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Abstract

This paper considers the improvement of approximate eigenvalues and eigenfunctions of
integral equations using the method of deferred correction. A convergence theorem is
proved and a numerical example illustrating the theory is given.

1. Introduction

Consider the linear integral equation

\x{s)-(bk(s,t)x{t)dt, (1.1)
J a

where a and b are finite, the kernel k(s, t) is known, and A and x(s) are the
unknown eigenvalue and associated eigenfunction. We do not assume that
k(s, t) is symmetric. In operator notation (1.1) can be written as

Xx = Kx (1.2)

and we assume that K is a compact integral operator on C[a, b]. A survey of
some basic results from functional analysis, which includes a discussion of
compact integral operators, is given in part I of [3]. There it is shown that if
k G C([a, b] X [a, b]) then K is compact on C[a, b]. Weakly singular kernels of
the form \og\s — t\ and \s — f|a, a > — 1, are also shown to give rise to compact
integral operators. Theoretical results about compact operators of interest to us
are stated in the following theorem.
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[2 J Eigensolutions of integral equations 475

THEOREM 1. (a) The eigenvalues of K form a discrete set in the complex plane
with zero as the only possible limit point.

(b) Each nonzero eigenvalue has finite geometric and algebraic multiplicities.

When necessary the eigenvalues of (1.2) can be numbered as follows:

\K\ > N > • • > 0, (1.3)
with

\x, = Kxr

To obtain approximations to \ and x a related matrix equation

*ai = Knu (1.4)

will be set up which can be solved by standard techniques, for example,
reduction to upper Hessenberg form and then QR. (See [17].) If k e C([a, b] X
[a, b]) then Kn can be derived as follows. Let

;(/) dt a £ Wjy(tj) (1.5)

denote a quadrature rule with weights Wj and nodes tj. Equation (1.1) is
approximated by

n

vu(s) = 2 Wjk(s, tj)u(tj), a <s <b, (1.6)

and the matrix eigenvalue problem (1.4) obtained by putting s = /„ i =
1, . . . , « , with (Kn)ij = Wjk(ti, tj). For weakly singular kernels an approximate
equation can be derived using product integration. (See [3], [5].)

Approximate methods for (1.1) have been well analysed in the past (see
Chapter 3 of [5] and the references quoted therein) and theoretical results have
been obtained. For example, to analyse the quadrature method above one can
rewrite (1.6) in operator form as

vu = Kn{rnu), (1.7)

where rn is defined for any/ e C[a, b] by

Also, rewrite (1.1) as

\x = Kn(rnx) + r(x), (1.9)

where

T(X) = Kx - Kn{rnx)

= fk(s, t)x(t) dt-j? wjk{s, tj)x(tj).
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476 K. W. Chu and A. Spence 131

The quantity r(x), called the truncation or discretization error, measures the
error in the approximation of the integral operator. It is proved in [2] that if A is
simple and n is large enough then there exists a simple eigenvalue v of (1.4) with
corresponding eigenvector u satisfying

|A - v\, \\rnx - u|L = O ( | | T ( X ) | | J . (1.10)

Since many of the theoretical questions about convergence of numerical
methods have been answered, attention is turning to the efficient calculation of
accurate approximations to A and x with the aim of developing fast and reliable
computer subroutines.

It is clear from (1.10) that accurate approximations to A and x will be
obtained by solving (1.4) for large n. However, when n is large the standard
eigenvalue routines will be expensive in computer time. Also Kn will have n
eigenvalues vit i = 1, . . . , n (counting multiple values), which approximate in
some way the eigenvalues A, of K, but it is probable that only the first /
eigenvalues of K, with I <s. n, will be of interest. (Recall Theorem 1 above.) Thus
there will be no need to compute accurately all n eigenvalues of Kn.

Several approaches are possible but we shall only consider one method here,
namely, the method of deferred correction. The technique is first to solve (1.4) for
a small value of n to obtain rough approximations v and u, and then attempt to
improve the solutions by estimating the error terms A — v, rnx — u using
Gregory's rule to estimate T(X) in (1.9). This approach was first used for integral
equations in [8]. The approach is often used for ordinary differential equations
and a framework for general functional equations is given in [11], [16]. There are
other related approaches, for example, defect correction [14], and the method of
Chatelin [6]. These techniques often require that k(s, t) satisfies certain smooth-
ness conditions in addition to those needed for the convergence rate given by
(1.10), and so we would not use such techniques on nonsmooth kernels. (See
however Section 6.5 of [6].)

The plan of the paper is as follows. In Section 2 we give an analysis of the
method of deferred correction for simple eigenvalues of (1.1). This section
contains the main theoretical result of the paper. Section 3 contains some
general remarks and Section 4 an example.

2. Deferred correction for simple eigenvalues

The method of deferred correction has a long history in numerical analysis as
a means of improving approximate solutions of initial and boundary value
problems. Early accounts of its application to integral equations are given in [8]
and [10]. A detailed discussion, with numerical results, of the method for second
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kind integral equations,

Xx-Kx=f, (2.1)

is given in Sections 4.3.3 and 4.19 of [5]. (However see Remark 1 in Section 3.)
To date there has not been a satisfactory analysis of the method applied to the
eigenvalue problem and indeed the technique described in [10] suffers from
serious theoretical and practical difficulties.

Throughout this section we assume:
Al. The trapezoidal rule is used to construct Kn in (1.4). Hence h =

(b - d)/{n - 1); t, - a + (i - l)h; H>, = wn = A/2, w, = h, i = 2, . . . , n - 1.
A2. A is a simple eigenvalue of K.
A3. k G Cp+2([a, b] X [a, b]), p > 2, which implies x G C+2[a, b]. (This is

the extra smoothness requirement mentioned in the introduction.)
Under these assumptions we have

T(JC) = O(h2) (2.2)

and, for large enough n, we have from (1.10)

\\ - p\, IK* - ulU = O(h2). (2.3)

We note, for use later in this section, that T(X) has the following representa-
tions. (See [5], Sections 2.13 and 4.19.) First,

r(x) = fk(s, t)x(t) d t - i wjk{s, tj)x(tj)

= 2 h2'-7^-{@?'-'\b) - &?'-»(")} + O{h"+2), (2.4)

where 0,(0 = k(s, t)x(t) and N = p/2, for p even, N = (p + l)/2, for p odd.
Second the Gregory representation of r{x) has the form

T(JC) = Sf(x) + O(h"+2) (2.5)

with

(2.6)

where the cf,j= 1, . . . ,p, are known. We write 8f(x) = 8£(x) and

Recall that the true solutions satisfy (1.9)

\x(s) = 2 Wjk(s, tj)x(tj)
7 - 1
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Put s = t,,i= 1, . . . , n, to obtain the matrix equation

Xx = Knx + T(X). (2.7)

This equation can be regarded as a perturbation of (1.4) since i(x) is, in some
sense, a residual. The analysis below is a form of perturbation theory which is
similar to that in [13] but is repeated here because of some slight differences and
because the approach in [13] had a different aim.

Let us normalize u in (1.4) by putting

HulL = i
and for convenience only, we make the following assumptions:

A4. The largest component of u is the first and is real, that is

A5. n is large enough so that x(/,) ^ 0. (Recall (2.3).)
Since v and u are approximations to X and x we write

X - v = /x,
and

X - U = Z = [ 0 , T i l , ] ,
L J

which normalises x. From (2.3) we have

Mln- i lL - O(*2).

Equation (2.7) becomes

(v + M)(U + z) = K > + z) + T(X)

and hence
jwu — [Kn — J ^ J Z = T(X) — JHZ.

Assume Kn is partitioned in the form

K. =

and so (2.12) can be rearranged to

cn-i

= <x) - ii

where

T =
1

4—1

-«"J-i

"!«-! - An-1

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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It is easily shown that Tn is nonsingular if v is a simple eigenvalue of Kn. The
stability condition in [11] will hold if we can show that T^1 is uniformly
bounded. We give the following lemma.

LEMMA 1. There exists a constant C, independent of n, and an integer N, such
that for all n > N, p ^ H , < C.

PROOF. We outline the main steps of the proof,
(a) Routine manipulation shows that

where
" " I . -

B n + , =

where ef = [1, 0, . . . , 0]. Thus

— p

-p~lef

-P~lU

1

- A . . + , ) , say.

(b) Define the operator An+1: C[a, b]X R^> C[a, b] X R by

—V

-P 'U

1

where u and Kn are given by (1.6) and (1.7) respectively, and

l{z) = efrn2 iox z e. C[a, b].

Also define the operator A: C[a, b] X R -» C[a, b] by

-A"1*
A =

1

Now, assuming A2 and A5, (I — A) ' exists using Lemma 3.2 of [1]. Standard
application of collectively compact operator theory gives

say, for n > N, and it follows that there exists a constant C independent of n
such that

Hence, from (a), T~' is uniformly bounded.
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Thus (2.13) will be a suitable equation on which to base an iteration scheme.
We note in passing that (2.13) can be used to prove (1.10). (See [13].) The
deferred correction process can now be written as

0
1 ,2 , . . . , (2.14)

The arguments of 6^() are the net functions {%(r)} which satisfy

(i) V G C ' + 2 [ f l , 6 ] ;

(ii) rn^W = u+[0,i,Wr
1]r ( 2 " 1 5 )

These net functions (defined below) are introduced to prove the rate of conver-
gence result and are only of theoretical interest. Because of the nonlinear terms
in (2.13) and (2.14) the theory given in [11], [16] needs to be slightly modified,
although the essential ideas remain the same.

We define the net functions {%.(r)} by

(i) %(0) = « defined by (1.7); (2.16)

(ii) p%<'> = Km(rmW>) + 8;(%<'-'>) - /i<'- '>(%<'-'> - %<°>) - MW%(°)

for r = 1, 2, . . . with jn(r) given by (2.14) (recall (2.8)) and §/(•) given by (2.6).
Condition (2.15i) follows from A3 and it is straightforward to verify (2.15ii) after
recalling the derivation of (2.13) from (2.11).

We now state the main theorem.

THEOREM 2. Assume A1-A5 and let ju(r), rfi'>_l be given by (2.14). For large
enough n, and for 2r < p,p > 2,

\ - {v + / '>) = O(h2'+2), (2.17)

and

x - (u + [0, i,Wr,]r) = 0(/ ,2 '+ 2) . (2.18)

PROOF, (a) Consider first the case r = 1. From (1.7), (1.9), (2.8) and (2.16i) we
have

Kn(rnx - /•„%«») + r(x) - tvc.

Clearly x - <?L(0) e C+2[a, b] and since rn%
(0) = u we have, using (2.2), (2.3)

and (2.10),

x - qj/0) = O(h2).
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Also from the differentiability with respect to s of Kn and T(X) we have

[x - % ( 0 ) ] ( / ) = O(h% I = 1, 2, . . . ,p + 2,

where [ • ] ( / ) denotes the /th derivative. Hence using (2.4)

T(X - %( 0 ) ) = O(A4) (2.19)

and, using (2.5),

<*) ~ 5/(%(0)) = O(h*). (2.20)

From (2.13) and (2.14) we have

using (2.10), (2.20). Clearly, since Tn is uniformly bounded,

and (2.8), (2.9) give (2.17), (2.18) for r = 1.
Now consider x — <?l(1). From (1.9) and (2.16ii) we have

p(x - %( 1 )) = Kn(rnx - rn%(1)) + r(x) - 5 /

- / i x + M<')%<0>= O(h% (2.21)

using (2.20) and
(i) rnx - rn%^ = rnx - {u + [0, Vn'^,]7} = O(h4);
(ii) /ix - JLL<I:><^L<0) = ( n - (i(1))x + jm(1)(x - %(0)) = O(/i4) since /t(1) = O(/i2).

From the differentiability of Kn, T ( - ) and 8 / ( ) we have

[A: - %<')] ( / ) = C>(//4), / = 1, 2, . . . , / ; + 2,

and from (2.4),

T(X - %(1>) = O(h%

provided p > 4. Hence

r(x) - ^/(^O) = O(h6)

using (2.5). The results

follow immediately by repeating the argument following (2.20) with r = 2.
(b) The proof of the general result follows by induction using steps similar to

those above. The important result is

T(X) - 5/(%<'>) = O(h2r+A), r = 0, 1, 2, . . . , 2r < p. (2.22)

Q.E.D.
Clearly, under assumption A3 we can only obtain estimates of A and x up to

O{hp+2).

https://doi.org/10.1017/S0334270000002812 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002812


482 K. W. Chu and A. Spence [9 ]

3. Discussion

In this section we gather together various remarks about deferred correction
and its application to the eigenvalue problem.

REMARK 1. A satisfactory analysis of the method of deferred correction
depends on a successful treatment of the quantity r(x) — 5f(%(r)), or equiva-
lently 5/(%(r>) - «/(%,<r- °). (Compare (c) of the theorem in Section 4 of [16].)
The key result is (2.22). The analysis of deferred correction for second kind
equations in [5] fails to produce the observed rate of convergence because the
result obtained for 6/7(%(r~ °) - 6^(x) is not the best possible. Theorem 4.22 of
[5] states (in the notation of this paper)

l|x('> - Vc|L = O(hr+2), (3.1)
where x satisfies (2.1) and x(r) is computed from

[xin-Kn]xw = f + n ^ - 1 ) x
where rnx

(r~X) = x*1""1*. The result (3.1) can be improved as follows. Define the
functions %(r) by

and
\%C-) = KK(rmWr)) + / + 8f(W-»), r = 1, 2,

Then one can show that

5/(%<'>) - T(JC) = O(/ i^+ 2) ,

provided that 2r < p and hence obtain the rate of convergence result

l|x(f) - v I L = O{h2'+2).
(Compare with (3.1).)

REMARK 2. It is clear that a theorem similar to theorem 2 above could be
given for the iterated deferred correction approach given by (2.14) with
dp(%lr~l)) replaced by 52r(%(r~ °). A similar modification is required in (2.16ii).

REMARK 3. Though the above analysis is given for the trapezoidal rule (recall
assumption Al) the method of analysis will hold for any quadrature rule with
suitable expansions for T(X).

REMARK 4. If we replace i(x) in (2.7) by ^ (x ) then we obtain the matrix
equation

[AIn - K«]x = 0, (3.2)
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where (K*/^ = Wj k{tit tj) with Wjfi being the weights of the/?th Gregory rule.
Equation (2.14) is precisely a reformulation of (3.2) and so (3.2) could be solved
directly instead of (1.4) and then (2.14). However one is left with the "a priori"
choice of p and some advantages of deferred correction (discussed in the next
paragraph) are lost.

The method of deferred correction for integral equations has the usual
advantages of such methods. Briefly the main points are:

(1) Highly accurate solutions can be obtained for small values of n when the
kernel is smooth. This is particularly advantageous if k(s, t) is expensive to
evaluate.

(2) Estimates of \ and x are given by successive iterates which can be
compared to give an indication of reliability.

(3) For symmetric kernels symmetry can be retained in (1.4) if the weights
remain positive [5, p. 374]. Note that for some p the weights wJfi in (3.2) are not
all positive and in such cases symmetry cannot be preserved.

REMARK 5. Theoretically the method works well "if n is large enough".
However, for computational efficiency, n should be chosen to be as small as
possible. Ideally we would like to be able to test whether for a given n the values
v, u obtained from (1.4) are good enough to ensure that the deferred correction
iteration (2.14) will converge without any other checks. The following test has
been incorporated in programs for deferred correction in [7] and has proved to
be very reliable. Assume that the trapezoidal rule has been used to construct
(1.4). From the theory of quadrature methods [12] we have that (2.3) holds
provided

W>H0-/Vn)*IL, (3-3)

where pn is a suitably chosen prolongation. If k e C2([a, b] X [a, b\) then (3.3)
becomes

where Kss is the integral operator with kernel d2k(s, t)/ds2. It may be possible to
compute ||A'M||o0 exactly for certain simple kernels but more probably a numeri-
cal approximation will have to be used. The simplest test to decide whether or
not v is an "acceptable" approximation to A is

M > *2ll*JL/8 (3-4)

and this works well in practice. A safety factor could be included in (3.4).
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REMARK 6. Recall that assumption A4 was made to help in the explanation of
the theory. In an actual computation the component of maximum modulus of u,
say (u)m, will have to be found and the difference x — u, given by (2.9), will have
the form

where iqim_l is a (m — 1) vector and i)2>n_m is an {n — m) vector. Clearly the
structure of Tn will also need to be changed, as will the iteration (2.14) and the
result (2.18). These changes present no problems in implementation.

In Section 4 an example is given with m = (n + l)/2.

REMARK 7. The theory in Section 2 above has been extended to the multiple
eigenvalue case in [7]. Briefly, consider the case when A is an eigenvalue of K of
multiplicity /. The matrix Kn will have a cluster of / eigenvalues vt, i = 1, . . . , / ,
close to A [2]. Equations (1.4) and (2.7) are replaced by

and
KnXn / + y(xv . . ., x,) = Xn ,L,

respectively, where N, and L, are / X / matrices, and Unl, Xnl and
*T(A:,, . . . , x,) are n X / matrices. Perturbation theory, similar to that described
in [15] but retaining the normalisation of the eigenvectors of !£„ used in Section
2, is used to derive an equation equivalent to (2.13). Allowance can be made for
the defective case.

4. Example

Consider the following kernel

k(s, t) = { (̂1 + (s - 02)}"'; a = -1, b = 1;

which arises from a problem in electrostatics. Clearly k e C°°([-l, 1] X [-1, 1])
and is ideally suited for the method of deferred correction. An exact value for
the dominant eigenvalue is not known but has been estimated as A, =
.4535728641. To illustrate the theory the errors Enr = |A - (P + n<r))\, obtained
using the method of iterated deferred correction (see Remark 2 above), are given
in Table 1 below.
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T A B L E 1

Values of E.

0
1
2
3

.209 E - 1

.150 E - 3

.302 E - 4

.552 E - 5

17

.522 E - 3

.849 E - 5

.737 E - 6

.756 E - 7

33

.13OE-3

.479 E - 6

.106E-7

.719 E - 9

As expected the method produces good results. To examine the rate of conver-
gence we give the ratios of the errors for successive values of n in Table 2. The
theoretical rate is O(h2r+2), see (2.17), and since h is being reduced by a factor
of 2 each time the expected value of Enr/E(ln_V)r is 22r+2. The numerical
results, at least for small values of r, are in good agreement with the theory.

TABLE 2

0
1
2
3

Values of E9r/En_, and £ 1 V /E 3 3 ,

E"/E"'

4.0
17.7
41.0
73.0

4.0
17.7
69.5
105.1

Expected Ratio

(= 22'+2)

4
16
64

256

Numerical results for the eigenfunction corresponding to X, again show
reasonable agreement with the theory. Note that in this case HuJÎ  = (u)m,
m = (« + l)/2. (Recall Remark 6 in Section 3.) In Table 3 we give the values

Fn,r = *(i) - (u + [*l\'£-u 0, u£-m]),r> i = (« + 3)/4,
(recall (2.18), modified as suggested by (3.5)) and in Table 4 the ratios

•^n,r/^(2n-l),/-

TABLE 3

Values of Fr

0
1
2
3

.423

.259

.728

.583

9

E - 3
E - 3
E - 4
E - 3

17

.103 E - 3

.205 E - 4

.608 E - 5

.297 E - 5

33

.250 E - 3

.125 E - 5

.660 E - 7

.408 E - 8
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TABLE 4

Values of F9,/Fxl, and F l v / F 3 3 i ,

0
1
2
3

d t
H.I

12.6
11.9
196.2

F

A 1

H.I

16.4
92.1
727.9

Expected Ratio

( = 22"1"2)
a

H

16
64
256
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