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Let C(T) be the Banach algebra of all complex-valued continuous functions on the
compact set T of all complex numbers with modulus one. As usual we may suppose that A
is embedded in C{T), where A is the disc algebra, i.e., the algebra of all complex-valued
functions/(A) continuous for | A | ^ 1 and analytic for | A | < 1. We set Mx = {feA :f(X) = 0}
a n d M ^ = {feA :/(A) ^ 0}.

Following Bonsall [1], we call a subset S of C(T) a semi-algebra if, whenever/, geS and /
is a non-negative number, we h&\ef+geS,fgeS and tfeS. In connection with the semi-
algebra S, we consider the real subalgebra Sb = Sn(—S) of C{T) and the complex subalgebra
Sc = Sb + iSb. It is convenient to let e = e(X) stand for the function identically one. Our
theorem shows that all these items are intimately related.

THEOREM 1. Let S be a semi-algebra in C(T), where —e$S. Then either Sc is dense in
C(T) or no Mf, with | A | < 1, is properly contained in S.

Proof. Suppose that S properly contains some Ml, with |A| < 1. Without loss of
generality, we may take A = 0 in the ensuing argument. We must show that Sc is dense in
C{T).

Consider the subalgebra
(1)

where C is the field of complex numbers. Since Sc contains the maximal ideal Mo of A, we get
]}•=> A. Hence, by Wermer's maximality theorem [5], the closure of B is either C(T) or A.

If the closure of B is C(T), there exist a sequence {/>n(A)} in Sc and a sequence {a.n} in C
such that, in the metric of C(T), /?n(A)+ane(A) -> A"1. Notice that the functions Xpn{X) and
an X, as functions of A, all lie in Sc and that, in C(T), Xpn(X) + an A-> e(A). Therefore, by (1), the
closure of Sc is the closure of B, which is here C{T).

Our conclusion would then follow if we could show that the closure of B cannot be A'.
Suppose that the closure of B is A. By (1) and the fact that Sc contains the maximal ideal Mo

of A, we see that
A = Sc + Ce. (2)

Next we show that e$Sc. For otherwise we could write e =f+ig, where/and g lie in
Sb. Then we could write

-e=f2+g2-2f.

Since the right side lies in Sb a S, we get a contradiction.
It now follows from (2) that Sc is a proper ideal in A containing Mo. Therefore Sc = Mo.

Now take geS. The function Xg(X) lies in Sb a Mo and is therefore an element of A vanishing
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at zero. Hence there exists we A such that Xg(X) = Aw(A), | A | = 1. Therefore geA and so
M$ <=S(=A, where -e$S.

We shall show from this that S = M%. For let veS. First we show that v(0) = - a, a > 0,
is impossible. For suppose otherwise and set w = a~1v. Now Mo is a maximal linear sub-
space of A; so there is a scalar A and/e A/o such that — e = / + Aw. Evaluating at zero, we see
that A = 1, so that — e =f+weS, which is impossible. It follows that v(0) = bi, b real, b # 0
is impossible, for otherwise c2eS and v2(0) = -ft2. Next we show that v(0) = a+bi with
o, 6 real, a < 0, 6 / 0 is impossible, for otherwise w = — ae+1; e S and w(0) = W. Next we rule
out v(0) = a+6/, a, b real, a > 0, b # 0. For if this holds, then v"(0) must lie in the open left-
hand plane for some positive integer and v"eS. By elimination we see finally that »(0) ^ 0 or
veM£. Therefore S = M£.

However this is in conflict with the hypothesis that S properly contains M£ and the proof
of the theorem is completed.

The choice S = A shows that the requirement that —e$S cannot be dropped from the
hypothesis. Also, Sc may fail to be dense and, simultaneously, S can properly contain some
M$, with |A| = 1. For consider geC(T), where g$A and g(J) = 0. The semi-algebra S
generated by Mj1" and g properly contains Mj" and fails to contain —e, but has the property
that Sc is at a distance of one from —e.

The following special case of Theorem 1 is, to the author, somewhat surprising.

COROLLARY 1. Let g e C{T), where g^0 and g vanishes on a subset To of T of positive
Lebesgue measure. Let kbea complex number with | A | < 1. If S is the semi-algebra generated
by M$ and g, then Sc is dense in C(J).

Proof. A well-known theorem of F. and M. Riesz [2, p. 50] shows that g$A, so that S
properly contains Mf. The conclusion follows from Theorem 1 if we verify that —e$S.
Suppose that —eeS. Then there exists a finite subset fo,flt . . . , /„ of M^ such that

-e=fo+tfk9
k. (3)

Notice that, from (3), e+f0 is identically zero on To. The F. and M. Riesz theorem then gives
/ 0 = —e, which is impossible.

For a ring R with identity 1, Harrison [4] defines a preprime as a nonvoid set closed under
addition and multiplication and not containing - 1 . He calls a maximal preprime a prime.
Civin and White [3, p. 243] showed that, if P is a closed prime in a Banach algebra B with
identity 1, then 1 eP and P is a semi-algebra. If further, B is a complex and commutative
Banach algebra, then iPb <= Pb [3, Proposition 1.11]. They also point out [3, p. 245] that
Ml with | A | < 1 is not a prime in C{T). By using Theorem 1, more can be shown along these
lines.

COROLLARY 2. Let S be closed semi-algebra in C{T) where —e$S and S contains some
Ml with | A | < 1. Then S is not a prime in C(T).

Proof. Suppose that S is a prime in C(T). As noted above, this implies that iSb c Sb.
Consequently Sc a S, so that Sc cannot be dense in C{T). Theorem 1 shows that 5 cannot
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properly contain any M * with | a | < 1. Therefore S = M$. But in this situation the proof of
Corollary 1 provides the existence of a preprime properly containing S. This is a contradiction.
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