to2012

using the standard United Nations BIT database. There is a vibrant debate on whether BITs boost

FDI (Jandhyala, Henisz, and Mansfield 2011; Simmons 2014; Minhas 2016), but a proper resolution

of this debate requires a convincing empirical model of treaty formation (Rosendorff and Shin

2012). Partial observability is one key challenge in building such model: the observed network

of signed bilateral treaties is symmetric, while the underlying preferences for these treaties are

asymmetric.

We fit the P-GBMEmodel separately for each year of data using a suite of covariates that closely

follows the existing empirical literature (see supplementary materials).4 Our model improves on

the previous literature by accounting for both network interdependence and partial observability.

3.1 Predictive Performance
In Table 1 we compare the in-sample and out-of-sample predictive performance of the P-GBME

to that of pooled probit, which assumes dyadic independence and ignores partial observability,

and GBME, which models dyadic interdependencies, but not partial observability. The predictive

accuracy of the GBME model in this case is similar to the pooled probit. Adding the partial

observability component to the GBME model, however, produces an additional substantial

improvement in the predictive accuracy as shown by all metrics for the P-GBMEmodel.

3 The estimation algorithm provided with this paper allows ρ to be estimated, but caution should be used when utilizing
this option.

4 Data and replication materials are available at Rozenas, Minhas, and Ahlquist (2018).
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Table 1. Predictive performance inBIT data: area under the receiver operating characteristic curve (ROC) and

area under the precision recall curve (PR).

In sample Out of sample

ROC PR ROC PR

Pooled probit 0.75 0.48 0.73 0.44

GBME 0.76 0.47 0.77 0.48

P-GBME 0.90 0.71 0.91 0.78

3.2 Regression Parameters
Existing models, including GBME, estimate a single coefficient for each predictor when the

outcome is represented as a symmetric matrix. This assumes away the possibility that the same

factor differentially “affects” i ’s demand for a treaty with j and i ’s attractiveness to j . The P-GBME

recovers directed sender and receiver effects for node-level covariates. For instance, our estimates

suggest that, countries with faster growth in GDP per capita were no more inclined to sign BITs

with others (sender effect). But high-growth countries weremore attractive BIT partners to others

(receiver effect). Supplementary materials describes regression parameter estimates in detail.

3.3 The Structure of Latent Treaty Preferences
The P-GBME model allows us to extract “latent preferences” for treaty formation—the estimated

probability that country i demands a treaty from j , and vice versa. Figure 1 displays the mean

posterior predictedprobabilities relevant toChina in 1995and2010. Thehorizontal axis represents

a country’s attractiveness to China as a BIT partner and the vertical axis is China’s attractiveness

to that country. Countries above the diagonal line find China a more attractive BIT partner than

China finds them, and vice versa. Heavier color identifies observed BITs.

The plots reveal how China’s position in the BIT network changed over time. In 1995, China

was moving aggressively to demand BITs around the world, forming ties that the model views as

relatively unlikely. By 2010, China had many more BITs in place and is more likely to be a treaty

target of the remaining countries, an indication of China’s expanded role in the global economy.

Figure 2 illustrates a different use of the P-GBME model. It shows the predicted probabilities

that theUSA is demanded (left) anddemands (right) aBIT in 2010.Observe that themodel predicts

Figure 1. Each panels displays the posterior mean probability that China demands and will be demanded as

a BIT partner. Country labels in black designate those that had formed a BITwith China by the specified year.
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Figure 2. The posterior probability a country demands a BIT (left) and is demanded (right) with the USA in

2010 (the top and bottom decile of countries). P-GBME is good at separating likely from unlikely treaties as

well as identifying “hidden agreements.”

Peru, Mexico, and Chile—the top 3 non-BITs—demand a BIT with the USA at probabilities close to

one, and are also likely BIT targets of the USA with probabilities of about 0.5. Closer inspection of

UNtreatydata reveals that, by2010, all threehadsignedotheragreementswith theUS that contain

provisions functionally equivalent to BITs; these agreements do not appear in the BIT dataset

commonly used in the literature.5 The P-GBME model nevertheless highlights these “hidden”

agreements as dyads likely to have a BIT. This suggests that researchers studying BITs need to

carefully examine the dataset they employ and perhaps expand the set of treaties considered

relevant.

4 Conclusion

Partial observability occurswhenever theobservedgraph is undirected yet theunderlyingprocess

implies directed relationships. We introduced a model that can reconstruct the latent directed

network ties, and illustrated its advantages on an example of bilateral trade agreements. The

future work in this area could focus on several extensions. First, we accounted for network

dependencies using bilinear mixed effects framework (GBME), which could be generalized using

5 The treatiesare2006Peru–USAFreeTradeAgreement (FTA),NAFTA in 1992, and the2003Chile–USAFTA.Theseagreements

included investment provisions thatmirror the terms of a BIT almost exactly (see http://investmentpolicyhub.unctad.org/

Download/TreatyFile/5454).
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the recently developedadditive andmultiplicative effects networkmodel (Hoff2015;Minhas, Hoff,

and Ward 2016). Second, estimating this type of network model in a fully dynamic setting (as

opposed to slicing data by time, as we did here) remains a challenge, especially when the set of

nodes changes through time.

Supplementarymaterial

To view supplementary material for this article, please visit https://doi.org/10.1017/pan.2018.41.
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