Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T23:47:41.448Z Has data issue: false hasContentIssue false

Improving ambient stability of BiI3-based perovskites using different phosphoniums as the organic cation

Published online by Cambridge University Press:  30 April 2018

Diana F. Garcia-Gutierrez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, Fac. de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
Domingo I. Garcia-Gutierrez
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ingeniería Mecánica y Eléctrica, FIME, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Diego González-Quijano
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
Itzel A. Abarca-Villarreal
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Sofia F. Galindo-Garza
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México
Eduardo M. Sanchez*
Affiliation:
Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, FCQ, Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66450, México Universidad Autónoma de Nuevo León, UANL, División de Estudios de Posgrado FCQ, Guerrero y Progreso S/N, Col. Treviño, Monterrey, Nuevo León, C.P. 64570, México
*
Address all correspondence to Eduardo M. Sanchez at eduardo.sanchezcv@uanl.edu.mx
Get access

Abstract

Perovskites solar cells have reached impressive efficiencies (22%) in recent years. Because certain environmental concerns are raised by the use of lead halides, there is an interest to seek out lead-free alternatives, featuring bismuth or antimony. Alongside, one of the major drawbacks displayed by MAPbI3 is their low stability at ambient conditions. In this work, (RP4)xBiyIz were synthesized, using different types of tetra-alkylphosphoniums (R4PI) were R = ethyl, butyl, hexyl, and octyl, to assess their stability. Afterwards, they were characterized to study their morphology and crystal structure, as well as their optical properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2.Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., and Mosca, R.: MAPbI3––x Cl x mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013).Google Scholar
3.Hodes, G.: Perovskite-based solar cells. Science 342, 317 (2013).Google Scholar
4.Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 36233630 (2013).Google Scholar
5.Song, T., Chen, Q., Zhou, H.H.-P., Jiang, C., Wang, H.-H., Yang, Y. (Michael), Liu, Y., You, J., Yang, Y., Liu, Y., You, J., Yang, Y. (Michael), Liu, Y., You, J., and Yang, Y.: Perovskite solar cells: film formation and properties. J. Mater. Chem. A 3, 9032 (2015).Google Scholar
6.Zhang, X., Ren, X., Liu, B., Munir, R., Zhu, X., Yang, D., Li, J., Liu, Y., Smilgies, D., Li, R., Yang, Z., Niu, T., Wang, X., Amassian, A., Zhao, K., and Liu, S.F.: Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ. Sci. 10, 2095 (2017).Google Scholar
7.Tan, H., Jain, A., Voznyy, O., Lan, X., García de Arquer, F.P., Fan, J.Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Quan, L.N., Zhao, Y., Lu, Z.-H., Yang, Z., Hoogland, S., and Sargent, E.H.: Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722 (2017).Google Scholar
8.Wang, Z., Lin, Q., Chmiel, F.P., Sakai, N., Herz, L.M., and Snaith, H.J.: Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 6, 17135 (2017).Google Scholar
9.Mitzi, D.B.: Organic–inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg. Chem. 39, 6107 (2000).Google Scholar
10.Mitzi, D.B. and Brock, P.: Structure and optical properties of several organic–inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 40, 2096 (2001).Google Scholar
11.Hamdeh, U.H., Nelson, R.D., Ryan, B.J., Bhattacharjee, U., Petrich, J.W., and Panthani, M.G.: Solution-processed BiI3 thin films for photovoltaic applications: improved carrier collection via solvent annealing. Chem. Mater. 28, 6567 (2016).Google Scholar
12.Ramírez, R.E. and Sánchez, E.M.: Molten phosphonium iodides as electrolytes in dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 90, 2384 (2006).Google Scholar
13.Del Sesto, R.E., Corley, C., Robertson, A., and Wilkes, J.S.: Tetraalkylphosphonium-based ionic liquids. J. Organomet. Chem. 690, 2536 (2005).Google Scholar
14.Ramírez, R.E., Torres-González, L.C., and Sánchez, E.M.: Electrochemical aspects of asymmetric phosphonium ionic liquids. J. Electrochem. Soc. 154, B229 (2007).Google Scholar
15.Fraser, K.J. and MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309 (2009).Google Scholar
16.Ramírez-Garcia, R.E. and Sánchez-Cervantes, E.M.: Desarrollo de nuevos electrolitos con potencial uso en celdas solares nanocristalinas. Cien. UANL X, 400 (2007).Google Scholar
17.Ramírez, R.E., Torres-González, L.C., Hernández, A., García, A., and Sánchez, E.M.: Conductivity and viscosity behavior of asymmetric phosphonium iodides. J. Phys. Chem. B 114, 4271 (2010).Google Scholar
18.Banerjee, A., Theron, R., and Scott, R.W.J.: Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis. ChemSusChem 5, 109 (2012).Google Scholar
19.Mostafa, M.F., Atallah, A.S., and Elessawi, M.: Preparation and characterization of a new series of perovskite-like structures showing evidence of structural transitions: (methyltriphenylphosphonium)2BX4, B = Mn, Co, Cu, and Hg, and X = CI/I. Phase Transit. 64, 215 (1998).Google Scholar
20.Mostafa, M.F. and Atallah, A.S.: Permittivity and ac conductivity study of the layered perovskite [(CH3) (C6H5)3P]2MnCl4 showing evidence of phase transition. Phys. Lett. A 264, 242 (1999).Google Scholar
21.Schluter, M., Cohen, M.L., Kohn, S.E., and Fong, C.Y.: Electronic structure of BiI3. Phys. Status Solidi B 78, 737 (1976).Google Scholar
22.Coates, J.: Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 12, 10815 (2000).Google Scholar
24.Skoog, D.A., James Holler, F., and Nieman, T. A.: Principios de análisis instrumental, 5ta Edición (McGraw Hill, Madrid, 2001), p. 409.Google Scholar
25.Clegg, W., Errington, R.J., Fisher, G.A., Green, M.E., Hockless, D.C.R., and Norman, N.C.: A phosphine complex of bismuth(III): X-ray crystal structure of [PMe3H] [Bi2Br7(PMe3)2]. Chem. Ber. 124, 2457 (1991).Google Scholar
26.Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A.: EXPO2013: a kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013).Google Scholar
27.Winn, D. and Doherty, M.F.: Modeling crystal shapes of organic materials grown from solution. AlChE J. 46, 1348 (2000).Google Scholar