SEMI-ALGEBRAS IN C(T)

by BERTRAM YOOD[†]

(Received 2 February, 1973)

Let C(T) be the Banach algebra of all complex-valued continuous functions on the compact set T of all complex numbers with modulus one. As usual we may suppose that A is embedded in C(T), where A is the disc algebra, i.e., the algebra of all complex-valued functions $f(\lambda)$ continuous for $|\lambda| \leq 1$ and analytic for $|\lambda| < 1$. We set $M_{\lambda} = \{f \in A : f(\lambda) = 0\}$ and $M_{\lambda}^{+} = \{f \in A : f(\lambda) \geq 0\}$.

Following Bonsall [1], we call a subset S of C(T) a semi-algebra if, whenever $f, g \in S$ and t is a non-negative number, we have $f+g \in S$, $fg \in S$ and $tf \in S$. In connection with the semi-algebra S, we consider the real subalgebra $S_b = S \cap (-S)$ of C(T) and the complex subalgebra $S_c = S_b + iS_b$. It is convenient to let $e = e(\lambda)$ stand for the function identically one. Our theorem shows that all these items are intimately related.

THEOREM 1. Let S be a semi-algebra in C(T), where $-e \notin S$. Then either S_c is dense in C(T) or no M_{λ}^+ , with $|\lambda| < 1$, is properly contained in S.

Proof. Suppose that S properly contains some M_{λ}^{+} , with $|\lambda| < 1$. Without loss of generality, we may take $\lambda = 0$ in the ensuing argument. We must show that S_c is dense in C(T).

Consider the subalgebra

$$B = S_c + \mathbb{C}e,\tag{1}$$

where \mathbb{C} is the field of complex numbers. Since S_c contains the maximal ideal M_0 of A, we get $B \supset A$. Hence, by Wermer's maximality theorem [5], the closure of B is either C(T) or A.

If the closure of B is C(T), there exist a sequence $\{p_n(\lambda)\}$ in S_c and a sequence $\{\alpha_n\}$ in \mathbb{C} such that, in the metric of C(T), $p_n(\lambda) + \alpha_n e(\lambda) \to \lambda^{-1}$. Notice that the functions $\lambda p_n(\lambda)$ and $\alpha_n \lambda$, as functions of λ , all lie in S_c and that, in C(T), $\lambda p_n(\lambda) + \alpha_n \lambda \to e(\lambda)$. Therefore, by (1), the closure of S_c is the closure of B, which is here C(T).

Our conclusion would then follow if we could show that the closure of B cannot be A. Suppose that the closure of B is A. By (1) and the fact that S_c contains the maximal ideal M_0 of A, we see that

$$A = S_c + \mathbb{C}e. \tag{2}$$

Next we show that $e \notin S_c$. For otherwise we could write e = f + ig, where f and g lie in S_b . Then we could write

$$-e = f^2 + g^2 - 2f.$$

Since the right side lies in $S_b \subset S$, we get a contradiction.

It now follows from (2) that S_c is a proper ideal in A containing M_0 . Therefore $S_c = M_0$. Now take $g \in S$. The function $\lambda g(\lambda)$ lies in $S_b \subset M_0$ and is therefore an element of A vanishing

† This research was supported by the National Research Foundation (U.S.A.).

BERTRAM YOOD

at zero. Hence there exists $w \in A$ such that $\lambda g(\lambda) = \lambda w(\lambda)$, $|\lambda| = 1$. Therefore $g \in A$ and so $M_0^+ \subset S \subset A$, where $-e \notin S$.

We shall show from this that $S = M_0^+$. For let $v \in S$. First we show that v(0) = -a, a > 0, is impossible. For suppose otherwise and set $w = a^{-1}v$. Now M_0 is a maximal linear subspace of A; so there is a scalar λ and $f \in M_0$ such that $-e = f + \lambda w$. Evaluating at zero, we see that $\lambda = 1$, so that $-e = f + w \in S$, which is impossible. It follows that v(0) = bi, b real, $b \neq 0$ is impossible, for otherwise $v^2 \in S$ and $v^2(0) = -b^2$. Next we show that v(0) = a + bi with a, b real, a < 0, $b \neq 0$ is impossible, for otherwise $w = -ae + v \in S$ and w(0) = bi. Next we rule out v(0) = a + bi, a, b real, a > 0, $b \neq 0$. For if this holds, then v''(0) must lie in the open lefthand plane for some positive integer and $v'' \in S$. By elimination we see finally that $v(0) \ge 0$ or $v \in M_0^+$. Therefore $S = M_0^+$.

However this is in conflict with the hypothesis that S properly contains M_0^+ and the proof of the theorem is completed.

The choice S = A shows that the requirement that $-e \notin S$ cannot be dropped from the hypothesis. Also, S_c may fail to be dense and, simultaneously, S can properly contain some M_{λ}^+ , with $|\lambda| = 1$. For consider $g \in C(T)$, where $g \notin A$ and g(1) = 0. The semi-algebra S generated by M_1^+ and g properly contains M_1^+ and fails to contain -e, but has the property that S_c is at a distance of one from -e.

The following special case of Theorem 1 is, to the author, somewhat surprising.

COROLLARY 1. Let $g \in C(T)$, where $g \neq 0$ and g vanishes on a subset T_0 of T of positive Lebesgue measure. Let λ be a complex number with $|\lambda| < 1$. If S is the semi-algebra generated by M_{λ}^+ and g, then S_c is dense in C(T).

Proof. A well-known theorem of F. and M. Riesz [2, p. 50] shows that $g \notin A$, so that S properly contains M_{λ}^+ . The conclusion follows from Theorem 1 if we verify that $-e \notin S$. Suppose that $-e \notin S$. Then there exists a finite subset f_0, f_1, \ldots, f_n of M_{λ}^+ such that

$$-e = f_0 + \sum_{k=1}^n f_k g^k.$$
 (3)

Notice that, from (3), $e+f_0$ is identically zero on T_0 . The F. and M. Riesz theorem then gives $f_0 = -e$, which is impossible.

For a ring R with identity 1, Harrison [4] defines a preprime as a nonvoid set closed under addition and multiplication and not containing -1. He calls a maximal preprime a prime. Civin and White [3, p. 243] showed that, if P is a closed prime in a Banach algebra B with identity 1, then $1 \in P$ and P is a semi-algebra. If further, B is a complex and commutative Banach algebra, then $iP_b \subset P_b$ [3, Proposition 1.11]. They also point out [3, p. 245] that M_{λ}^+ with $|\lambda| < 1$ is not a prime in C(T). By using Theorem 1, more can be shown along these lines.

COROLLARY 2. Let S be closed semi-algebra in C(T) where $-e \notin S$ and S contains some M_{λ}^+ with $|\lambda| < 1$. Then S is not a prime in C(T).

Proof. Suppose that S is a prime in C(T). As noted above, this implies that $iS_b \subset S_b$. Consequently $S_c \subset S$, so that S_c cannot be dense in C(T). Theorem 1 shows that S cannot

SEMI-ALGEBRAS IN C(T)

properly contain any M_{α}^+ with $|\alpha| < 1$. Therefore $S = M_{\lambda}^+$. But in this situation the proof of Corollary 1 provides the existence of a preprime properly containing S. This is a contradiction.

REFERENCES

1. F. F. Bonsall, Semi-algebras of continuous functions, Proc. London Math. Soc. (3) 10 (1960), 122-140.

2. C. Caratheodory, Theory of functions of a complex variable, Vol. 2 (Chelsea 1960).

3. P. Civin and C. C. White, Maximal closed preprimes in Banach algebras, Trans. Amer. Math. Soc. 147 (1970), 241-260.

4. D. K. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc. No. 68 (1966).

5. J. Wermer, On algebras of continuous functions, Proc. Amer. Math. Soc. 4 (1953), 866-869.

PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA. 16802, U.S.A.