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NOTATION

b Parameter, see eqn (2)
Cf Length of flap as fraction of chord of wing, see eqn (24)
CD, CL Drag and lift coefficients respectively, see eqns. (24) and (25)
<% Integrat ion contour, see eqn (14)
d Parameter , see eqn (7)
/, g, h Parameters , see eqn (2)
K Constant, see eqn (2)
L Constant, see eqn (3)
q Fluid speed, see eqn (1)
qG Value of q a t point G.

( dz\
— U — \, see eqn (1)

t Auxiliary plane, see Fig. 5.
u, v Velocity components, see page 1.
U Value of u at infinity
w Complex velocity potential
x, y Co-ordinates in physical plane
X, Y Components of force acting on wing-flap combination
z =x + iy
a Incidence, see eqn (4)
/? Flap deflection, see eqn (4)
y Parameter, see eqn (8)
C Auxiliary variable, see eqn (2)
6 Direction of fluid velocity
p Fluid density
<f> Velocity potential
y> Stream function
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196 D. G. Hurley [2]

1. Introduction

For a theory of the flow about an aerofoil equipped with a split flap to be
satisfactory, account must be taken of the wake which is formed down-
stream of the combination. In this paper the wing and the flap are each
represented by a flat plate and it is assumed that the pressure in the wake is
constant and equal to the free stream value, i.e. it is assumed that the wake
may be represented by the region between two free stream-line which extend
downstream from the trailing edges of the wi ng and the flap x) (see Fig. 1).

In this model the width of the wake at the trailing edge of the wing is
accurately represented but the assumption that the wake pressure is constant
and equal to the free stream value is an idealization. In practice the pressure
at the trailing edge of the wing will be less than the free stream value and
will only increase to this value well downstream of the wing. Small transverse
variations in pressure will also occur. It is to be expected that these effects
will lead to the actual drag being greater than the theoretical value. However,
their influence on the lift should be less so that the theoretical predictions
of this quantity may be reasonably accurate.

2. Analysis

The flow in the physical or z = x + iy plane (see Fig. 1) is determined by
employing the classical methods of free stream-line theory. The velocity
components u and v are given in terms of the complex velocity potential,
w, by dw/dz = —u + iv and dw/dz is determined as a function of an auxiliary
variable £ by mapping the @-plane onto the upper half of the f-plane where

1 A similar model is used by L. C. Woods in ref. 1 which is at present in the press. The
mathematical approach used by Woods is different to that followed herein and explicit results
are given only when the incidence and flap deflection are small. Results obtained by the
present method for these conditions are shown to agree with those of Woods (see § 5). The
author is grateful to Professor Woods for lending him the manuscript so enabling this compari-
son to be made.
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I dz\ U

Here q is the fluid speed, U the fluid speed at infinity and 0 the direction of
flow.

To obtain the correct mapping it is necessary to use experience to specify
the appropriate traces in the ()-plane of the wing, flap and wake boundary.
These are shown in Fig. 2 and involve the following assumptions which will
be justified a posteriori,

e «iT-ec

7////// /////// a /////////////////////
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'//////////////////////// //iff //7//////// / / / / / / / / / / / /7MfI

4—OO/J
Fig. 2.
Q-plane

(i) that q varies monotonically with distance along AB, BC and FE,
(ii) that along AF, q increases to a local maximum, qG, at G and then

decreases to zero at F,
(iii) that there is a point of inflection, H, on the upper free streamline

but no point of inflection on the lower free stream-line.
Assumption (iii) leads to the wake width at infinity being infinite (see §4).

In the special case when H coincides with D, the point at infinity, the wake
width at infinity is zero (see also § 4). If H is on the lower free stream-line
then the two free stream*lines intersect leading to a physically impossible
wake.

The unhatched portion of the (?-plane corresponds to the unhatched portion
of the z-plane and is mapped onto the upper half of the £-pla.ne (Fig. 3) by
the Schwarz-Christoffel transformation,

https://doi.org/10.1017/S1446788700026665 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026665


198

m

4.

dQ

B

b

- * ) ( C

fe-ft)
(/-ft)

C H

D. G. Hurley

•? - 1)*

(A - 6 ) fe -
(f - » ) (/ ~

D

d' 0 ' "
Fig. 3.
f-plane

/)(/

»)(C
- * ) ]
L

"*'

F

}
G

3 '

[4]

where if is a constant and b, f, g and A are the points on the real C-axis to
which B, F, G and H map respectively. This equation may be integrated to
give

Q=Klog{£+ ( { * -

K(g-b)(h-l
(3) - (/-

where the principle values of the logarithms have been taken and the branch
of (£2 — 1)* is that which behaves as £ for £ large. In this equation and
wherever else they occur explicitly, (b2 — 1)* and (/2 — 1)* are taken to
denote positive real numbers.

It follows from eqn (3) that all the point to point correspondences shown
in Figs. 2 and 3 are satisfied by the transformation

Q = log {£ •+- (f2 — 1)*} -f- lo

provided that

(5) ig-tw-h) a

tax fe-ft)(*-ft) = 1

1-bd p \-fd
(7) — a — p = — arcos a + arcos arcos

d — b n d — /

1 - bh /9 1 - fh
(8) —a. — p — y = — arcos « + arcos arcos

h — b 7i h — /
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and

19)
- 1 + g/ - (/* -

g-f
In these equations a is the wing incidence, (i the flap deflection, y the value

of 0 at the point H (see Fig. 1) and d is the point on the real £-axis to which
the point D maps.

It follows from eqns (1) and (4) that

//////////////////////////A

Fig. 4.
i«-plane

H C
Fig. 5.
/-plane

To determine dw/dC consider the trace (Fig. 4) ot the wing, flap and wake
boundary in the w = <f> + iy> plane where <f> is the velocity potential and y>
is the stream function. The unhatched portion of this plane is mapped onto
the lower half of the tf-plane (Fig. 5) by the transformation,

w = - UP

and thence onto the upper half of the f-plane (Fig. 3) by

1

Thus

(11)

t =

dw 2U
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The lengths of the various parts of the wing-flap combination and also
the shapes of the free stream-line may be obtained by performing numerically
the integration

z dw .

where the path of integration is the real £-axis. The values of dz/dw and
dwjdC there are obtained from eqns (10) and (11) respectively.

For a particular solution, the values of the various parameters must be
such that eqns (5) to (9) are satisfied. These equations constitute 5 relation-
ships between the 9 parameters b, d, f, g, h, a, /?, y and U/qG. Thus the family
of solutions is a 4 parameter one. This is as expected as 4 parameters are
also needed to specify the relative 2) geometry of a certain wing-flap combi-
nation: the incidence, a, the flap angle, /?, the length of the flap as a fraction
of that of the wing, and the position where the flap meets the wing.

A convenient way of satisfying eqns (5) to (9) is as follows:
(i) «, /S, b and / are selected,

(ii) g is eliminated from eqns (5) and (6) to give

which is solved for h.
(Hi) Eqns (5), (7), (8) and (9) are solved in turn for g, d, y and U/qG

respectively.

3. Calculation of lift and drag

It follows from Birkhoff and Zarantonello, 1957, that the lift force, Y, and
the drag force, X, acting on the wing flap combination are given by

where the path of integration, <€, is a small semi-circle lying above the point
f = d and described in the + v e sense.

Now from eqn (1)
d ldz\ dz dQ
d£ \dw) dw dC

and

d?\dw) dwldC2 \dU
2 The absolute scale in the physical plane follows automatically from eqns (10) and (11).

It could be altered by including a constant real factor in the R.H.S. of eqn (11)-
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Thus near f = d

^1 +

where the dashes denote differentiation wrt £, and from eqn (4)

and

(1 - ^ ) * I (d - 6)2 n (/ - d)*

It follows from eqns (11) and (14) to (17) and also the residue theorem
that

(1 - d2) I d-b n f -d
and

d

/?
(1 - d2)* L(d-b)2 n (f- dy

It is noted from eqns (13) and (18) that when h = d the drag, X, is zero.
It will be shown below that in this case the wake width at infinity is zero,
whereas generally it is infinite.

4. Asymptotic geometry of free stream-lines

It follows from eqns (11) and (15) that near infinity

(20) z = 7i—J^ + 7 — i - iQ"(d) + K?'(<*)]2} l os (C - d)

Now on the upper free stream-line f — d is real and negative and on the
lower free stream-line it is real and positive. Also from eqns (16) and (18)

and from eqns (17) and (19)

Q"(d) = - i
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Thus it follows from eqn (20), that on the upper free stream-line

X , _ log*)

and on the lower free stream-line

x* I

It is seen that in the general case the wake width increases like x* and
the downward displacement of its centre line like log x. In the special case
when h = d the drag, X, is zero (see eqns. (13) and (18)) and then the wake
width tends to zero as x increases.

5. Approximate solutions when a and /? are small

Suppose that:
(i) a,/? and d are small and of the same order, O(a),

(ii) b is large — *• and 0(l/oc),
and (iii) / is 0(1).
Then referring to eqn (7),

71 71
arcos d = arsin d = — — d + O(a3),

1 — bd n 1 y ^ , ,
a r c o sT3y = i + y - i + °(a3)

and

arcos — = arcos I 1 + 0(<x)
d — f \ f I

= n — arcos I —I + 0(a).

Thus eqn (7) may be written

(21) _ I = = a + ^ . a r C o s ( - i ) + O ( a « ) .

It follows from eqns (18), (19) and (21) that

(22) X

and

(23) Y = npU* {« + £ arcos ( i ) + ^ (l - 1)* + 0 («»)}.
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It can be shown from eqn (12), that for the cases being considered, the
geometry of the wing-flap combination is as shown in Fig. 6, the errors

Fig. 6.

being at most O(a). The chord is unity and the length of the flap is equal to
the distance of its hinge from the trailing edge of the wing, which is so for
cases of practical interest. It follows from eqns (22) and (23) that

(24) c D = I ^ i = |/J«C/+O(«»)

and

(25) CL = TTT* = 2^a + 2/?C*(l - C,)* + 2/3 arcos (1 - C,)» + O(a2)

where Cf = 1 — I//2 is the length of the flap. These values of CD and CL

agree with those given by Woods on P445 of ref. 2, which is at present in the
press. The author is grateful to Professor Woods for lending him the manu-
script, thus enabling the comparison to be made.

Now from eqn (25)

2 arcos (1 —
a=O,0-O

The values of this quantity for a wing fitted with a plain flap have been
given by Glauert in ref. 3, and are precisely twice those given by eqn (26)
above. Thus, according to the present theory, for equal values of fi the split
flap should be exactly half as efficient in producing lift increments as is the
plain flap.

6. Numerical calculations

The solutions for which h = d have been shown to have zero wake width
at infinity (and zero drag) and thus may be considered as constituting a
"boundary" to solutions having physical significance. It is therefore of some
interest to investigate the wing-flap geometries that give rise to such solu-
tions. The procedure described in § 2 was used to determine this geometry
for two cases when a = 10° and /? = 60°, and the main results are given in
Table II and Fig. 7.
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TABLE 2

Principal results of calculations for two cases when a = 10°, /? = 60° and X = 0 (h — d)

AB

0.126
1.022

AF

0.972
0

FE

0.203
1.478

BC

3.033
8.834

CL

1.10
0.99

IGIU

0.475
0

Fig. 7.

Fig. 7 shows that in both cases the trailing edge of the flap does not pro-
trude as far below the trailing edge of the wing as is so for configurations of
practical interest. It would thus appear that configurations of practical
interest give rise to solutions having non-zero drag and infinite wake width
at infinity (see § 4).

7. Comparison with experiment

The values of (dC^/d/S),^^,, given by eqn (26) are shown in Fig. 8.
Reference 4 gives experimental values of CD and CL when a and /? are small
for three aerofoils having thickness/chord ratios, tjc, of 0.30, 0.21 and 0.12.
Values of (dCJdd),^^ were derived from these results and are included
in Fig. 8.

O NACA 23012 AEROFOIL
• NACA 23021 AEROrolL
t NACA 23030 AEROroiL

FLAP CHORD
WING CHORD

Fig. 8.
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The figure shows that the experimental values exceed the theoretical ones
by amounts that decrease with tjc and suggests that satisfactory agreement
between theory and experiment would be obtained for very thin aerofoils.

The theoretical values of CDJP2 (see eqn (24)) were found to be up to 70 °/0

less than the experimental values, so that the theory is not satisfactory for
predicting values of C£.
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