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ULTRAMETRIC THETA FUNCTIONS AND ABELIAN VARIETIES

HORACIO TAPIA-RECILLAS^

Let k be a field complete with respect to a non-trivial, non-archi-
medean valuation and let g be a positive integer. Consider the follow-
ing question: if Γ is a multiplicative subgroup of Gg = (k*)g satisfying
certain "Riemann conditions", can one construct in a natural way an
abelian variety defined over k having Gg/Γ as its set of fc-rational points?
This problem was first considered by Morikawa [3]. J. Tate provided a
complete solution for g = 1 (cf. for example [6]). J. McCabe [2] gave a
partial solution for g > 1. He showed how to attach to Γ a graded ring
R of theta functions such that A = Proj. R is a ^-dimensional abelian
variety over k. He further constructed a homomorphism φ: Gg/Γ -^ Ak

and showed that it is injective. But he could only prove that φ is
surjective under restrictive hypotheses, assuming that k is locally com-
pact of characteristic zero. Recently Raynaud [5], Gerritzen [1] and
Mumford [4] have generalized and completely solved the problem we are
considering. But their techniques are non-elementary and it is still per-
haps interesting to show that the map φ is surjective within the context
of Tate-McCabe theory, using only simple calculations with Laurent power
series.

That is the goal of this paper.
Let ord.: fc* —> Reals denote the order function associated to our

valuation. In part 1 we start with a g x g matrix (s/id) with entries
in &* satisfying the following Riemann conditions: sίis — <stf3i and the
associated matrix (ord. s/tJ) is positive definite. Following McCabe we
construct the ring R of theta functions associated to ( J / ^ ), the abelian
variety A and the map φ: Gg/Γ ->Ak where Γ is the multiplicative sub-
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66 HORACIO TAPIA-RECILLAS

group of Gg generated by the column vectors of
Part II is the heart of the paper. In it we assume that the off-

diagonal elements of ( J / ^ ) have order 0. We call this case the "diagonal
case". Here the reduction A of A plays an important role. For g = 1
Ά is a rational curve with an ordinary double point; in general 1 is a
rational variety which looks very much like a product of such curves.
We attach to each P e Ak a certain subset S(P) of {1,2, , g) S(P)
describes how singular P is on ϊ . We say that P is a unit point if S(P)
= 0 this means that P is non-singular o n ϊ . In § II. 3 we use an implicit
function type argument to show that ψ is 1-1 and that all unit points
are in the image of φ. The proof that any PeAk is in φ(Gg) is by
induction on the cardinality of S(P). The key steps in the induction are
an addition formula on A, (Theorem II. 4.6), and the "decomposition
theorem", (Theorem II. 6.6), whose proof depends on the study of the
zeroes of a certain Laurent series ΘP.

We return to the general case in part III. Using the diagonal case
and an isogeny argument we show that φ is bijective, assuming only
that each ord. s/tJ is rational. This mild restriction is unnecessary as
Gerritzen's result show, but we have been unable to avoid it.

Throughout this paper we use the following notation: k is a field
complete with respect to a non-trivial, non-archimedean valuation,
ord: fc* —> Reals is the associated order function, Θ, Jί and k are the valu-
ation ring, maximal ideal and residue class field of the valuation. U is
the unit group of Θ and Gg is the product of g copies of fc*.

Part I is concerned with the definition and basic properties of the
ring of theta functions R. It contains a proof that A = Proj. R is an
abelian variety of dimension g over k.

Most of this material can be found in the first three chapters of
McCabe [2], but our arguments are somewhat simpler.

§1.1. The ring of theta-functions

A Laurent series over k is a formal sum ΣIeZg s^jX1, J/ Z e k, which
converges for all (x19 , xg) e Gg. (we shall use standard multivariable
notation throughout. If / = (ix, , ig) then X1 means \[3 X*/). The
Laurent series form a fe-algebra =£?. The subring of ££ consisting of
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series with J / 7 e Θ is called «£?„,. S£ is a domain, and if an element of

££ vanishes on all of G ,̂ each J / 7 = 0. Suppose n>l and (r) = (r1? ,τ g)

e (Z/nZ)*7. An element 2] ̂  iX1 of «£? is said to have n-parity (r) if

j / 7 = 0 unless each ij reduces to r3 mod. n. Let «£?(r) denote the sub-

space of elements of Jδf having n-parity (r). Then we get a decomposi-

tion £f = Θ ( r ) <^(r) the "n-parity decomposition of J2"\

Let ( J / ^ ) be a ^ x (jί symmetric matrix with entries in &* such that

the associated matrix (ord. stfί3) is positive definite.

Let Vj = ( ^ ! , ',s/jg), qό = J / ^ . If m > 0, Rm(s/tJ) (or just # J

will denote the set of elements Θe& which satisfy the following func-

tional relation:

(P) θ(VjX) - qjmXj2mθ(X) j = 1,2, , g .

Note that if 0(X) = 2] 6jZ7 € Rm and 7^ = []ί=i ̂ % it follows from

the relation (P) that the &/s satisfy:

= &/+2m5j 3 = 1 , 2 ,

where 3, = (0, , 0,1,0, , 0)

THEOREM 1.1.1. Let m > 0 and jδf = φ ( r ) if
(r) 6e the 2m-parity

decomposition of ££. If R<£> = β m Π if(r), tfeen:

1) JR^) is a 1-dimensional k-vector space,

2) Rm = Θ ( r ) JB£> and dim& Rm = (2m)^

3) β = Θj° J?m is a graded k-algebra with Ro = fc.

Proof. Suppose 2]&/^ / ^^m ) Using the relation (P;) we see that

&7 determines 67/ for I = Γ mod. 2m. Thus dim. R^ < 1. To complete

the proof of 1) we exhibit a generator of R£>. Take representatives of

rό in Z and by abuse of language call them rά too. If is — 2mtj + rJf

set

bj = f[ qW""j+rfi f]
1 j>t

and let 67 = 0 if / έ̂ (r) mod. 2m. Set p(X) = 2] &i^7.

A calculation shows that the δ7 satisfy (P7). Also

ord. bj = Σ f/mί, + r^) ord. ^ + 2] (r^ί^ + r/^ + 2mtjt£) ord.

= m Σ *y*i ° r d ^ + Σ ri*< o r d ^ ^
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Since the matrix (ord. <stfi3) is positive definite, φe J? and 1) is proved.
2) and 3) are obvious.

The decomposition of Rm in the Theorem is called the 2m-parity
decomposition of Rm and R is called the graded ring of Theta functions
associated to the matrix ( J / ^ ) .

There is a relation between the graded rings R{s/tj) and β(j/?y),
n > 0, that we shall make constant use of. Namely:

(a) θeRm(s/ij) ^θeβMβ«)

(b) θ e Rm(^j) =» θ(Xn) e Rmn{^i3) .

These are easily verified. Using (a) together with Theorem 1.1.1.
we get:

PROPOSITION 1.1.2. If n is a fixed positive integer, Sm = Rmn(^j)
is a k-vector space of dimension (2mn)9, S = Θ" Sm is a graded k-algebra,
Rm £Ξ Sm and R is a subring of S.

Next using (b) with m replaced by mn we see that Θ(X) —> θ{Xn)
defines a graded homomorphism S->R of degree n2. The restriction of
this map to R is a graded endomorphism of R of degree n2. Both of
these maps will be denoted by an. A dimension count shows that an(S)
consists precisely of those elements of R that can be written as Laurent
series in Xy, j = 1,2, , g.

THEOREM 1.1.3. R is integral over an(R).

Proof. We first show that S is integral over R. Let θeSm. For

1 < i < 9 let T.iθ) - C X Γ # ( ^ ) . Then:

Thus T̂ Cό1) e Sm for i = 1,2, , g and we have defined operators
Ύi: Sm -> Sm. An easy induction shows that T\(0)(X) = ^ a X J
for all i. Thus Γj is the identity map on Sm. Also

(TtoTj)(θ) = TtiqγX

Since this is symmetric in i and j , the T€ commute.

For each i, the various Tt: Sm—> Sm fit together to give a graded

https://doi.org/10.1017/S0027763000017943 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017943


ABELIAN VARIETIES 69

automorphism of S which we also denote by Tt. Let T be the finite

group generated by the automorphisms Tt. By the definition of Tί9 R

is the subring of invariants of S under T. So, £ is integral over R and

an(S) over an{R). It remains to show that every θeR is integral over

an(S). We may assume that θ is in some Rmn and has a definite n-

parity. But then θn is a Laurent series in the Xn

i9 lies in an(S), and the

theorem is proved.

Now let E be the g x g matrix all of whose entries are 1. Then

the 2g x 2g matrix ( -J* , ) clearly satisfies the Riemann conditions.

Let Rf be the graded ring of theta-functions attached to this matrix.

We shall label the Laurent series variables by X19 , Xg, Yly , Yg in-

stead of X19 *,X2g' Then a Laurent series Θ(X, Y) is in R'm if and only

if:

( 1 ) Θ(VJX, Y) = qj™Xj*™θ(X, Y)

( 2 ) Θ(X, VjY) = qj™Yj**θ(X, Y) .

In particular, if θ and ^ are elements of Rm, then θ(X)φ(Y) is in

β^ and we get a map # m ®Λ J2m -• JS^.

PROPOSITION 1.1.4. The above map is bίjective; thus Rf is the 2-fold

Segre product of R with itself over k.

Proof. Injectivity is clear. To prove ontoness it suffices to const-

ruct elements of pre-assigned 2m-parity in the image of Rm®Rm. This

may be done by taking θ(X)φ(Y) where θ and φ have the desired 2m-

parities.

The following proposition is the key to the construction of a group

law on A — Proj. (R).

PROPOSITION 1.1.5. // θeR'm then θ'(X, Y) = θ(XY,XY-ι)zR'2m. θ->θf

defines a graded endomorphism β of Rr of degree 2. βoβ maps θ to

Θ{X\ Y2) and R' is integral over β(R').

Remark. θ{XY,XY~ι) is shorthand for

θ{X\Y\f ' * , XgYQ9 X\Yϊl9 * # 9 XgΎg1)

Proof.

, Y) =
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Since (XJYJXXJYJ1) = X) we get the first functional equation for ff.
Similarly, using the fact that {XY){X~ιY) = Y2 we get the second, and
ff e R'3m. We see at once that β is a degree 2 endomorphism and that
βoβ = a2. By Theorem 1.1.3, with R replaced by R',R' is integral over

For technical reasons connected with characteristic 2 we shall also
need a 4-fold Segre product. The Ag x Ag matrix which has 4 copies of
(s/tJ) down its diagonal and all Γs elsewhere satisfies the Riemann con-
ditions. Let R" be the corresponding graded ring of theta-functions.
Label the Laurent series variables by Xu---,Xg, Yl9 , Yg,Z19> -9Zg9

T19 '--,Tg. The proof of Proposition 1.1.4, gives:

PROPOSITION 1.1.6. The natural map Rm®Rm®Rm®Rm-»R'ή is
bijectίve and R" is the 4-fold Segre product of R with itself over k.

PROPOSITION 1.1.7. // θεR'l then

Θ"(X, Y, Z, T) = Θ(XYZ, XZ~ιT, XY~ιT-\ YZ-'T-1) e B £ .

Θ-+Θ" defines a degree 3 graded endomorphism η of R". ηoη = a3 and
R" is integral over η(R").

Proof. Similar to that of Proposition 1.1.5 and based on the identities:

{XYZ)(XZ~ιT){XY-ιT-1) = X3

(XYZXX-ΎTXYZ-'T-1) = Y3

(XYZ)(X-ιZT~ι)(Y-ιZT) = Z%

(XZ-ιT)(X-ιYT)(J-ιZT) = Γ3 .

Remark. The proof of Proposition 1.1.5 essentially rests on the

fact that AoA1 = 2/ where A is the matrix L _JV Similarly, Prop-

osition 1.1.7 uses the fact that BoBt = 3/ where

B

1 1 1 01
1 0 - 1 1
1 - 1 0 - 1
0 1 - 1 - 1

§1.2. Finite generation of R

In this section we show that the graded ring of theta functions is
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a finitely generated algebra over k. In the course of the proof stronger

results are obtained, namely:

(1) if char, k Φ 2, R2 generates R2m for large m.

(2) if char, k Φ 3, Rz generates R3m for large m.

LEMMA 1.2.1. The elements of Rλ have no common zero in Gg.

Proof. Let qj = sίu by extending k we may assume qs — b) with

bj e fc*. If / — (i19 , ig), ίj = 2m^ + r^ , let

Cz = ft 6;J Π ^\T

and set ^(Z) = Σ C 7 Z J .

Since ord. Cτ = |- ̂  ij ord. ĝ  + 2 r > s ΐ r i s ord. j / r s and the matrix

(ord. s/tj) is positive definite, φe^. Clearly we have:

Thus

and

φ(VjX) - bjιXjWX) j = 1,2, . , g .

Let 0(X, Γ) = ^(ZD^CZΓ-1). The proof of Proposition 1.1.5 shows

that Θ e R[. So Θ is in the image of Rx ® Rx. Now suppose all the ele-

ments of Rλ vanish at some point x e Gg. Then Θ(x9 Y) = 0, so <p(xY)

-φ{xY~ι) — 0. But J£? is an integral domain and ψ Φ 0, so the lemma

follows.

THEOREM 1.2.2. Let m > 0. Then the elements of Rm which are

power series in Xf have no common zero in Gg.

Proof. Let x be any element of Gg. By Lemma 1.2.1 there is a

θ e Riis/tj) such that θ(xm) Φ 0. Then by the remark preceding Proposi-

tion 1.1.2. θ(Xm) eRm(j^ij) and does not vanish at x.

Let n > 0. We assume for now that char, k does not divide n and

the group Un of %-th roots of unity is contained in k. Recall that Sm
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For m > 0 and u = (ul9 ---,ug)eUZ let Rm,u denote the set of ele-

ments θe^ satisfying the following functional relat ion:

PROPOSITION 1.2.3. Let n, Un and Sm be as above. Then each Rm>u

is a subspace of Sm of dimension (2m)g and Sm = Θ ( w ) Rm,Uy (^) e Ug

n.

Proof. Let Tt: & -> & be the operators of Theorem 1.1.3. If θ e RmtU

then Tt(θ) = thθ and T&θ) = β. By the proof of Theorem 1.1.3, Sm is

the subspace of ££ fixed by the Γ?, so βm,w c Sm. Also the i?m,w are just

the subspaces of Sm corresponding to the various irreducible representa-

tions of the group T. So Sm — Θ ( a ) Rm>u. The proof that dimRm}U

==(2m)° is similar to that of Theorem 1.1.1. We omit it.

PROPOSITION 1.2.4. With the same notation as above, the elements

of Rm,u of pre-assigned n-parity have no common zero in Gg.

Proof. Let (r) = (rί9 , rg) be a given n-parity. Suppose θ e Rn

with trivial ^-parity. By extending k we can get Cj e k* such that

Cf =

If ( 0 = ^ , .- . , Cg\ set ^(Z) = (Π?-iX;θ 0(GY). Then

= (Πί^i^i^ΓOgj^C. Z ^ - ^ C Z ) and it follows that <peRn>u with ti-

parity (r).

The zeroes of φ are just translates of the zeroes of θ by C"1. But,

by Theorem 1.2.2, the θ eRm with trivial ^-parity have no common zero.

COROLLARY 1.2.5. // m is a multiple of n, the elements of Rm>u of

pre-assigned n-parity have no common zero in Gg.

Proof. If (r) is the given ^-parity and x e Gg9 choose θ1 e Rn with

trivial ^-parity such that θλ(x) Φ 0 and θ2 β Rn>u with 7^-parity (r) such

that Θ2(x) Φ 0. If m = ^p, θl'xθ2^RWjyU and has n-parity (r).

The following simple lemma will be used to prove the finite genera-

tion of i?.

LEMMA 1.2.6. Let M be a graded algebra over a field k. Assume:

Mm = 0 for all negative m, Mm is finite dimensional over k for all m and

there is a polynomial P such that dim Mm = P(m) for all large m. Then,

if Mx generates Mm for infinitely many m, it generates Mm for all large m.
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Proof, Let M be the subalgebra of M generated by Mx and P be

the Hubert polynomial of Mm. By assumption, Mm = Mm for infinitely

many m. Thus P and P are equal at infinitely many m, P = P and

dim Mm = dim Mm for large m.

Suppose now that we are in the situation of Proposition 1.2.3 with

n = 2. In other words, we assume that char, k Φ 2.

PROPOSITION 1.2.7. // char. & Φ 2 and n = 2, then ^ generates Sm

for all large m.

Proof. It suffices to show that each βeS2t is in St St. For then Sx

generates S2r for all r and we can use Lemma 1.2.6.

By Proposition 1.2.3 we may assume θ e R2t,u for some u e Uξ, and

that θ has a definite 2-parity. Choose θλ e R2t,u with the same 2-parity as

θ so that ^(1) Φ 0. (see Cor. 1.2.5). Let φ(X, Y) = Θ(XY)Θ1(XY~1). It

is easy to see that φeRU Since 0 and θx have the same 2-parity, φ is

a power series in X\, Y\ and therefore is in a2(St) ® a2(St), (cf. remark

after Proposition 1.1.2). Thus,

φ{X, X) = ^(lWX2) = ^ ( 1 ) ^ ) e «2(St) a2(St) 0 6 St S f

and we are done.

THEOREM 1.2.8. If char, k Φ 2, R2{^iό) generates R2m(^ij) for all

large m, and the graded subrίng R{2) = φ ^ R2m of the ring of theta func-

tions is a finitely generated k-algebra.

Proof. By extending k we may assume sti5 = b\5 with biό e fc* and

bij = bji. Since Sm(6^ ) = R2m(^ij), the first part comes from Prop. 1.2.7,

and the second part follows.

THEOREM 1.2.9. // char, k Φ 2, the ring R of theta functions is a

finitely generated k-algebra.

Proof. Since multiplication by a non-zero element of Rλ gives an

isomorphism of the #(2)-module θ5° R2m+λ with an ideal in J2(2), θΓ^m+i

is a finite β(2)-module. So R is a finite i2(2)-module and a finitely gen-

erated fc-algebra.

We now treat the case of characteristic 2. More generally we sup-

pose that char, k Φ 3. We take n = 3 and assume temporarily that

U3ak.
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PROPOSITION 1.2.10. With the assumptions above, Sx generates Sm for

all large m.

Proof. As in the proof of Prop. 1.2.7, it suffices to show that each

θeSu is in St St St. We may assume that θeRu>u and has a definite

3-parity. Choose θx e Ru>u with the same 3-parity as θ so that 0X(1) Φ 0.

Choose θ2 e Ru with trivial 3-parity so that Θ2(ϊ) Φ 0. Set

φ(X9 Y,Z, T) = θ(XYZ)θι(XZ~1T)θ1(XY-1T-1)θ2(YZ-1T-1) .

It is easily seen that ψ e R"t and is a power series in X\> Y\, Z\, T% so it

lies in the image of a3(St) <g) a£St) 0 az(St) ® a£St). Then φ(X,X,X,l)

= Θ\{1)Θ2(\)Θ(XZ) is in as(St) a3(JSt) as(St) and so θeSt St St.

THEOREM 1.2.11. // char, k Φ 3 ίfeew R^ί3) generates R2m{^i3) for

all large m, α^d Θj° β 3 m is α finitely generated k-algebra.

Proof. By extending k we may assume that U3 c k and that J / ^

= b\j with 6^ e fc* and btj = 6i€. Since Sm(bij) — Rzm{^i3), the result
follows from Prop. 1.2.10.

Imitating the proof of Theorem 1.2.9, we have:

THEOREM 1.2.12. / / char, k Φ 3, the ring R of theta functions is a

finitely generated k-algebra.

Finally, by Theorem 1.2.9 and Theorem 1.2.12, R is a finitely gen-

erated fc-algebra no matter what the characteristic of the field k is.

§1.3. The structure of Proj. (R)

Let R be the graded ring of theta functions associated with the

matrix ( J ^ ), let A denote the scheme Proj. (R) and Ak the set of its

k-valued points. Let Γ be the multiplicative subgroup of Gg generated

by the column vectors of ( J / ^ ) . In this section we show that A is an

abelian variety of dimension g over k and construct a canonical homo-

morphism <p: Gg/Γ —» Ak.

Let x be any element of Gg. By Lemma 1.2.1, there is a 0eRv such

that θ(x) Φ 0. Thus we have an evaluation homomorphism <px:Rθ~+k

which induces a morphism ψx\ Spec, (fc) -> Spec. (Rθ). This gives us a

fc-valued point Px of A. Px depends only on the class of x modulo Γ,

and we have defined a function:
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φ:Gg/Γ->Ak

The following standard facts will be needed later on.

LEMMA 1.3.1. Let NczM be graded rings with M integral over N.

Then the open sets Spec. (Mn), n e Nif i > 0, cover Proj. (M) and the maps

Spec. (Mn) -> Spec. (Nn) piece together to give a morphism Proj. (M)

->Proj.(N).

LEMMA 1.3.2. Let M and N be graded algebras and φ19φ2' Proj. (M)

—•Proj. (N) morphisms. Suppose further that φι and <p2 have the same

restrictions to Spec. (Mn) for some n e Mr9 r > 0, and M is a domain.

Then φι — ψ2.

We are now ready to interpret the results of the last two sections

geometrically.

THEOREM 1.3.3. Let β\R' -*Rf be the map θ{X, Y) -> Θ{XY,XY~ι).

Then:

(1) Rf is integral over β(R;).

(2) A' = Proj. (R') is the scheme theoretic product A x A of A with

itself over k.

(3) β induces a morphism ^ 5 * : A χ A - > A χ A .

(4) The map Ak x Ak-> Ak x Ak induced by β* takes (Px,Py) to

\*xy> * xy-d

Proof. Assertions (1) and (2) come from Propositions 1.1.5 and 1.1.4.

Lemma 1.3.1 and (1) give a morphism Af -»A' induced by β. Since Af

identifies with A x A we get the morphism β* of (3), and (4) follows

from the definition of β.

With the notations above let:

1) m: A x A > A be the morphism A x A > A x A - ^ > A where

πx is projection on the first factor.

2) — 1A: A -»A be the morphism induced by the automorphism θiX)

-* ΘiX-1) of R.

3) OΛ: A > A be the morphism A > Spec, (k) > A where e is the

λ -valued point Pih...tV.

THEOREM 1.3.4. With the operations defined above A is a commuta-
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tive group scheme over k. The map φ: Gg/Γ —> Ak constructed at the
beginning of this section is a group homomorphism.

Proof (In outline). To show that A is a commutative group scheme
we must verify the commutativity of certain diagrams expressing the
associative and commutative law, and the existence of a unit and in-
verse. For example, for associativity we must show that the morphisms
m o (id^ x m) and m o (m x idJ from A x A x A -> A are the same. To
do this we choose affine open subsets U and V on A x A x A and A
such that m o (id x m) and m o (m x id) take U into V. An obvious but
tedious calculation shows that the two induced maps Γ(V) —* Γ(U) coin-
cide and we apply Lemma 1.3.2 (for a more detailed proof of a similar
result see Theorem 1.3.5). Finally, (4) of Theorem 1.3.3 shows that
m: Ak x Afc —> Ak takes (Px,Py) to P ^ : i.e. that x—>Px is a homomor-
phism.

THEOREM 1.3.5. For each n > 0 ίfeβ map a*: A-> A induced by an

is just group scheme multiplication by n (which we will denote by nA).

Proof, Since R is integral over an(R), we get a morphism of schemes
α*: A -> A. We show first that if θ and θr are in R'm then the pull-back
of θ'/θeΓ((A x A),) under α* x id is θ'(Xn,X)/θ(Xn,X), at least on some
principal open subset U of Aθ(XniZ).

To see this, take ψ Φ 0 in i2m. Since R'm = Rm®Rm9 direct calcula-
tion shows that the pull-back of ^/ψ(Z)ψ(Y) under α* x id. is ^(Z72,^)
/Λ/Γ(ZW)^(Z). Since a similar formula holds for the pull-back of
6>7ψ(Z)ψ(Y), we get our result where V is defined by ψ(Zn)ψ(Z).

The theorem can now be proved by induction on n. n = 1 is obvious.
in + ΐ)A is the composite map

πλ o β* o ( ^ x id.) : A - > A χ A - * A χ A - > A .

Fix G ΦO in βj and suppose FeRm. Then F/Gw in Γ(AG) pulls back
to F(Z)G(Γ)W/G(Z)WG(Γ)W under πλ and this pulls back to F(XY)G(XY~1)m

IG(XY)mG(XY-ι)m under β*. By induction, (n^ x id) = (a* X id). If we
apply the result of the paragraph above with ψ = G2m, we conclude that
the pull-back of F/Gm under (n + 1)A = πx o i8* o (α* X id.) is F(ZW+1)/G(ZW+1)TO

over the affine subset of A defined by G(Xn+ί)G(Xn-ι)G(Xn)G(X). The
theorem then follows from Lemma 1.3.2 applied to the maps an+1 and
in + 1)^.
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THEOREM 1.3.6. The scheme A = Proj. (R) is an abelian variety of
dimension g over k.

Proof. From Theorem 1.3.4, A has the structure of commutative
group scheme over fc. Since R is a finitely generated fc-algebra and an
integral domain, A is of finite type, reduced and irreducible. If L is a
finite extension of k, let R(L) be the graded L-algebra corresponding to
the matrix (st^ over the field L. Then # (x)fc L ~ R(L) and is a domain.
Hence, A remains reduced and irreducible under finite extensions of k,
and since it is projective, it is an abelian variety. Since dim. Rm = (2m)g

for all m > 0, A has dimension g.

II

In this part we show that the map φ: Gg/Γ —* Ak defined in §1.3 is
an isomorphism provided the elements off the main diagonal of the
matrix ( J / ^ ) are units in the valuation ring Θ. Throughout part II ive
make this assumption on the J^I/S. Note that qt — s/ti e Jί because of
positive definiteness.

§Π.l. The reduction of A

Let R = Θo°° Rm be the graded ring of theta functions associated to
the matrix (stfi3). If m is a positive integer, let Rmtβ denote the sub-
space of Rm consisting of Laurent series with coefficients in Θ. The 2m-
parity decomposition Rm = Θ(r) R£\ rόeZj2mZ, induces a decomposition
Rm,Φ = ®(r) R%], where R<£. - R£> Π Rm,.. Let Rm = Rm>Φ/^Rm>0, R = eo°°5m.

Then Rm is a direct sum of 1-dimensional subspaces R^ = R%]ΦI'JίR{Z]β

over k.

There is an obvious map Rmtβ-*li\Xt9 Xϊ1] given by 2] «5/jZ7—>Σ ^iX1-
The kernel is evidently Jl Rmtβ9 so Rm identifies with a subspace of
ϊclXiyXi1]. We now calculate what this subspace is. Rather than taking
Tj to be elements of Z/2mZ we shall take rs to be integers with — m
<r3<m. Then, by Theorem 1.1.1, every θeRmtθ may be written as
y; δ zZ

J where

j = f\ qyW+rj) JJ
3=1

where 6(r) e Θ91 = (i1? , iρ) and î  = 2mί^ +
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Now each s/di (j Φ t) has order 0. Also tjimtj + rd) > 0 and equality

holds only when t3 — 0 or when tό — —1 and rs = m. Thus the reduc-

tion Σ δ/Z1, of θ only involves monomials with \id\ < m. In particular

the monomials X1 appearing in a generator of R^ are just those for

which the following conditions hold:

ij = Tj whenever \τό\ < m

%. =z + m whenever τ3 = m .

PROPOSITION II.1.1. R2 generates R2m for all m > 0.

Proof. It suffices to show that RYRm — Rm+ι for all m > 1. If

Rm+i = Θ(r> -Bm+i i s t h e 2 ( m + l)-parity decomposition of Rm+1 it suffices

to construct a non-zero element of RιRm of arbitrary 2(m + l)-parity

(r) = (r1? . 9rg), — (m + 1) < r^ < (m + 1). We argue by induction on

Σ l r Λ a n ( i define numbers Cj and d̂  by:

Cj = 0, d̂  = r,- if Ir l̂ < m

Cj = 1 if r^ = m, —m, m + 1

^. = m — 1, 1 — m, m if ry = m, — m, m + 1 .

Let θc generate R[c) and θd generate R^\ The monomials X1 appear-

ing in θcθd are just those for which:

I. — m or m — 2

î  = —m or 2 — m

î  = +(m + 1) or ±(m — 1)

In particular, a generator $r of RZ\ι occurs as a component of θcθd.

By induction it will suffice to show that every other θs occurring in θcθd

has Σ \SA < Σ \TJ\ Now Xs must appear in θcθd. So by the above,

either sά — rj9 or \rό\ > m and sό = ±(m — 2) or ±(m — 1). If (s) ^ (r),

we are in this latter case for at least one index j . Since m > 1, |m — 2|

< |m|, \Sj\ < Ir^l, Σ lsjl ^ Σ \rj\ a n d the proposition is proved.

The above result and Nakayama's Lemma show that R2>Θ generates

R2m>Θ for all m. So the graded ring R{2) = ®0°° ί22m is generated by R2.

Let J?2 be the space of linear maps R2 —> fe. Then we may identify Afc

with a Zariski-closed subset of the projectification of R2. The linear

maps ί: R2-> k which correspond to points of Ak are those which can

whenever
whenever

whenever

whenever

\Tj

Tj

Tj

< m
= m

= — m

= m + 1 .
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be extended to fc-algebra maps R{2) —»k. It xeGg then Px corresponds

to the evaluation map Θ —* #(#).

For PeA f c , the corresponding element of j?2 will be denoted by iP.

We shall normalize ίP so that iP(R2>φ) = 0. It is still, of course, only

determined up to multiplication by a unit of Θ.

We next define bases θa and λa, of i?2,Φ and jβ1>(P, that we shall make

constant use of. Namely, if α^e{ —1,0,1,2} let θa be a generator of

Ri% If <xj e {0,1}, let λa be a generator of R[% The monomials X 7 ap-

pearing in θa are just those for which:

ij — a3 whenever aό = 0, 1 or —1

^ = ± 2 whenever α^ = 2 .

The monomials X7 appearing in λa are just those for which:

ij = 0 whenever αy = 0

ij = ± 1 whenever α^ = 1 .

If PeA f c , let Zβ(P) = iP(0β). The Zα(P) are projective coordinates

for P. Since the θa are a basis for R2tβ and i P is normalized, the XJJP)

are in θ, but not all in JC.

Now let Z = Proj. (R) and Z^ be the set of fc-valued points of A.

Since R2 generates R(2) we may identify Άh with a Zariski-closed subset

of the projectification of R2. Let i p be the map corresponding to P. For

P e 4 s , Xa(P) = ^p(̂ «) ^ive projective coordinates for P.

Each normalized i p : R2->k gives by reduction a non-zero map R2 -• fc.

Thus we get a reduction mapping P -+ F from Afc to Ά2. If P has

projective coordinates {XJJP)}, those of P are {XJJP)}.

§11.2. A stratification on A

To simplify notation let ΘQ — βOt...fQ and θό = ίOf...f i ,...,0 for / = 1,2,

• , g. We may assume that the reductions of 6Q,θ19θ2, ,θg are 1,X19X2,

---9Xg respectively. Let xό denote the rational function ΘJ/ΘQ j = 1,2,

• , g on Ά. Since θa is a polynomial in X* and X;1 with coefficients in

Λ, the rational function Θa/ΘQ on A is given by 2 ciχI> ci G k* where the

sum extends over all (ί19 , ίg) such that

ij = <Xj if oίj = 0 , 1 , or —1

ij = ±2 if α i = 2 .
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THEOREM II.2.1. For each PeAh there is a unique subset S — S(F)
of {1,2, , g) such that:

(1) if a-ι@) = S, then Xa(P) ψ 0

(2) if ar\2) ~p S, then Xa(P) = 0 .

Proof. The uniqueness of S(P) is obvious. To prove the existence,
let (Oυ,JKυ) be a valuation ring dominating the local ring (OPfJKP) of P
on 3 . Let v be the order function attached to the ring Θv.

With Xj = ^/#0> let S = fa': vία )̂ 9̂  0}. Writing θjθo as Σ ciχI

Cj e A* we see:

( * ) vicjx1) = Σ ii^(^) > Σ 2 min. (v{xs),
y=i jes

(**) v(5β/5o) > Σ 2 min. (0(3,),

If a~K2) = S, there is exactly one term #7 such that the equality in
(*) holds, so strict equality holds in (**). Suppose now that for some
a with a~\2) = S, Xa(P) = 0. Let β = (̂ 1? , ̂ ) be such that Xβ(P) Φ 0.
Then the rational function θa/θβ is in Jt? c u?β. Since a~\2) = S9 the
above calculation shows that:

V(θjθβ) = i7(5β/5o) - v(^/5α) < 0

which is a contradiction, and (1) follows.
In order to prove (2), note that if a~ι(2) 73 S, we have strict in-

equality in (**). Now let β be such that β~\2) = S. By (1), Xβ(P) ψ 0
and so the rational function θa\θβ e ΦP. Since a'1(2)^) S, the above calcu-
lation shows that v(ΘJΘβ) > 0 and so ΘJΘβeJKΌ. Therefore ΘJΘβ e J?P

= JCυ Π OP and (2) follows.

THEOREM II.2.2. Let ίP:R2->k be the map associated to PeA2 and

let S = S(P). Then:

(1) a-ιa) = S^iPQl)Φθ

(2) α-KD 5? S ^ ipGi) = 0 .

Proo/. Pα/<90 = ( Σ dtf1)2, dτ e 1c* with iά = 0 when ^ = 0, i, = ± 1
when αj = 1, and Xj — θj/θ0.

It follows that:

> Σ
jes

Σ 2 min.
je
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with equality if a~\l) = S and strict inequality if a'^ΐ) ί$ S.

To prove (1) suppose ate {0,1} with cr^l) = S. Choose j8te{ —1,0,

1,2} so that β~ι(2) = S. By Th. II.2.1, λ2jθβ e 0*. Furthermore:

vQl/θβ) = ^(?α/^0) - ^ / # o ) = 0 .

Thus λl/θβ is a unit in Θ-p and (1) follows.

Similarly, if crιiX) 73 S, 2Ϊ/0, e ^ n i , = i ? and (2) follows.

Suppose now PeAk with reduction P. By the support S(P) of P

we mean the set S(P) of Theorem II.2.1. We conclude this section with

some remarks which we will use constantly.

(a) PeAk has empty support if and only if X0(JP) is a unit.

(b) Suppose y = (y19 « , ^ ) e ( ? ? with |ord. ys\<\ ord. qs. Then S(ψ(y))

= {j: ord. ys Φ 0}

(c) λa(X) = 2] ^ i ^ 7 where is — 2tό + as and ord. bτ = J^j tj(tj + aά) ord. q^

(d) θa(X) = Σ δjZ 1 where î  = 4^ + as and ord. &7 = Σj tj(2tJ + aj) o r d ?j

(a) is immediate from the definitions of S(P). We call such points

unit points; in the next section we study them carefully. We get (c)

and (d) by specifying m to be 1 or 2 in the remarks before Prop. I I . l . l .

To prove (b) we use:

LEMMA II.2.3. Let 0 Φ qeJί and yek* with |ord. y\ < \ord. q.

Let a e {0,1}, t e Z and set s = tit + a) ord. q + (2t + a) ord. y. Then:

(1) if a = 0, s > 0

( 2 ) i/ α = 1, s> —|ord. y\. For ord. y>0 (respectively ord. y <0) equal-

ity occurs if and only if t = — 1 (respectively t = 0).

Proof. (1) is trivial. In order to prove (2) note that if ord. y > 0

then s > (2(ί + I)2 - 1) ord. j/ , and if ord. y < 0, s > (2ί2 - 1) |ord. y\.

LEMMA Π.2.4. Suppose y = (T/J, •—,yg)eGg with |ord. ^ | < J ord. g .̂

S = {j: ord. ^ ^ 0}. Suppose a5 e {0,1}. Tfcew:

ord.λa(y)> - Σ l o r d . ^ | .
jes

Furthermore, equality holds if αΓ^l) = S and inequality holds if

D -fi S.

Proof. By (c), λa(y) = Σ bTy
z where
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ord. fay1) = Σ ^ = Σ tβj + *j) ord. qό + (2tj + a/) ord. ys .

So by Lemma II.2.3, ord. (b^1) > — Σljes lord. yό\ giving (*). Suppose

now that a~\l) = S. Then there is precisely one monomial bjy1 in ;iα(#)

such that ord. (b^1) = —Σ./es l o r d 101 (whenever ord. ^ = 0, tά = 0.

When ord. ^ > 0, ίj, = —1 and when ord. y3 < 0, t3 = 0). Thus equality

holds in (*). Finally, if a~\T) ~fi S, there is an index j such that ccj = 0

and ord. ^ =£ 0. Then, Sj > 0 > — |ord. ^ | and the last assertion follows.

Remark (b) is an immediate consequence of Lemma II.2.4 and

Theorem II.2.2. (note that iP(λ2

a) = λa(y)2 up to multiplication by a non-

zero constant independent of a).

§IL3 The unit points of Ak

Let U denote the multiplicative group of units of the ring O and Uk

be the set of unit points of Ak (i.e. points with empty support). In this

section we show that φ induces a bijection U9 —> Uk. The injectivity of

<p: Gg/Γ - » A k follows easily.

Let PeUk. We shall normalize the coordinates of P so that X0(P)

= 1. Then Xa(P) e 0 f or all a: {1,2, , g) -* {-1,0,1,2}. Furthermore,

if PeAk and <* is such that α"1(2) = 0 , then XJJP) e U. In particular

ZX(P), . . ,Z,(P) are in U. (here Z^ - *o.....(})f....o).

THEOREM II.3.1. Γfee restriction of the canonical map φ: Gg/Γ ->Ak

to Ug is a bijection of Ug with Uk.

Proof. If x e U°, it follows from remark (b) of § II.2. that φ(x) e Uk.

In order to prove bijectivity, it is enough to show the following:

(1) ψ: Ug -> Ug x -> (Θ1(x)/Θo(x), , θg(x)/θ0(x)) is 1-1 and onto.

(2) Two unit points with the same values of Xlf , Xg must be equal.

We proceed to prove (1) and (2). We may normalize the θt so that

θo — l+ , and θό = Xj + . Then -ψ is "close to the identity" so

(1) is intuitively clear. To give a rigorous proof, suppose u = (uu , ug)

e C/α. Let T:Ug ->Ug be the map #—>ίc—ψ(x) + u. It suffices to show

that T has a unique fixed point.

Let r = min. (ord. q^). If x, y e Ug set ord. (x — y)= min. ord. (xj — ̂ ) .

We know that 0OC2O = Σ C/^ 7 where iό = 4^ and ord. C, = Σ 2^ord. ^ .

So if / ^ (0, , 0), ord. C7 > r. It follows that if x,yeUg:
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(a) ord. (θo(x) - ΘJiy)) > °rd. (x — y) + r .

Let θf(X) = θj(X) — XjθoiX). A similar calculation gives:

(b) ord. (flfix) - θf(y)) > ord. (x - y) + r .

Now the difference between the j'th coordinate of T(x) and of T(y)

is θf(x)/θo(x) - θf(y)/θo(y). Using (a), (b) and the fact that θo(x) and θo(y)

are units, we see that this has ord. > ord. (x — y) + r. So T is a contrac-

tion mapping. Since k is complete, so is U9, and T has a unique fixed

point.

To prove (2) note that for any a, ( ^ " ^ Π ί - i ^d2)θa is an element

of R8g which only contains terms X1 with 0 < ij < 4. So we may write:

where Fa is a homogeneous polynomial of degree 4g with coefficients in

k. Lift Fa to a homogeneous Fa with coefficients in 0. Then θlg-ι(\[g

i=10$θa

and Fα(^0, #i, , 0̂ ) differ by an element of JίR%gt<ΰ. Since iϋ2,<p generates

Rsgtβ we have:

( ή ) = F M ' θ i 9 ' " 9 θg)+CGa(θβ)

where C e J and may be taken independent of a, and each Ga has coeffi-

cients in θ. From this we deduce polynomial identities that hold on all

A. Namely suppose PeAk with Z0(P) = 1. Then:

(*) ( u Xi(py)χa(P) - fχχm> , χg(P)) + cga(χβ(P))

where fa, ga have coefficients in Φ. Suppose now that P and Q are unit

points with Z / P ) = XS(Q). Then X£P) and Xa(Q) are in 0 and each

Xj(P) is a unit. (*) and an easy induction show that XJJP) = Xa(Q) mod Cn

for all n. So Zα(P) = Xa(Q) and P = Q.

THEOREM II.3.2. <p;Gg/Γ->Ak is injective.

Proof. Suppose ψ{x) = ^(1) = P. Modifying a; by an element of Γ

we may assume x — (x19 , xg) with |ord. xs\ < \ ord. qό. Now P is a

unit point. So by remark (b) of § II.2 each ord. xό = 0 and α? e UK By

the theorem above, x = 1.

https://doi.org/10.1017/S0027763000017943 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017943


84 ABELIAN VARIETIES

§11.4. An addition formula

THEOREM II.4.1. Suppose Q,ReAk with disjoint supports. Then

SiQR) - S(Q) U S(R).

The proof of this result will occupy the rest of this section. It is

based on an addition formula. Theorem II.4.6, which plays a central role

in this paper. Recall that Ar is the abelian variety attached to the

2g x 2g matrix with two copies of (stfi3) down its diagonal and ones

elsewhere. We identify {1,2, , 2g} with the disjoint union of two

copies of {1,2, , g) in the obvious way. Then a map a: {1, 2, , 2g}

—> {0,1} may be thought of as a pair of maps β and γ: {1,2, , g} —> {0,1}.

Under the identification of R[ with Rλ (x) Rιy λa(X, Y) corresponds to

λβ(X)λγ(Y), and similarly for R'2 and θa(X9Y). If PeA'k,S(P) may be

thought of as a subset of the disjoint union of two copies of {1, 2, , g}.

On the other hand P identifies with some (Q,R) eAkχAk and we have:

LEMMA II.4.2. S(P) is the disjoint union of S(Q) in the first copy

of {1, 2, , g) and S(R) in the second.

Proof. ίP(λβir(X, Y)) = iQ{λβ)iR(λγ). The result follows easily from

Theorem II.2.2. applied to A'.

LEMMA II.4.3. Let Q,ReAk. Suppose there is a subset S of {1,2,

• , g] such that

ord. i(QfR)(λβ(XY)λr(XY-1)) > 0

for all β, γ: {1,2, •••,#}-» {0,1}, with equality if β'Kl) = γ'KΪ) — S and

inequality if β~Kΐ) ^ S or γ-\l) 7$ S. Then S(QR) = S.

Proof. ί(ςΛfW-i,(;i,(XWr(D) = i(Q,B)(λβ(XYnr(XY-ι)) So if the hy-

potheses of the lemma hold, Theorem Π.2.2 applied to Af shows that the

support of (QR, QR'1) is the disjoint union of two copies of S. By

Lemma II.4.2, S(QR) - SiQR'1) = S.

LEMMA II.4.4. Suppose the monomial XδYv appears in λβ(XY)

.λr(XY~ι). Then:

(whenever βj — y$ both dj and ηό are even

( *) ) whenever βό Φ γό both δj and ηό are odd
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i whenever γ3 = 0 , δj = η5 mod. 4

[whenever γ3, == 1 , ^. ^ j ^ mod. 4

Proo/. ^(XY)^(XY-1) is a sum of monomials of the form χ^+nγm-n

with TΠj = βj mod. 2 and n3 = ^ mod. 2. The result follows.

LEMMA II.4.5. Suppose we are given βj9 γj9 δj9 η5 such that βj and γ3

are in {0,1}, δό and η5 are in {0, ±1,2}, and (*) of Lemma II.4.4 is satisfied.

Then the coefficient of XΎ* in λβ(XY)λr(XY~1) is (unit) (UJQJ) where j

runs over all indices such that δj = rjj = 2.

Proo/. Let ^(X) = Σ ^iχi and Λr(X) = £ C ^ . The coefficient we

are studying is just b(δ+η)/2C(δ_v)/2. (*) shows that (fy + J^)/2 = ^ m o d . 2,

and that (δj - ηj)/2 = γj mod. 2. Also (^ + ηs)j2 and (^ - ^)/2 are both

in {0, ±1} except for the single exceptional case δ3 — ηs = (̂ ^ + ^)/2 = 2.

The result now follows from remark (c) of §11.2.

THEOREM Π.4.6. λβ{XY)λγ(XY~ι) = Σs,v CδJδ(X)θv(Y). Here δ and v

range over all maps {1, -,g) —> {0, ±1,2} satisfying (a) ami (b) below,

and Cδ)V = (^mί) (Π ^̂  )> ί^β product ranging over all j such that δj =

% = 2.'
(a) whenever βj = ^ ί/̂ en ^y α^d ^y are in {0,2}. ΓfeeT/ are equal when

γj = 0 aticί unequal when γ3 = 1.

(b) whenever βj Φ γά then δj and ηά are in { — 1,1}.

^̂ . = 0 awd unequal when γ^ = 1

Proo/. ^(IY)^(XY-1) e R'2 and so may be written as Σ a > , CiiVθδ(X)

θη(Y). Lemma II.4.4 shows that only δ and 27 satisfying (a) and (b)

can occur in this decomposition. Comparing coefficients of XδYv and

using Lemma II.4.5 we get the result.

Taking every βj and γά equal to 1 in Theorem II.4.6 we get:

THEOREM Π.4.7.

where a ranges over all maps {1,2, •••,#}—> {0,2} and the Ca are units.

We now prove Theorem Π.4.1. Suppose S(Q) Π S(R) = 0 , and let

S = S(Q) U S(/2). It suffices to show that the hypotheses of Lemma II.4.3

are satisfied. So, by Theorem II.4.6 we must show that 2 CδjVXδ(Q)Xη(R)
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is a unit when β-\l) = r~\l) = S and is in Jί when /Γ^l) ~fi S or ̂ ( l )

73 S.

Suppose first that ^ ( l ) = γ-\ί) = S. For / 6 S(Q) let 3, = 2 and

τ]j = 0, for y e S(β) let 3, = 0 and ηs = 2 and for / g S let fy = ̂  = 0.

Then <5,5? satisfy the conditions of Theorem II.4.6 and Cδ,ηXδ(Q)Xη(R) is

a unit. Suppose we have any pair δ,η appearing in the expansion of

λβ{XY)λγ{XY~ι). If Xδ(Q) is to be a unit we must have δj = 2 (and ^ = 0)

for j e S(Q). If X,GR) is a unit, ^ = 2 (and 3, = 0) for j e S(R). Finally

if C^η is a unit, δ3 = ̂  = 0 for j g >S. So CδiηXδ(Q)Xv(R) is a unit for a

single pair and 2] CδyVXδ(Q)Xη(R) is a unit.

Suppose next that β~ι(ϊ) 73 S. Take an index j e S such that y5̂  = 0.

If Tj = 1 then δj and ̂  are in {±1} and Xδ(Q)Xη(R) e i , If ^ = 0 then

either 3̂  = ηά = 0 so that Z/Q)X,(i2) e ̂ #, or 5̂  = ηs = 2 so that C,,, e u?.

Thus Σ C9tηXδ(Q)Xη(R) e uT. We argue similarly if ^ ( l ) 73 S.

§11.5. The function ^P

Let P eAk. Then ίP: R2->k induces a map ΐP (x) 1: R'2 = i?2 (x) i?2 -> i22.

If ^eiSs its image under iP® 1 is denoted by (0|X = P). If P = ̂ >(a?),

then (β(X9 Y)\X = P) is just the Laurent series 0(#, Y).

We abbreviate î,...,i to λx and let ψ be the element λι(XY)λι(XY~1)

of i?2 For P e A f c let ΘP — (ψ\X = P). #P, like ΐP J is determined up to

multiplication by a unit in 0.

If 0 e R 2 and Q G A , we say that Θ{Q) = 0 if ΐe(0) = 0. Note that

θ(φ(x)) = 0 if and only if 0(a?) = 0. We shall need a simple result, Propo-

sition II.5.2, concerning the zeroes of ΘP, which follows from:

L E M M A II .5 .1. ΘP(Q) = 0 i / and only if either λ\(PQ) = 0 or λ\{PQ~ι)

= 0.

Proof. (P, Q) and (PQ, PQ" 1 ) are in A'k = Ak x Ak and so give

homomorphisms R{2) -> k. i{P>Q) = iP®iQ and i{PQiPQ-X)g{X, Y) — iiP}Q)θ(XY,

XY~ι).

Thus:

and the result follows.
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PROPOSITION II.5.2. Suppose P,Q,Re Ak and ΘP{R) = 0. Then,

either ΘPQ-X(QR) = 0 or θPQ<SQRYι) = 0.

We next study the Laurent expansion of ΘP.

PROPOSITION II.5.3. ΘP = Σ CaX2_a{P)θa where a ranges over all

maps {1,2, •••,#}—> {0,2} and each Ca is a unit.

Proof. Apply iP ® 1 to both sides of Theorem II.4.7.

PROPOSITION II.5.4. The reduction of ΘP(Y) is a non-zero polynomial

in Yj and Yj1 (1 < j < g), which does not involve Yό or Yj1 if j e S(P).

Proof. If a: {1,2, . , g) -»{0,2} is chosen so that or1®) = S(P), then

-X2-1XP) is a unit. So by Proposition II.5.3 ΘP Φ 0. Suppose now j e S(P).

Then, if as = 0, 5β does not involve Y3 or Yj1 while if as = 2, Z2_α(P)

zJί. The result follows.

§11.6. The decomposition theorem

Throughout this section we assume k algebraically closed. Our goal

is the following "decomposition theorem": Suppose PeAk. Then P

= QJ2 where Q — φ(z, 1, , 1) for some z e fc* and 1 g S(iu). We begin

the proof with a criterion which guarantees that 1 g S(JB). Suppose

i? e Ak and ( 2̂> , ̂ ff) e (ί*)^"1. We say that (ΰ2, , %) is in ΛΓβ if there

exists u — (u19 - - -,Ug) eU° such that ut lifts ΰι for i > 1, and θR(u) = 0.

PROPOSITION II.6.1. // l e S ( β ) , tfeê i iV^ is contained in a proper

Zariski-closed subset of (k*)g~ι.

Proof. Let ΘB be the reduction of ΘR. By Proposition II.5.4, ΘR is

a non-zero polynomial in Yό and Γ j 1 for / > 1. If (ΰ2, - - ,ΰg) eNR then

We next derive some simple results on the zeroes of power series

and Laurent series in one variable.

LEMMA Π.6.2. Suppose H(X) = Σo°° ̂ X * e 0[[X\] with H ψ 0 and

s/0 e Jί. Then there exists an xeJί such that H(x) = 0.

Proof. Let s be the smallest index such that stB is a unit. By the

Weierstrass Preparation Theorem, H(X) = G (ZS - Σo" 1 C^X*) where G

is a unit in 0[[X]] and each d e u?. Now k is algebraically closed and
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x may be taken to be any root of Xs — Σo~ι CiX*.

LEMMA II.6.3. Let &\ be the ring of everywhere convergent Laurent

series, Σl-^^iX1, with jrfisΘ. Suppose Ge^Θ with G Φ 0. Then any

root x of G in ϊc* lifts to a root of G in U.

Proof. Let x e U be any lifting of x. Replacing G by GixX) we

may assume x — 1. Let ψ: £?Θ -» Θ[[Y]] be the homomorphism mapping

X on 1 - Y, and H = ψ(G). Then H = 5(1 - Y) Φ 0, and ϊϊ(0) = 0.

By the lemma above, H(y) — 0 for some y e Jί, and G(l — y) = 0.

The next result requires some notation. Suppose G is an everywhere

convergent Laurent series in XQf X19 , Xn and u — (ulf , un) e Un.

Let Gu be the 1-variable Laurent series G(X, u19 , ̂ g ) . If g(X) = 2] ^/^ J

is an everywhere convergent Laurent series let ord. g — min. (ord. 6Γ).

Finally if g is a polynomial over £ in Z^ and XjKl < j < n) let (Un)g

= {w e Z7π: 5(%) ^ 0}.

LEMMA II.6.4. Suppose G is an everywhere convergent Laurent

series in XQ, , Xn. Write G = Σ_oo Qi(Xι, ? ^ w )^o ^^^ suppose that

for at least two indices i, gi ψ 0. Tfeβ?z ίfeere exists a real number r

and a g ψ 0 such that whenever u e {Un)g there exists a y e k* ivith

Gu{y) = 0 and ord. y — r.

Proof. Let dt = ord. ^ . We may assume min. ĉ  = 0. Multiplying

G by a power of Xo and replacing Xo by XQ"1 if necessary we may as-

sume that d0 = 0 and that d3 Φ oo for some positive j . Suppose first

that dj = 0 for some j > 0. Take r — 0 and gr — ̂ o î Then if ^ e (Un)g,

gQ(u) and ̂ /^) are units. So Gu — 2] Qi^X1 has at least two unit coeffi-

cients, (τw has a root in &* and Gu has a root with ord. = 0 by Lemma

II.6.3. In general note that dί/i—* oo with i. Let r — — m i n i > 0 ^ / i and

choose C ek* with ord. C = r. Replacing G by G(CX0, X19 , X J we

reduce to the previously handled case.

We apply the above result to θP, where P is a given element of Ak.

PROPOSITION II.6.5. There exists a real number rand an hφO such

that whenever (u29 , ug) e Ug~ι with h(ΰ2, , ug) Φ 0, then there exists

a y e fc* with θP(y, u2, , ug) — 0 and ord. ?/ = 71.

Proof. θp^Σ CaX2_a{P)θa and the CaX2_a{P) do not all vanish. So
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if we write ΘP{X) = Σ - ~ ht(X2, , Xg)X\ we find that ht Φ 0 for all i

in some congruence class mod. 4. Now apply Lemma II.6.4.

THEOREM II.6.6. Suppose PeAk with 1 e S(P). Then P = QR where

Q = ψ(z, 1, , 1) for some z e k*, and 1 g S(JB).

Proof. Take r and fe as in Proposition II.6.5. Choose z e fc* with ord. #

= — r and set Q — φ(z91, , 1). Suppose that % = (ΰ2, , ΰg) e (&*)*7"1

and S(ϊϊ) Φ 0. We shall show that ΰ is either in NPQ-i or in (NFQ)'1. It

will follow from this that either NPQ-! or JVPρ is Zariski-dense. Replacing

z by 2;"1 if necessary we can assume NPQ-! is dense. By Proposition

Π.6.1, leSCPQ-1). Since P = QiPQ-1), the theorem will follow.

To show that ΰ is either in NPQ-! or in (Npq)'1 lift it to O2, ,ug)

in ί7^"! and choose y as in Proposition Π.6.5. Set R = <p(y,u2, - - -,ug).

Then ^P(i2) = 0. Now, since ord. z = —r, (yz,u2f , ^ ) is in Z7g and

its image under ψ is QR. Since 0P(β) = 0, Proposition II.5.2, shows

that 0pρ-i(QB) = 0 or θPQ{{QR)-1) = 0. In the first case ΰeNPQ-l9 in the

second case (XT1 6 iVpρ.

THEOREM II.6.7. In the situation of Theorem II.6.6, S(Q) = {1}

Proof. Q and i? have disjoint supports so we may apply Theorem

Π.4.1.

§11.7. ψ is suηective

THEOREM II.7.1. Suppose k is algebraically closed. Then <p:Gg/Γ

—> Ak is surjective.

Proof. Suppose PeAk. We show that Pelm(φ) arguing by induc-

tion on the cardinality of S(P). If S(P) = 0 , Theorem II.3.1 shows that

P 6 φ(Ug). If S(P) Φ 0 we may assume 1 e S(P). Since k is algebraically

closed we may write P = Q# as in Theorem II.6.6. Theorem II.6.7 and

induction conclude the proof.

We next show how to eliminate the hypothesis of algebraic closure.

LEMMA Π.7.2. Let OΦqe^f and yek* with |ord. y\ < | o r d . q.

Suppose αe{0, ±1,2}, teZ and s = t(2t + a) ord. q + (4ί + a) ord. y.

Then:

(1) if a = 0, s > 0
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(2) if a — ± 1 , s > —|ord. y\. If a = — 1 and ord. y > 0, or if a = 1

ord. 7/ < 0 equality occurs only when t = 0.

(3) £/ a = 2, s > —2 |ord. ?/|. For ord. j/ > 0 equality occurs only when

t = — 1. For ord. 7/ < 0, equality occurs only when t — 0.

Proo/. (1) is clear. To prove (2) and (3) note that ί(2ί + a) > 0.

Thus the results hold if ord. y = 0. If ord. y > 0, s > (2ί(2ί + α) + (4ί + or))

ord. 7/, while if ord. y < 0, s > (2ί(2ί + α) - (4ί + α)) |ord. y\. The calcu-

lation is now straightforward.

LEMMA II.7.3. Suppose y = (j/x, , yg) e Gα wife |ord. ^ | < ^ord.

S = {j: ord. ^ =̂  0}. Le£ α: {1,2, , g} -> {0,2} δe ίfeβ map

that a~1(2) = iS. Tfeen ord. θa(y) = - 2 2 ] ^ ^ lord. ^ | .

Proo/. By (d) of § II.2, θa{y) = 2 M 7 where

ord. (δjT/7) = έ ŝ  = Σ ( ί / 2 ^ + a^) ord. ĝ  + (4t, + ^ ) ord.

By Lemma Π.7.2, ŝ  > - 2 |ord. ys\ for i e S . Thus ord.

> ~2Σjes\wά- Vj\- Also if equality is to hold we must have ^ = 0

for j &S, tj = —1 when ord. ys > 0, and tj = 0 when ord. ^ < 0. So

there is only one monomial for which equality holds, and the lemma

follows.

LEMMA II.7.4. Situation as in Lemma II.7.3. Suppose ord. y1 Φ 0.

Define β3 e {0, ± 1,2} by setting βd = aά if j > 1, βλ = — 1 if ord. y1 > 0 and

βι = l if ord. 2/i < 0. Then ord. 0/2/) = |ord. y1\ - 2 Σjes lord. ^ | .

Proof, Entirely similar to that of Lemma II.7.3.

THEOREM II.7.5. <p: Gg/Γ->Ak is bijectίve.

Proof. Theorem II.3.2 shows that ψ is 1:1. To prove ontoness

suppose PeAk. Let L be a complete algebraically closed extension of

k. By Theorem Π.7.1 there is a y = (^, . - ,yg) e (L*)^ with (̂7/) = P,

and we may assume |ord. yά\ < \ ord. qs. Suppose ord. yx Φ 0. Define a

and β as in Lemmas II.7.2 and II.7.3. Then

lord. yλ\ - ord. θβ(y) - ord. θa(y) = ord. (Z^(P)/Zβ(P)) .

In particular there exists an xx e k* such that ord. x1 = ord. 2/1# Similarly

choose Xj e it* so that ord. Xj = ord. ^ and let a? = (x19 - - >,xg). Then
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yx~ι e Ug

L, so φ(yx~ι) is a unit point. Since <p(yx~ι) = Pφ{x~ι) it is in Afc.

Thus Pφix-1) e <p(Ug

k) and Peφ(Gg).

I l l

In this part we show that the map φ: Gg/Γ —» A& is bijective assuming

only that the matrix 0/^) is such that each ord. s/tJ is rational. We

do this by reducing to the diagonal case (cf. § II).

§111.1. Isogenies

Let (jrfij) be a g x g matrix with entries in fc* satisfying the Riemann

conditions (i.e. C*/ )̂ is symmetric and (ord. J / ^ ) is positive definite).

Let S = (Sij) and T = (tiό) be g x g matrices over Z such that S-T = nl,

n Φ 0 and let

δi> = Π ^lfSJe

It is readily seen that the matrix (6^) also satisfies the Riemann

conditions. Attached to the matrix ( J / ^ ) are the period vectors Vi9 the

group Γ, the graded ring R(j^tj) of theta functions, the abelian variety

A and the map ψ\ Gg/Γ —> A*.; similarly attached to (δ^) we have TF̂ ,

Γ', R{bis), B and ^ : GgjΓ -* β&.

The following identities are obvious:

( 1 )

( 2 )

Let λ2: Gg

I.

—

!(χ)

Gg be

= (yi>

= < * ,

]

the

[} My =

Π Kih

maps

> Ug)

= Π ̂ Ur7

defined

where

where

•

by :

Vt = 11 */t/^

ΓT /y^y11 xj
j

PROPOSITION III.1.1. λλ maps Γ into Γ',λ2 maps Γf into Γ and the

composition in either order is the map x —> xn<ί.

Proof. The image of Vr under λλ is the vector whose i-th compo-

nent is Uj^ΐ?J = UJ MY- But this is just the vector Πy ^ r y Similar-

ly λ2(Wr) = Y[j Vfri. The last assertion is obvious.

For θe£> let ψί(X) = 0(Y?, , Y;) where Y 4 = Π i - x ' 5 i i a n d

- , Zg) where Z, = \[sXψ.
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PROPOSITION III.1.2. If θ e Rm(bi3) then ψ, e Rmn^υ). If θ

e Rm(s/ij) then ψ2 e Rmni{biό). Consequently θ —* ψ1 (resp. θ —> ψ2) gives a

graded homomorphism of degree n2μλ: R(jbi3) —> R(stfiό) (resp. μ2: R(stfi3)

)), and the composition {in either order) is the map an2: Θ(X)

Proof. ψ^VrX) = Θ(Z?, , ZJ) where Zt = flj ( ^ r ^ ) * < y . It follows

from (1) above that Z? = (Π, bίjO^? a n d t h u s

Since ^ e Rm(btj)9

uvrχ) - (π(

By (2) this is just jtf^X ^φάX), and so ψΊei2T O n a(^). Similar-

ly for ψ2. The other statements are obvious.

PROPOSITION III. 1.3. The homomorphisms of Proposition III. 1.2 are

finite and induce morphisms of group varieties μf : A —> S and μf : B —> A.

Proof. Since the composition (in either order) is the map #n 2 which

is finite (cf. Theorem 1.1.3), μ1 and μ2 are finite. So we get morphisms

of varieties A —> B and B —* A which are readily seen to be group variety

morphisms.

From Proposition III.1.3 we get homomorphisms μf\ Ak-*Bk and

μf : Bk—> AIύ. The composite map Ak—> Bk—> Ak is the map induced by

) which by Theorem 1.3.5 is multiplication by n2.

§111.2. φ is bijective

PROPOSITION III.2.1. There is a commutative diagram of maps:

GJΓ-^+GJΓ'-^+GJΓ

ψ
μί * μt

Λk > Bk > Λk

where the λt are induced by the maps of Proposition III.1.1.

Furthermore (λ2 o λ^)(x) = xn* and μf o μf is just multiplication by n2.

Proof. The commutativity of the diagram follows in a straight-
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forward way from the definition of the maps. The last assertions fol-
low from Propositions III. 1.1 and III. 1.3.

Now we proceed to show that ψ is bijective.

Let A be a subring of the reals, R. We say that a g x g matrix
si over R is Λ-diagonalizable if there exists an invertible matrix SQ over
A such that SQS/SI is diagonal. Let Z£ denote the localization (not the
completion) of Z at the prime £.

THEOREM III.2.2. Let ati = ord. siio and si be the matrix (ais).
Suppose that si is Z£-diagonalίzable for every prime £. Then the map
φ: Gg/Γ —> Ak is bijective (for the matrix (st/tj)).

Proof. Let So be an invertible matrix over Z£ diagonalizing si and
let To = So'1. Replacing So and To by integer multiples prime to £ we
get matrices S and T over Z with ST — nl, in, £) = 1 and Ss/St diago-
nal. Let btj be defined as in §111.1. Then the matrix (ord. btj) which
is equal to S<stfSύ, is diagonal. So by the main result of § II, the map
qf of Proposition III.2.1 is bijective.

Now let x e Gg/Γ be such that φ(x) = 0. Then by Proposition III.2.1,
χλ(x) = 1 and so xn2 = 1. But n may be taken prime to any £. Since
the n2 obtained in this way generate the unit ideal in Z, x = 1. Simi-
larly, if P e Ak let Pf = μf(P). Then Pf e Im. ̂  and so nΨ e Im. ̂ . Since
n may be choosen prime to any £, P e Im. ̂  and the theorem is proved.

The following slight modification of Theorem III.2.2 will be useful
later.

THEOREM III.2.3. Suppose atj = ord. s/tJ e Z and generate the unit
ideal. Suppose further there exist positive integers m19 , ms such that
si 0 diag. (mϊ9 , ms) is Zrdiagonalizable for every prime £. Then φ is
bijective (for the matrix (siiό)).

Proof. Since the aiS generate the unit ideal, there exist gefe* with
ord. q = 1. Then the matrix

qmi
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also satisfies the Riemann conditions and the corresponding order matrix

is si Θ diag. (m1? , ms).

Let Γι be the subgroup of fc* generated by qmi, and E% the corre-

sponding elliptic curve. Then by Theorem III.2.2 the map

GJΓ X &*/Λ x x fc*/Γs ->Akχ (Eλ)k x . . . x (#,)*

is bijective. Therefore φ is bijective too.

The following simple result will be proved in the appendix.

LEMMA. Let (ai3) be a symmetric matrix ivith entries in Z£. Then:

1) if 6 Φ 2, (atJ) is Zr diagonalizable.

2) if £ — 2, there exist integers m19 , ms

which are powers of 2 such that (ai3) 0 diag. (m19 , ms) is Zrdiagonal-

ίzable.

Let (sfij) be our matrix satisfying the Riemann conditions. Combin-

ing the above lemma with Theorem III.2.3 we have:

COROLLARY 1. // ord. ^tjeZ and generate the unit ideal, then ψ

is bijective (for the matrix (stfi3)).

COROLLARY 2. // each ord. sίu is in Q, or less generally, if the value

group of the valuation is contained in Q,then ψ is bijective.

Appendix Quadratic forms over Z&

Let R be a discrete valuation ring, M a finite free β-module and

( , ) : M X M —> R a symmetric bilinear map. The following lemma is

easy linear algebra.

LEMMA 1. Let n19 ->'9nseM and N be the R-submodule generated

by the n^s. If άet.((nί9nj)) is a unit in R, then the n/s are R-linearly

independent and M = N 0 2V1.

We say that M is decomposable if M — N Θ N' with N and N' non-

zero submodules of M and orthogonal M is diagonalizable if it is the

orthogonal sum of 1-dimensional submodules and M is primitive if there

exist m,mf eM with (m,mθ a unit in R.

THEOREM 1. If 2 is a unit in R, then M is diagonalizable.

Proof. We may assume M primitive. Let m,m' eM with (m,m') a
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unit. Then (m + m', m + mf) = (m, m) + (m\ m') + unit. So there exists
n € M with (n, n) a unit. By Lemma 1, M = Rn 0 (Rri)L and we use in-
duction on the dimension.

COROLLARY 1. Let ^ be a symmetric matrix over Z6 (t, Φ 2). Then

there exists an invertible matrix S over Z£ such that Ss/S1 is diagonal.

Suppose now that 2 is not a unit in R.

LEMMA 2. // M is primitive and indecomposable, then dim. M < 2.

Proof. If there exists meM with (m,m) a unit then by Lemma 1,

M — Rm 0 (Rm)1. So M — i?m and dim. M = 1. Suppose that (m, m) is

in the maximal ideal of R for all m. Choose mx and m2 with (mx, m2) a

unit. By Lemma 1 and indecomposibility, M = Rmλ + Rm2.

THEOREM 2. For any M there exists a diagonalizable R-module N

such that the orthogonal direct sum of M and N is diagonalizable.

Proof. We may assume M primitive and indecomposable. By Lem-

ma 2 we may assume M generated by ex and e2 with (e19 e j , (e2, e2) in the

maximal ideal and (el9 e2) a unit. Replacing e2 by a multiple we may

assume (eu e2) = — 1. Let N = Re2 with (β3, e3) = 1. Then {ex + e3, β2 + e3)

= 0. Since (^ + e3, eγ + e3) and (e2 + e3, e2 + e3) are units we conclude

from Lemma 1 that M 0 N admits an orthogonal basis consisting of

βi + &3> &2 + &3 ^nd one other vector.

Remark. The proof of Theorem 2 shows the following: if π is a

generator of the maximal ideal of R, then iV can be choosen to have the

form ®Rut with (ui9Uj) = nnidio.

Taking R — Z2 and π = 2 we have:

COROLLARY 2. Lβί <stf be a symmetric matrix over Z2 Then there

exist m19 , ms which are powers of 2 such that the matrix stf 0 diag. (mlf

•• ,m5) is Z2'dίagonalίzable.
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