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SPECTRAL THEORY FOR THE NEUMANN LAPLACIAN
ON PLANAR DOMAINS WITH HORN-LIKE ENDS

JULIAN EDWARD

ABSTRACT. The spectral theory for the Neumann Laplacian on planar domains with
symmetric, horn-like ends is studied. For a large class of such domains, it is proven that
the Neumann Laplacian has no singular continuous spectrum, and that the pure point
spectrum consists of eigenvalues of finite multiplicity which can accumulate only at 0
or1. The proof uses Mourre theory.

1. Introduction. Given an unbounded domain Ω in R2 obeying the segment condi-
tion ([11]), the Neumann Laplacian is defined as the unique self-adjoint operator whose
quadratic form q is given by

q(uÒ u) =
Z

Ω
j 5 uj2

on the domain fu 2 L2(Ω)j 5 u 2 L2(Ω)g. One can show that the Neumann Laplacian
is a differential operator with expression

� ] 2

] x2
� ] 2

] y2
Ò

and with domain ²
u 2 L2(Ω)

þþþþ]
2u

] x2
+

] 2u
] y2

2 L2(Ω)Ò ] u
]ë

þþþþ
]Ω

= 0
¦


Here ]Û]ë denotes the unit outward normal derivative.
Let Ω be a connected planar domain which obeys the segment condition and assume

Ω has the following form:

Ω = f(xÒ y)Ò x ½ 0Ò jyj Ú f (x)g [ îÒ(1)

where î is a domain with compact closure.
Denote the j-th order derivative of f by f (j). Then f (x) will be assumed to satisfy the

following conditions:

f Ù 0Ò f (1) Ú 0;(2)

f = O(x�1)Ò f (1) = O(x�2)Ò f (2) = O(x�2)Ò and f (3)Ò f (4)Ò f (5)Ò f (6) all bounded;(3)

(f (1)Ûf )(j) = O(x�1Û2�j)Ò j = 0Ò 1Ò 2Ò 3Ò 4;(4)

(fÛf (1))(j) bounded, j = 1Ò 2Ò 3Ò 4;(5)

(f (1))2Ûf = O(x�2)(6)
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The purpose of this paper is to prove the following:

THEOREM 1. Suppose Ω is a planar domain obeying the segment condition and of the
form given by Equation 1, with f(x) satisfying Equations 2–5 above. Then the spectrum
of the Neumann Laplacian is the set [0Ò1). Furthermore,

1) There is no singular continuous spectrum.
2) The pure point spectrum consists of embedded eigenvalues of finite multiplicity,

which can accumulate only at 0 and 1.

That the assumption that Ω satisfies the segment condition is necessary is made clear
by the examples presented in [7].

Although the conditions 2–5 on the function f are restrictive, they are satisfied if
f = (x +1)�p, p ½ 1, or if f is of the form f (x) = exp(�xã), ã 2 (0Ò 1Û2]. It should also be
remarked that the proof of the theorem is adaptable to a more general class of functions,
but we assume Equations 2–5 for simplicity of the proof.

Theorem 1 in some ways extends the following results due to Davis-Simon [3] and
Jaksic [8]:

THEOREM 2. Suppose Ω has the form

Ω = f(xÒ y)Ò x Ù 0Ò jyj Ú f (x)g

Let è Ù 0, and let

V =
1
4

� f (1)

f

�2
+

1
2

� f (1)

f

�(1)
Ò k(x) = jf (1)(x)j +

(f (1))2

f (x)


[3]: Suppose V = O(x�1�è) and k = O(x�1�è). Then the conclusions of Theorem 1
hold.

[8]: Suppose V(1) = O(x�1�è) and k = O(x�1�è), and suppose further that V is
dilation-analytic. Then the conclusions of Theorem 1 hold.

(Actually in [3] and [8] it is further stated that the eigenvalues cannot accumulate at
zero, but their argument does not actually prove this. See in [3]: p. 115, line 9. The claim
“we can make kg(H)un � unk uniformly small for all n” will be false if un is a sequence
of normalised eigenfunctions corresponding to eigenvalues converging to zero because
g is supported away from zero).

We remark that [3] contains a number of other results on the spectrum of the Neumann
Laplacian on domains with horn-like ends. Also see [1], [5], [9].

The domains in Theorem 2 are called by its authors “horn-like domains”, and thus
the domains studied in this paper will be called domains with horn-like ends.

The basic idea behind the proof of Theorem 2 is the following. Let S be the set of
functions in Ω dependent on x alone. It is proved that resolvent of Neumann Laplacian,
restricted to the orthogonal complement of S, is compact. To study the resolvent restricted
to S the authors proceed as follows. Consider the inclusion operator

J: L2
�
(0Ò1)Ò 2f (x)dx

�
! L2(ΩÒ dx dy)
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234 JULIAN EDWARD

given by
Ju(xÒ y) = u(x)

This inclusion is a unitary operator onto S. The quadratic form associated to the Neumann
Laplacian restricted to S induces, via J, the quadratic form

q1(uÒ u) = 2
Z 1

x=0
juxj2f (x) dx � f 0(0)p

2f 0(0)
ju(0)j2

on L2
�
(0Ò1)Ò 2f (x)dx

�
. Let H1 be the operator associated to q1, and let ∆ be the Neumann

Laplacian on Ω. Then it is shown that the operator

(∆ + z)�1J � J(H1 + z)�1

is compact for z 62 [0Ò1). The operator H1 is then shown to be unitarily equivalent to
the Schrodinger operator on the L2

�
(0Ò1)Ò dx

�
:

u(t) ! �u00(t) + V(t)u(t) for tÙ0, and u0(0) = 0Ò

with V is the potential given in Theorem 2. Theorem 2 is then proven by applying the
Enss Theory.

The methods used to prove Theorem 2 cannot be extended to domains with non-trivial
compact part î (although it should be possible to extend the results of Theorem 2 to
such domains by methods other than those exhibited in this paper). Theorem 1 is also
interesting because it applies to some horn-like domains not covered by [3], [8]. For
instance, non-analytic perturbations of f (x) = exp(�x1Û2) will be covered by Theorem 1,
provided the derivatives of f satisfy Equations 2–5. However, we believe the main interest
of this paper are the methods used. It is possible, for instance, to extend the methods of
this paper to domains with ends having positive thickness at infinity. This will be done
in a companion paper ([4]).

The proof of Theorem 1 is structured along the lines of the proof of an analogous
result by Froese and Hislop in [6]. In that work, the spectrum of the Laplace-Beltrami
operator ∆ on boundaryless manifolds with ends is studied. The ends are diffeomorphic
N ð R+, where N is a compact manifold without boundary, and R+ denotes the strictly
positive reals. The metric is assumed to be such that, on the end, the Laplace-Beltrami
operator is a perturbation of

∆0 = � ] 2

] r2
� h2(r)∆NÒ

with ∆N the Laplace-Beltrami operator on N induced by the restriction of the metric
to N, and r the unit parametrization of R+. The end pinching at infinity is equivalent
to h(r) ! 1 as r ! 1 (the authors also consider the cases h ¾ const and h ! 0).
Assuming that the coefficients of ∆ � ∆0 are of order O(r�2) in the pinching case, the
conclusions of Theorem 1 are proven to hold for the Laplace-Beltrami operator.
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The proofs of Theorem 1 and the analogous result in [6] follow from applying Mourre
theory to the operators in question. For a background on Mourre theory, see [10], [2]. We
shall simply state the hypotheses for the Mourre theory, and the conclusion that follows.

We denote the domain of an operator A by Dom(A). The Mourre hypotheses pre-
suppose the existence of three of operators HÒH0, and A, with HÒH0 self-adjoint and
A skew-adjoint. We define a scale of spaces associated to H as follows. For s ½ 0 let
Ws = Dom

�
(1 + jHj)sÛ2

�
, with norm

kuks = k(1 + jHj)sÛ2ukL2

HYPOTHESIS 1. Dom(A) \ W2 is dense in W2.

HYPOTHESIS 2. The form [HÒA], defined on Dom(A) \ W2, extends to a bounded
operator from W2 to W�1.

HYPOTHESIS 3. Dom(H0) = Dom(H), the form [H0ÒA] extends to a bounded map
from W2 to W0, and Dom(A) \ Dom(H0A) is a core for H0.

HYPOTHESIS 4. The form
h
[HÒA]ÒA

i
, where [HÒA] is as in Hypothesis 2, extends

from W2 \ Dom(HA) to a bounded operator from W2 to W�2.
The key estimate is the following. Given an interval I, let EI be the spectral projection

for H associated with the interval I.

HYPOTHESIS 5. Suppose there exist a number ã, ã Ù 0, and a compact operator K
such that the following quadratic form inequality holds:

EI[HÒA]EI ½ ãEI + K

THEOREM 3. Suppose the operators H, H0, and A satisfy hypotheses 1–5. Then H
has finitely many eigenvalues, of finite multiplicity, in I. Furthermore H has no singular
continuous spectrum in I.

In this paper we will prove

PROPOSITION 1. There exists an operator H, unitarily equivalent to the Neumann
Laplacian, and there exist operators H0 and A such that

i) Mourre Hypotheses 1–4 hold,
ii) for every real number z Ù 0, there exists an interval I containing z such that

Hypothesis 5 holds.

Theorem 1 follows from this proposition, along with the observation that the dimen-
sion of the zero-eigenspace for the Neumann Laplacian can be at most one dimensional.
Part ii) of the proposition fails at z = 0, and this explains why this paper does not exclude
the possibility of eigenvalues accumulating at 0.

To define the appropriate spaces and operators for our case we proceed as follows.
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236 JULIAN EDWARD

We first construct coordinates r, s on the non-compact part of Ω, so that the non-
compact part of Ω consists of the strip

f(rÒ s); r 2 [0Ò1)Ò s 2 (�1Ò 1)g

We will define r so that near infinity, x is sufficiently close to r that in the estimates in
Equations 3–5, x can be replaced by r.

The Euclidean metric, in the coordinates r, s, can be written as ã2dr2 + å2ds2, with
the functions ã, å satisfying

ã(rÒ s) ¾ 1Ò å(rÒ s) ¾ f (r)Ò as r !1

(The precise order of the asymptotics will be calculated later.) The Neumann boundary
conditions in the rÒ s coordinates are

] u
] s
js=š1 = 0

Note that the measure associated to the metric above is ãå dr ds. If ° is a positive,
smooth function defined by

°�1 =
(

1 on fr Ú 0g [ î
ãå for r Ù 1

then one can define a unitary transformation from L2(ΩÒ dx dy) to L2(ΩÒ °dx dy) by
Uv = (°)�1Û2v. The main reason this transformation is useful is that for r Ù 1,

°dx dy = dr ds

The operator H is now defined as the Neumann Laplacian transformed under U. One
calculates that H, as a differential operator, has the following expression for r Ù 1:

� 1
ã2

D2
r �

1
å2

D2
s + lower order terms

Here Dj
r denotes ] jÛ] rj, etc.

The boundary conditions transform under U to

] uÛ]ë = 0 on î [ fr Ú 0g \ ] Ω
(au + us)js=š1 = 0Ò r Ù 0(7)

Here a = a(rÒ s) is a function whose formula at s = š1 we give explicitly in Equation 15.
Because f satisfies Equations 3–5, the function a can be shown to vanish as r ! 1.
Thus the boundary conditions in Equation 7 can be viewed as asymptotically Neumann.

The operator H0 is defined to be a perturbation of H. We define H0 to coincide with
H as a differential operator on î[ fr Ú Ng, with N a large number. For r Ù N + 1, H0 is
given by

H0 = �D2
r � f (r)�2D2

s 
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For N Ú r Ú N + 1 the coefficients of H0 will be determined so that H0 is an elliptic
differential operator, whose closure as an operator in L2(ΩÒ °dx dy) under the boundary
conditions of Equation 7 is self-adjoint. It is possible to choose N and H0 so that
furthermore, H and H0 are mutually relatively bounded and the difference of their
resolvents is compact.

Because the resolvents of H and H0 differ by a compact operator, it follows from a
generalisation of Weyl’s theorem that the essential spectra of H and H0 coincide. The
essential spectrum of H0 is then proven to be [0Ò1) by constructing a Weyl sequence
for an arbitrary positive real number. The first part of Theorem 1 then follows.

The Sobolev spaces Ws are defined as those induced by H0. Since H and H0 are
relatively bounded, this scale of spaces is equivalent to the scale of spaces induced by H.

The operator A is defined as follows. Consider the Sturm-Liouville problem

u00(s) + ïu(s) = 0Ò au(�1) + us(�1) = au(1) + us(1) = 0Ò(8)

with a as in Equation 7. Define P to be the orthogonal projection of L2
�
(�1Ò 1)Ò ds

�
onto

the eigenspace associated with the unique, smallest eigenvalue of Equation 8. Let ü be a
cutoff function which localises to a neighbourhood of infinity. Define the operator A by

A = DrPrü + ürPDr

Formally, this is the same operator as used by Froese and Hislop to prove Mourre
estimates in [6]. The proof of the Mourre estimates now in fact proceeds along the lines
of [6], except for four significant complications.

The first complication is that unlike in [6], the operator P given here is r-dependent
(since the boundary conditions in Equation 8 are r-dependent). Thus the operators Dj

r (j a
positive integer) and P do not commute. It will be proven that the coefficients associated
with the commutators vanish sufficiently rapidly that the commutators make negligible
contributions to the bounds found in Mourre Hypotheses.

The second complication is that smallest eigenvalue of Equation 8 is not necessarily
non-negative, unlike in [6]. Because of this it is not clear that the operator

u ! f (r)�2D2
s uÒ r Ù 1

(and by consequence the operator H0) is semibounded. We will show that the smallest
eigenvalue of Equation 8 vanishes sufficiently rapidly to ensure the semi-boundedness
of H0.

The third complication is that the presence of the boundary in our case will make it
harder to prove the relative boundednessof the operators H and H0, because the boundary
terms that arise in integration by parts must be estimated in terms of interior norms.

The final complication is that some of the coefficients of H � H0 are not necessarily
of order O(r�2), as required in the statement in [6]. However, careful study of the
calculations in [6] show that weaker estimates are sufficient for the proof of the Mourre
Hypotheses. Since this part of the proof also applies to manifolds without boundary,
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including some not covered by the hypotheses in [6], this part of the paper (Section 4)
might be of independent interest.

The paper is organised as follows. In Section 2, the operators H and H0 are defined,
and H0 is proven to be self-adjoint and semi-bounded. In Section 3, it is proven that H
and H0 are relatively bounded, and that the difference of their resolvents is compact. In
Section 4 the operator A is defined, and the validity in our setting of Mourre Hypotheses
1–4 is proven. In Section 5, the Mourre Hypothesis 5 is proven. This is followed by an
appendix, where a number of estimates pertaining to the change of variables (xÒ y) ! (rÒ s)
are proven, followed by estimates for the coefficients of H � H0.

We end this section by remarking that the conclusions of this paper should also hold
for domains in higher dimensions with horn-like ends.

ACKNOWLEDGEMENT. The author gratefully acknowledges Vojkan Jaksic, who sug-
gested that the methods in [6] should be applicable to the setting given in this paper.

2. Transformed operator. The overline symbol ( ) shall be used to denote both
complex conjugate (when referring to a function) and the topological closure (when
referring to a Euclidean domain).

Let C1(Ω) be the set of infinitely differentiable functions on Ω.
Let

Ω0 = f(xÒ y); x Ù 0Ò jyj Ú f (x)g
We define coordinates rÒ s on Ω0 as in [8]. Let

s =
y

f (x)


We construct the coordinate r to be orthogonal to s. Note that the slopes of level curves
of s are given by

dy
dx

= sf (1)(x)
Hence the slopes of the level curves of an orthogonal coordinate will be given by

dy
dx

=
�f (x)

f (1)(x)y


Solving this equation we obtain

y2

2
+
Z x

t=0

f (t)
f (1)(t)

dt = CÒ

for a constant C. Let

F(x) =
Z x

t=0

f (t)
f (1)(t)

dt

Note that F is decreases monotonically to �1 because f (1) Ú 0 and f (1)Ûf ! 0. The
inverse function F�1(x) is well defined on (�1Ò 0], and can be extended infinitely
differentiably and monotonically to positive x, so that

r = r(xÒ y) = F�1
�y2

2
+ F(x)

�
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is well defined for all (xÒ y) 2 Ω0. The mapping (xÒ y) ! (rÒ s) is a diffeomorphism from
Ω0 onto a subset of the strip (�1Ò 1)ðR. It is easy to check, in particular, that the image
contains f(rÒ s)Ò r ½ 0Ò �1 Ú s Ú 1g.

For simplicity we write

f(rÒ s)Ò r � 0Ò �1 Ú s Ú 1g = fr � 0gÒ

and so on.
Let r0 be such that the set K given by

î [ fr Ú r0g

obeys the segment condition. By translating Ω if necessary, we can assume without loss
of generality that r0 = 0. Thus we have the following decomposition of Ω:

Ω = fr Ù 0g [ K

Note that for any a Ù 0, K [ fr Ú ag will also obey the segment condition.
We establish some notation. Denote Dr = ]Û] r, Ds = ]Û] s. Let gs = Dsg, gr = Drg,

grr = D2
r g, etc.

The metric induced by the change of variables is easily calculated to beã2dr2 +å2ds2,
with

ã(rÒ s) =
 

f (1)(x)
f (x)

! 
f (r)

f (1)(r)

!0B@1 + y2
 

f (1)(x)
f (x)

!2
1
CA
�1Û2

Ò(9)

å(rÒ s) = f (x)

0
B@1 + y2

 
f (1)(x)
f (x)

!2
1
CA
�1Û2

(10)

(It is convenient here to use simultaneously the coordinates r, s and x, y). The induced
volume element is ãådrds, and the associated Laplace-Beltrami operator is

1
ãå

�
Dr
å
ãDr + Ds

ã
åDs

�
(11)

It is clear by the choice of rÒ s that for r Ù 0, the boundary condition ] uÛ]ëj]Ω = 0
can be written us = 0 for s = š1.

We now define a unitary transformation U on L2(ΩÒ dx dy) as follows. Let ° be a
positive function in C1(Ω) such that:

°�1 =
(

1 on K,
ãå for r Ù 1.

Let Uv = °�1Û2v. Then U is a unitary transformation from L2(ΩÒ dx dy) to L2(ΩÒ °dx dy).
Notice that in the coordinates r, s,

U: L2(fr Ù 1gÒ ãå dr ds) ! L2(fr Ù 1gÒ dr ds)
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Under the transformation U, the Neumann Laplacian transforms to an elliptic differ-
ential operator with C1 coefficients, H. A direct calculation of using Equation 11 shows
that for r Ù 1 the differential operator H can be written as

H = � 1
ã2

D2
r �

1
å2

D2
s + 2

ãr

ã3
Dr + 2

ås

å3
Ds + VÒ

= �Drã�2Dr � Dså�2Ds + VÒ(12)

with V a C1 function which we write for future reference:

V = � 1
2ã4å2

(å2
rã2Û2 + 5ã2

rå2Û2 � ããrrå2 � ã2åårr + ããråår)

� 1
2ã2å4

(ã2
så2Û2 + 5ã2å2

sÛ2 � ããsså2 � ã2ååss + ããsåås)(13)

The boundary conditions for the transformed operator will be:

] uÛ]ë = 0 on K̄ \ ] ΩÒ
(°suÛ2 + °us)js=š1 = 0 for r Ù 0(14)

In particular, for r Ù 1 this implies
�
�(ãå)sÛ(2ãå)u + us

�
js=š1 = 0. It will be

convenient to write

a(rÒ s) = � (ãå)s

2ãå (rÒ s)(15)

It will be convenient to give the following definition:

Ψ = fu 2 C1
0 (Ω̄) : u satisfies Equation 14g(16)

Here C1
0 (Ω̄) denotes functions of bounded support in Ω which extend to C1 functions

in an open set containing Ω̄.
Since U is unitary, it follows that H is a self-adjoint operator on L2(ΩÒ °dx dy).
We define a differential operator H0 on Ω as follows. On K we set H0 equal to H as a

differential operator. For r Ù 0, the choice of coefficients is motivated by Equation 12.
Fix N ½ 1 and let

H0 = �DrA(rÒ s)�2Dr � DsB(rÒ s)�2Ds + VŁ;(17)

here A, B, VŁ are positive, C1 functions, satisfying

A =
(ã for r Ú N

1 for r ½ N + 1,

B =
(å for r Ú N

f (r) for r ½ N + 1,

VŁ =
(

V for r Ú N
0 for r ½ N + 1.
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Here f is viewed as a function on the half-line, so that f (r) is a function on fr Ù Ng.
We impose the following further conditions on A, B, VŁ, and N. First, since the

functions ã, å are symmetric in s, it follows that we can, without loss of generality,
choose A, B to be symmetric in s.

Next, fix è Ù 0. It follows from Lemma 14 in the appendix that there exists N1 such
that for r Ù N1, the coefficient functions of H satisfy

jã�2 � 1j Ú èÒ jå�2 � f (r)�2j Ú èÒ
þþþþãr

ã3

þþþþ Ú èÒ
þþþþås

å3

þþþþ Ú èÒ jVj Ú è(18)

Note that H and H0 coincide as differential operators on K[fr Ú Ng, and for r Ù N + 1,
H0 coincides with

� D2
r � f�2(r)D2

s (19)

It thus follows from Equation 18 that we can choose A, B, VŁ above so that the absolute
values of the coefficients of H � H0 are globally bounded above by è. The exact choice
of è will be made in the proof of Lemma 4.

The next requirement we impose on the coefficients of H0 is the following. Note that
by Equation 18 and the fact that f (r)�2 !1 as r ! 1, one can choose N2 and B such
that for r Ù N2,

B(rÒ s)�2 Ù 2(20)

Finally, we choose N = max(N1ÒN2).
Before continuing we establish some notation. We denote the norm on L2(ΩÒ °dx dy)

by k Ł kL2 . We denote the associated inner product by hŁÒ Łi. The supremum norm is
denoted k Ł kL1 .

The norm for bounded operators on L2(ΩÒ °dx dy) is given by k Ł k.

LEMMA 1. Consider the operator H0 acting on Ψ, with Ψ as in Equation 16. Then
the operator H0 is elliptic and essentially self-adjoint in L2(ΩÒ °dx dy).

PROOF. Assume for simplicity that N = 1. To prove ellipticity note first that for r Ú 1
this follows from the ellipticity of H. For r Ù 0 ellipticity follows from the formula for
H0, and from the fact that the functions ã, å, A, B are all strictly positive.

Next we prove that H0 is symmetric. Let uÒ v 2 Ψ. We will view hH0uÒ vi as an integral
over the components: K [ fr Ú 1g and fr Ù 1g. It follows from the self-adjointness of
H that

(21)Z
K[frÚ1g

(H0ū)v =
Z

K[frÚ1g
ūH0v �

Z 1

s=�1
ã(1Ò s)

�
ū(1Ò s)vr(1Ò s)� ūr(1Ò s)v(1Ò s)

�
ds

Next, applying integration by parts, and applying Equation 14, one obtainsZ
f1ÚrÚ1g

�
(�DrA

�2Dr � DsB
�2Ds + VŁ)ū

�
v dr ds

=
Z
f1ÚrÚ1g

ū(�DrA
�2Dr � DsB

�2Ds + VŁ)v dr ds

+
Z 1

s=�1
ã(1Ò s)

�
ū(1Ò s)vr(1Ò s) � ūr(1Ò s)v(1Ò s)

�
ds(22)
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Adding Equations 21 and 22 one obtains hH0uÒ vi = huÒH0vi, and hence H0 is sym-
metric. It follows that H0 admits a symmetric closure, which we again label H0. Clearly
the boundary conditions associated to the closure will be those given by Equation 13.

Let HŁ
0 be the adjoint of the closed operator H0. It will be convenienthere to distinguish

between the closed operator H0 and the associated differential expression, which we label
P. Suppose v 2 Dom(HŁ

0). First we show that HŁ
0v = Pv. For any point (xÒ y) 2 Ω, let

u 2 C1
0 (Ω) be supported in a neighbourhood of (xÒ y). Clearly u 2 Dom(H0) and

H0u = Pu, a.e. Hence by the definition of adjoint,

huÒHŁ
0vi = hPuÒ vi

Since u is supported away from the boundary it follows from integration by parts that
hPuÒ vi = huÒPvi. Thus huÒHŁ

0vi = huÒPvi when hŁÒ Łi is viewed as a distributional
pairing. It follows that HŁ

0v = Pv a.e. in Ω, and Pv 2 L2(Ω).
Now we prove Dom(HŁ

0) ² Dom(H0). Assume that v 2 Dom(HŁ
0) and u 2 Dom(H0).

Since HŁ
0v = Pv a.e. and Pv 2 L2(Ω), the integration by parts shows that hH0uÒ vi =

huÒHŁ
0vi only if the following three integrals are zero:

Z
K̄\]Ω

ū]ëvÒZ 1

r=0
u(rÒ 1)

�
�°s(rÒ 1)v(rÒ 1)Û2 + °(rÒ 1)vs(rÒ 1)

�
Ò

Z 1

r=0
u(rÒ �1)

�
�°s(rÒ �1)v(rÒ �1)Û2 + °(rÒ �1)vs(rÒ �1)

�
dr

By a density argument it follows that v satisfies Equation 14, a.e. Hence v 2 Dom(H0)
and thus Dom(HŁ

0) ² Dom(H0). Self-adjointness follows.

LEMMA 2. The operator H0 is bounded below.

PROOF. Assume u 2 Dom(H0). We write hH0uÒ ui as an integral over the regions
K [ fr Ú Ng, fN Ù rg. Note that H0 = H in the region K [ fr Ú Ng. Thus the first
integral is non-negative because the corresponding integral for H is non-negative.

The second integral equals

Z
frÙNg

�
(�DrA

�2Dr � DsB
�2Ds + VŁ)ū

�
u dr ds

Since A Ù 0, the term involving�DrA�2Dr can be proven non-negative using integration
by parts (the boundary term at r = N will cancel with a corresponding one from the first
integral). Also, by construction, the function VŁ is bounded below, so

Z
frÙNg

VŁjuj2 dr ds ½ �kVŁkL1kuk2
L2

It remains to bound the term involving DsB�2Ds for r Ù N. We use integration by
parts, followed by application of the boundary conditions (Equation 14), the fact that
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B(rÒ �1) = B(rÒ 1), ja(rÒ 1)j = ja(rÒ �1)j, Equation 20, to show that for fixed r, and then
the Fundamental Theorem of Calculus to showZ 1

s=�1
(�DsB

�2Dsū)u ds =
Z 1

s=�1
B�2jusj2 ds� (B�2usu)(rÒ 1) + (B�2usu)(rÒ �1)

½
Z 1

�1
B�2jusj2 ds� jB�2aj(rÒ 1)j

�
ju(rÒ 1)j2 � ju(rÒ �1)j2

�

½ 2
Z 1

�1
jusj2 ds � jB�2a(rÒ 1)j

�
ju(rÒ 1)j2 � ju(rÒ �1)j2

�

= 2
Z 1

�1
jusj2 ds � jB�2a(rÒ 1)j

Z 1

s=�1
Ds(juj2) ds

½ 2
Z 1

�1
jusj2 ds � jB�2a(rÒ 1)j

Z 1

s=�1
2jusuj ds(23)

By Lemma 14 in the appendix, f�2(r)a(rÒ š1) = O(1) as r ! 1. Thus by construction
of B, B�2a(rÒ 1) is globally bounded. This, and application of the elementary inequality
2cd � èc2 + d2

è
(for cÒ dÒ è positive reals), implies that for sufficiently small è, the right

hand side of Equation 23 is bounded below by

Z 1

�1
jusj2 ds � C

Z 1

s=�1
juj2 dsÒ

with C some positive constant. It follows that

Z 1

r=N

Z 1

s=�1
(�DsB

�2Dsū)u ds dr ½ �C
Z 1

r=N

Z 1

s=�1
juj2 ds dr

This completes the proof.

3. Relative boundedness. We prove a sequence of lemmas regarding the relative
boundedness of H0 and H.

First, we define a cutoff function which localises to a neighbourhood of infinity. Let
ü(t) be a smooth monotone function on R such that ü(t) = 0 for t Ú N + 2 and ü(t) = 1
for t Ù N + 3. We define the function üR on Ω by

üR(r) = ü(rÛR)Ò with üR = 0 on K(24)

Here R Ù 1 is a constant to be determined later.
Next, note that by the proof of Lemma 2, there exists a positive constant M such that

the operators
(H0 + M)Ò üR

�
�f (r)�2D2

s + M
�

are positive operators.
Let Ws be the Sobolev spaces associated with H0, defined as the completion of

Dom(H0) with respect to the norm

kuks = k(H0 + M)sÛ2ukL2

For consistency of notation, we shall write kukL2 = kuk0 in the proofs that follow.
Note that since Hs

0(WsÛ2) ² L2(Ω) and since H0 is elliptic, it follows by elliptic
regularity that W6 ² C4(Ω̄).

https://doi.org/10.4153/CJM-1997-012-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-012-8


244 JULIAN EDWARD

LEMMA 3. Let Ws be the scale of spaces defined by H0, and let üR be defined as in
Equation 24. Then

i) üRDr: Ws ! Ws�1 is bounded for s 2 [�1Ò 2],
ii) üRD2

r : Ws ! Ws�2 is bounded for s 2 [0Ò 2],

iii) üR

�
�f�2(r)D2

s + M
�1Û2

: Ws ! Ws�1 is bounded for s 2 [�1Ò 2],

iv) üR

�
�f�2(r)D2

s + M
�
: Ws ! Ws�2 is bounded for s 2 [0Ò 2],

v) üRf�1(r)Ds: W1 ! W0 is bounded.
Furthermore, the bounds are uniform in R for large R.

We remark that the proof of parts i)–iv) runs largely along the lines of the same lemma
in [6], although it is complicated in this case by the presence of boundary conditions.

PROOF. Let C denote various positive constants. Denote DsDr(h) by hrs, etc.
It will be convenient in this proof to denote üR simply as ü. We first prove that there

exists C such that
küDr(H0 + C)�1Û2k � 1(25)

Let ú = (1�ü2)1Û2. Thus ú is a C1 function. The IMS localisation formula [C-F-K-S]
yields

H0 + M = ü(H0 + M)ü + ú(H0 + M)ú � (úr)2 � (ür)2(26)

This, along with the positivity of H0 + M and �f (r)�2D2
s + M, implies

H0 + C ½ ü(�D2
r )ü � (ür)2 � (úr)2

This inequality should be understood as a form inequality on the set Ψ (see Equation 16
for definition of Ψ). Since ü(�D2

r )ü = �Drü2Dr � ü(2)ü, and

j � ürrü � (ür)2 � (úr)2j Ú CÒ

it follows that
�Drü2Dr � H0 + C

Thus, for every û 2 Ψ,
küDrûk0 � k(H0 + C)1Û2ûk0Ò

and hence for every ß 2 (H0 + C)1Û2(Ψ),

küDr(H0 + C)�1Û2ßk0 � kßk0

The proof of Equation 25 can thus be completed if one can show that the set (H0+C)1Û2(Ψ)
is dense in L2(ΩÒ °dx dy). For this, first note that since Ψ is a core for H0 + C, the set
(H0 + C)Ψ is L2-dense. A simple topological argument now shows that (H0 + C)1Û2(Ψ)
is L2-dense.

Next, we prove part v). Note first that for u 2 Ψ, applying integration by parts,

h(�Dsf
�2Ds)üuÒ üui = küf�1Dsuk2

0 �
Z 1

r=0
f�2ü2[usu]1

�1 dr(27)
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We bound the second term on the right hand side from below.
We recall the boundary conditions associated with W2, for r Ù 1:

(au + us)js=š1 = 0Ò(28)

with

a(rÒ s) = � (ãå)s

2ãå 

Hence

j[usu]1
�1j =

þþþ[ajuj2]1
�1

þþþ
=
þþþþZ 1

s=�1
Ds(ajuj2) ds

þþþþ
�
Z 1

s=�1
jasj juj2 + 2jausuj ds

�
Z 1

s=�1
jasj juj2 + jaj

�
èjusj2 +

1
è juj

2
�

ds

In the last step, we applied the inequality 2cd � èc2 + d2

è
, for cÒ dÒ è ½ 0. By Lemma 14

part vi), the following estimates hold:

af�2 = O(1)Ò asf
�2 = O(1)

Hence, we can choose è so that

�f (r)�2[usu]1
�1 ½ � f�2

2

Z 1

s=�1
jusj2ds � C

Z 1

s=�1
juj2 ds

This and Equation 27 imply

h�(Dsf
�2Ds)üuÒ üui ½ 1

2
kf�1Dsüuk2

0 � Ckuk2
0Ò(29)

for u 2 Ψ. On the other hand, by the I.M.S. localisation formula and the semi-positivity
of �D2

r ,
H0 + C ½ ü(�f�2D2

s )ü � (ür)
2 � (úr)

2
Combining this and Equation 29, we obtain

2k(H0 + C)1Û2uk2
0 ½ kf�1Dsüuk2

0Ò

this holding for u 2 Ψ. Hence

kf�1Dsüuk0 � Ckuk1

for all u 2 Ψ. Since Ψ is dense in W1, part v) now follows.
Next, we prove that

küD2
r (H0 + C)�1k � C(30)
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Since we have not established the existence of a subset of C1
0 (Ω̄) \ W4 which is dense

in W4 (which would play the role of Ψ), some care must be taken in discussing the
commutation of derivatives, and also in discussing some of the inner products, in the
arguments that follow. Hence, in what follows, we will assume u is an arbitrary element
in W6. Since W6 ² C4(Ω), derivatives in r and s of order up to 4 commute. It will be
convenient to express the inner product hüuÒ üvi in the following manner:

hüuÒ üvi = lim
N!1

Z 1

s=�1

Z 1

r=0
ú2

N(r)ü2ūv dr ds;

here ú2
N � 1 � ü2

N, and ü = üR as in Equation 24. For notational simplicity we write
úN = ú in what follows.

First, note the following quadratic form inequality which holds for W6:

(H0 + M)2 ½ (H0 + M)ü2(H0 + M)(31)

Next, an exercise in commutation shows that the following holds for W6:

(H0 + M)ü2(H0 + M) = D2
rü2D2

r � D2
rü2Q� ü2QD2

r + Q2ü2

= D2
rü2D2

r � 2DrüQüDr � (ü2Q)(2) + üQ2ü;(32)

here Q = f (r)�2D2
s + M and (ü2Q)(2) = (ü2f�2)rrD2

s + M(ü2)rr. We will need to provide
lower bounds for the terms on the right hand side.

First, we bound üQ2ü. We prove that

hú2f�4D4
süuÒ üui ½ kúf�2D2

süuk2
0 � Ckuk2

1 � Ckúüf�1DsDruk0kuk0(33)

It follows from integration by parts that

Z 1

r=0

Z 1

s=�1
ú2f�4D4

sü2ūu ds dr

=
Z 1

r=0

�Z 1

s=�1
júf�2D2

süuj2 ds � ü2f�4ú2[ussus � usssu]1
�1

�
dr(34)

To estimate the second term on the right hand side, we must first discuss the boundary
conditions associated to W6. Since W6 ² W2, it follows that Equation 28 holds for
u 2 W6. Also, since H0u 2 W2, we have that H0u satisfies Equation 28 and hence for
r Ù 1

(a(urr + f�2uss) + urrs + f�2usss)js=š1 = 0(35)

Since u 2 W6 ² C4(Ω̄), we have urrs = usrr. Thus since

D2
r (au + us) = 0

for s = š1, Equation 35 can be rewritten as

� arru � 2arur + af�2uss + f�2usss = 0(36)
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for s = š1.
Thus by Equations 28, 36,

f�2[ussus � usssu]1
�1 = �[arrjuj2 + 2arūru]1

�1

= �
Z 1

s=�1
Ds(arrjuj2 + 2arūru) ds

= �
Z 1

s=�1
arrsjuj2 + arr(ūsu + ūus) + 2arsūru + 2arūrus + 2arūrsu ds

Hence

�
Z 1

r=0
ú2ü2f�4[ussus � usssu]1

�1 dr

½ �C(kúüuk2
0 + kúüf�1usuk0kúüuk0 + kúüf�1usk0kúüurk0

+kúüuk0kúüurk0kúüf�1DsDruk0kúüuk0)

½ �Ckuk2
1 � Ckúüf�1DsDruk0kuk0;

the first of the inequalities above follows from the Holders and Schwartz Inequalities
and from the bounds

] ka
] ri] sj

= O(f (r)2)Ò i + j = kÒ(37)

proven in Lemma 14, from the bound (f�2)r = O(f�2) (Equation 3), and from parts i)
and v) of this lemma. The second of the inequalities follows from the boundedness of ü,
ú. Equation 33 now follows from Equation 34.

To prove a lower bound on the quadratic form �(ü2Q)(2), note that ür and ürr are
bounded functions. Also, by Equation 3, (f�2)(1) = O(f�2) and (f�2)(2) = O(f�2). Hence
an argument similar to the proof of part v) shows that

h�ú2(ü2Q)(2)uÒ ui ½ �Ckuk2
1(38)

Next, note that by the definition of Q,

Z 1

s=�1

Z 1

r=0
ú2(�DrüQüDr)ūu dr ds

=
Z 1

s=�1

Z 1

r=0
ú2
�
(Drüf�2D2

süDr)ūu + M(�Drü2Dr)ūu
�

dr ds

Using integration by parts and part i) of the lemma, the second term on the right hand
side is bounded below by Ckuk2

1. To bound the first term on the right hand side, we first
note that by integration by parts:

(39)Z 1

r=0
ú2(Drüf�2D2

süDr)ūu dr = �
Z 1

r=0
ú2(f�2D2

süDrū)üDru � (ú2)rf
�2(D2

süDr)ūüu dr

We bound the last two terms. Note urs = usr = �(au)r at s = š1 by Equation 28. Hence
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�
Z 1

�1

Z 1

r=0

�
ú2(f�2D2

süDrū)üDru
�

dr ds

= kúüf�1DsDruk2
0 �

Z 1

r=0
ú2f�2ü2[ūrsur]

1
�1 dr

= kúüf�1DsDruk2
0 +

Z 1

r=0
ú2f�2ü2[(au)rur]1

�1 dr

= kúüf�1DsDruk2
0 +

Z 1

r=0
ú2f�2ü2

Z 1

s=�1
Ds

�
(au)rur

�
dr

½ kúüf�1DsDruk2
0 � C(kúüf�1DsDruk0kuk1 + kuk2

1)(40)

The last inequality follows from Equation 37, the Schwartz Inequality, part i) of the
lemma, and the observation kúüuk0 � kuk0. To bound the second term on the right
hand side of Equation 39, we apply integration by parts in s, followed by the Schwartz
inequality and the argument used in the proof of Equation 40 to obtain the estimate:

Z 1

s=�1

Z 1

r=0
(ú2)rü2f�2(D2

s Drū)u dr ds ½ �2küúrf
�1Dsuk0küúf�1DsDruk0 � Ckuk2

1

Noting that kúrk1 is bounded uniformly in N, we obtain

hú2(�DrüQüDr)uÒ ui ½ kúüf�1DsDruk2
0 � Cküúf�1DsDruk0kuk1 � Ckuk2

1(41)

Using similar arguments, one can prove

hú2D2
rü2D2

r uÒ ui ½ kúüD2
r uk2

0 � CkúüD2
r uk0kuk1 � Ckuk2

1(42)

The details are omitted.
Combining Equations 31, 32, 33, 38, 41, and 42 we obtain

h(H0 + M)2uÒ ui ½ kúüf�2D2
s uk2

0 + kúüD2
ruk2

0 + kúüf�1DsDruk2
0

�C(kúüD2
r uk0kuk1 + kúüf�1DsDruk0kuk1 + kuk2

1)

By inspecting the proof up to now it is easy to verify that the the constant C is independent
of u, N and R. Letting N !1 we obtain

h(H0 + M)2uÒ ui ½ küf�2D2
s uk2

0 + küD2
ruk2

0 + küf�1DsDruk2
0

�C(küD2
r uk0kuk1 + küf�1DsDruk0kuk1 + kuk2

1)(43)

It follows that
küD2

ruk2
0 � Ch(H0 + M)2uÒ uiÒ

and hence
küD2

ruk2
0 � Ckuk2

1Ò
for u 2 W6, with C independent of u and R. This leads to Equation 30 by a density
argument.
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From Equation 30 it follows that

küD2
r (H0 + C)zk � CÒ(44)

for Re(z) = �1. A similar argument shows that Equation 44 remains true when üD2
r is

replaced by D2
rü. Taking adjoints it follows that (H0 + C)züRD2

r extends to a bounded
operator with

k(H0 + C)züD2
rk � CÒ

for Re(z) = �1. It follows by complex interpolation that

k(H0 + C)�1+züD2
r (H0 + C)�zk � C

for Re(z) 2 [0Ò 1]. This proves part ii) of the lemma.
Similarly, the proof of iv) follows from Equation 43 together with an interpolation

argument.
To prove part i) of the lemma, it suffices to apply complex interpolation to the

inequalities:

k(H0 + C)�1üDr(H0 + C)1Û2k � CÒ
k(H0 + C)1Û2üDr(H0 + C)�1k � C

We prove the first of these inequalities. The second follows by a similar argument. Note
that

k(H0 + C)�1üDr(H0 + C)1Û2k
� küDr(H0 + C)�1Û2k + k(H0 + C)�1[(H0 + C)Ò üDr](H0 + C)�1Û2k

The first of the terms on the right hand side is bounded by Equation 25. The second term
can be decomposed into two parts; the first, involving [D2

r Ò üDr] is bounded Equation 25
and part ii) of the lemma. The second part consists of

(üf�2)rD
2
s =

�
�2ü fr

f 3
+ ür

1
f 2

�
D2

s Ò

which is bounded by iv) along with assumption 3 on the function f .
The proof of iii) is similar to the proof of i).

LEMMA 4. Let E be the differential operator given by E = H � H0. One can choose
the coefficient functions of H0 so that

i) E: Ws ! Ws�2 is bounded for s 2 [0Ò 2].
ii) kE(H0 + M)�1k Ú 1.
iii) The operators H and H0 are mutually relatively bounded.
iv) The domains of H and H0 coincide, and the scales of spaces generated by H and

H0 are the same for s 2 [�2Ò 2].
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PROOF. Part i) of the lemma follows immediately from Lemma 3 and the boundedness
of the coefficients of E. By the construction of H0, the coefficients of H0 can be chosen
so that the coefficients of E are arbitrarily small in supremum norm. Part ii) of the lemma
thus follows by choosing the coefficients of E to be small enough.

Part iii) follows from the previous lemma along with part ii) and a Neumann series
argument. Part iv) follows from part iii) and an interpolation argument.

We will need the following compactness result:

LEMMA 5. Suppose h 2 C1
0 (R), ö 2 C1

0 (Ω̄), and suppose D is any differential opera-
tor with C1 coefficients. ThenöDh(H),öDh(H0) are compact operators on L2(ΩÒ °dx dy).

PROOF. First, note that by the Spectral Theorem, h(H0): L2(ΩÒ °dx dy) ! Ws(Ω) is
a bounded operator of all s. Thus the same holds for h(H) by relative boundedness.

Let U be a bounded open set in Ω. Assume furthermore that U obeys the segment
condition and contains the support of ö. Let s be a positive integer. Define W̃s(U) to be
the closure of C1(Ū) with respect to the norm

�Z
U

ū(�D2
x � D2

y)sÛ2u dx dy
�1Û2



Assume that D is an operator of order d. It then follows from standard arguments
involving the ellipticity of H0 that for all s, öD is bounded from Ws(Ω) to W̃s�d(U).

Now assume s Ù d. Since U obeys the segment condition, it follows ([11]) that the
inclusion W̃s�d(U) ! W̃0(U) is compact. Also, it is clear that the inclusion W̃0(U) !
L2(ΩÒ °dx dy) is bounded. The lemma now follows.

PROPOSITION 2. i) Assume z 62 õ(H0) [ õ(H). Then

(H + z)�1 � (H0 + z)�1

is compact on L2(ΩÒ °dx dy).
ii) For h 2 C1

0 (R), the operator h(H) � h(H0) is compact on L2(ΩÒ °dx dy).

PROOF. The proof of Proposition 2 runs along the lines of the proof of the corre-
sponding results in [6] (Lemma 1.4, Corollary 1.5) and hence is omitted.

The first of the following corollaries follows from [11]:

COROLLARY 1. The essential spectrum of H and H0 coincide.

COROLLARY 2. The spectrum of H is [0Ò1).

PROOF. Fix a constant ã Ù 0. Let v0(rÒ s) be the eigenfunction corresponding to the
smallest eigenvalue of the Sturm-Liouville problem:

uss(s) + ïu(s) = 0Ò
au(�1) + us(�1) = 0Ò

au(1) + us(1) = 0Ò
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with a given by Equation 15. This, of course, is the Sturm-Liouville problem given in
Equation 8 and studied in Appendix 2. Approximations to eiãrv0(rÒ s) will furnish a Weyl
sequence for ã2. Hence the essential spectrum of H0 contains [0Ò1). By Corollary 1,
the same holds for H. But since H is non-negative, Corollary 2 now follows.

4. Mourre Hypotheses 1–4. We begin this section by studying the problem:

uss(s) + ïu(s) = 0

bu(�1) + u(1)(�1) = 0

cu(1) + u(1)(1) = 0(45)

For the moment we suppose bÒ c are arbitrary real numbers.
It is well known that this Sturm-Liouville problem has a spectrum consisting of a

discrete set of eigenvalues of multiplicity 1.

LEMMA 6. Let ï0 Ú ï1 Ú Ð Ð Ð be the set of eigenvalues of Sturm-Liouville prob-
lem (Equation 45), with corresponding normalised eigenvectors v0Ò v1Ò    . Then the
eigenvalues and eigenvectors are jointly analytic in b, c.

PROOF. The quadratic form associated with the problem above is

q(uÒ u) =
Z 1

s=�1
jus(s)j2 ds � bju(�1)j2 + cju(1)j2

Thus in each of the variables b and c, the operator associated to the Sturm-Liouville
problem is Type B analytic in the sense of Kato; thus the eigenvalues and eigenvectors
are analytic in each b and c ([11]). Since analyticity in b, c separately implies joint
analyticity in (bÒ c), the lemma now follows.

We now set

b = � (ãå)s

2ãå js=�1Ò c = � (ãå)s

2ãå js=1(46)

Thus b = c = a(rÒ š1), with a as in Equation 15.
Now ïj is r dependent.

LEMMA 7. 1. ï0(r) = O(r�1f (r)2),
2. ] n

] rn (ï0) = O(r�2), n = 1Ò 2Ò 3.
Furthermore, there exists M such that for r Ù M,

ï1(r) Ù 1

PROOF. In the notation of the previous lemma, ï0(0Ò 0) is the smallest eigenvalue of
the Sturm Liouville problem with Neumann boundary conditions. Hence ï0(0Ò 0) = 0,
and so by analyticity,

ï0(bÒ c) = O(b) + O(c)

as (bÒ c) ! (0Ò 0). The estimates for ï0(r) now follow immediately from Lemma 14.
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Similarly,

ï1(bÒ c) =
ô2

4
+ O(b) + O(c)Ò

and thus ï1(r) Ù 1 for large r.
To compute the asymptotics of ]

] rï0, we calculate

]

] r
ï0 = (

]

] b
ï0)

] b
] r

+ (
]

] c
ï0)

] c
] r


The desired estimates now follow immediately from the estimates for
�
(ãå)sÛãå

�
r

given
in Lemma 14, together with the continuity of ]

]bï0, ]
]cï0.

Let v0 be the normalised eigenvector corresponding to ï0 in the Sturm-Liouville
problem (Equations 45, 46). It is straightforward to show that for fixed r and for ï0 ½ 0,

v0(s) =
�

1 +
sin 2

p
ï0

2
p
ï0

��1Û2
cos(

q
ï0s)(47)

For fixed r Ù 1, let P be the orthogonal projection of L2
�
(�1Ò 1)Ò ds

�
onto v0. Thus,

Pu = v0

Z 1

s=�1
u(s)v0(s) ds(48)

The operator üRP naturally defines a bounded operator L2(ΩÒ °dx dy) = W0. In what
follows we write ü instead of üR for notational simplicity.

Since üD2
s Pu = üï0Pu, it follows that the operator üRD2

s P extends to be bounded on
L2(ΩÒ °dx dy), satisfying the estimate

küRD2
s PukL2 � Ckf (r)2r�1üRukL2Ò(49)

for a positive constant C independent of R.

LEMMA 8. The following operators extend to bounded operators:

r2ü[Dj
rÒP]: Wj�1 ! W0

Furthermore, the operator bounds can be chosen independent of R.
ii) P extends to a bounded operator from Wj to Wj for all positive j.

PROOF. Assume first that u 2 Ψ, and is hence differentiable. Then, for r Ù 1,

[DrÒP]u =
] v0

] r

Z 1

s=�1
u(s)v0(s) ds + v0

Z 1

s=�1
u(s)

] v0

] r
(s) ds(50)

In the notation of Lemma 7,

] v0

] r
=

] v0

] b
] b
] r

+
] v0

] c
] c
] r

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It follows from Lemma 14 and the boundedness of ] v0Û] b, ] v0Û] c with respect to r
that the mapping

r ! r2 ] v0

] r

is bounded from [1Ò1) to L2
�
(�1Ò 1)Ò ds

�
. In what follows in this lemma, we denote

] v0Û] r by (v0)r, kukL2((�1Ò1)Òds) by kuk, and kukL2(ΩÒ°dx dy) by kukL2. Let

k(v0)r(rÒ Ł)k = r�2M(r);

thus M is a bounded function. Then

kr2ü(v0)r

Z 1

s=�1
uv0 dsk2

L2 =
Z

Ω
r4ü2j(v0)rj2j

Z 1

s=�1
uv0 dsj2 dú dr

�
Z 1

r=0

Z 1

ú=�1
r4ü2j(v0)rj2ku(rÒ Ł)k2kv0(rÒ Ł)k2dú dr

=
Z

rÒú
r4ü2j(v0)rj2ku(rÒ Ł)k2 dú dr

= 2
Z

r
ü2M(r)2ku(rÒ Ł)k2 dr

= 2
Z

rÒs
ü2M(r)2ju(rÒ s)j2 ds dr

This gives the desired bound on kü(v0)r
R 1
�1 uv0kL2 . The bound on küv0

R 1
�1 u(v0)rkL2 is

proven similarly. Thus ür2[DrÒP] is bounded uniformly when applied to elements of Ψ.
Uniform boundedness on W0 now follows by density.

The operator A for the Mourre estimate is defined by

A = rüRPDr + DrPüRr(51)

Since P is self-adjoint, it is clear that A is skew-adjoint.

LEMMA 9. Let H and H0 be as in Section 2, and A is in Equation 51. Then Hypotheses 1
and 3 for the Mourre estimate are satisfied.

PROOF. It is clear that the set Ψ is contained in Dom(A) \ W2, so Hypothesis 1 is
satisfied.

To estimate [H0ÒA] it suffices to estimate [D2
r ÒA] and [f�2D2

s ÒA].
We begin with [f�2D2

s ÒA]. Note that when applied to functions in W2 = Dom(H0),
the operator P commutes with the operator D2

s . Also, it is clear from Equation 50 that
[üRPÒDr] commutes with multiplication by a function of r. Thus we calculate

[f�2D2
s ÒA] = �2rüR(f�2)(1)PD2

s (52)

Since f satisfies Equations 3, 4,

(f�2)(1) = O(f�2r�1Û2)(53)

This and Equation 49, show that the operator [f�2D2
s ÒA] is bounded from W2 to W0.

Boundedness for [D2
r ÒA] follows by an exercise in differentiation and use of Lemmas 3

and 8. The details are omitted.
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LEMMA 10. The operator
h
[H0ÒA]ÒA

i
extends from Dom(H0A2) to a bounded opera-

tor from W2 to W�2.

The proof of this lemma involves no new ideas and hence is omitted. We remark in
passing that one of the terms that arises in the calculations is X2(f�2)(2)PD2

s , which fails
to be bounded when f (r) = exp(�xã), ã 2 (1Û2Ò 1). It is precisely here that Equation 4
is necessary for Theorem 1 to hold, rather than some weaker estimates for (f (1)Ûf )(j).

To prove Mourre hypotheses 2, 4, and 5, the following estimates are needed:

LEMMA 11. Let E = H � H0. Then:
i) [EÒA] extends from Ψ to a bounded operator from W2 to W�1.
ii) there exists è Ù 0 such that rè[EÒA] extends from Ψ to a bounded operator from

W2 to W�1.
iii)

h
[EÒA]ÒA

i
extends from Ψ to a bounded operator from W2 to W�2.

Note that parts i) and iii) of this lemma, along with Lemmas 9 and 10, immediately
prove Mourre Hypotheses 2 and 4.

PROOF. Recall that for large r, the differential operator E is given by

E = (1 � ã�2)D2
r +

�
f (r)�2 � å�2

�
D2

s + 2
ãr

ã3
Dr + 2

ås

å3
Ds + VÒ

with V given by Equation 13.
We cite the bounds obtained in Lemma 14 of the appendix:

ž 1 � ã�2 = O(r�2)Ò
ž f (r)�2 � å�2 = O(r�1)Ò
ž ãrÛã3 = O(r�2)Ò
ž åsÛå3 = O

�
(f (1)Ûf )2

�
Ò

ž V = O(r�1)Ò Vr = O(r�2)Ò Vs = O(r�2)Ò Vrr = O(r�2)(54)

As was noted in the introduction, the perturbation coefficients here have weaker decay
rates than those hypothesised in [6]. To prove boundness with the weaker decay rates,
the following idea is added to the methods in [6]. To fix ideas, consider the term [VÒP],
which arises in our estimate for [EÒA]. In [6], the decay rate of the coefficients of this
integro-differential operator are obtained simply from the decay rates of each PV and
VP. In our proof, we observe that as r ! 1, V becomes constant in s in the sense that
Vs = O(r�2), while P converges to the orthogonal projection onto constants functions on
(�1Ò 1). Consequently, PV � VP decays more rapidly than the individual terms PV and
VP.

For notational convenience, let X = ür. We begin with the proof of part ii). Part i)
will obviously follow.

We first prove bounds on rè(1�ã�2)D2
r XPDr. This term can be bounded by commuting

D2
r to the right, and then applying Lemmas 3, 6, and the above bound on ã�2 � 1. The

other terms in rè[(1 � ã�2)D2
r ÒA] can be treated similarly.
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The bound on rè[ãrÛã3DrÒA] is proven similarly.
Next, we prove the bound on rè(f�2 � å�2)D2

s XPDr; the proof of the bound on the
other terms in rè[(f�2 � å�2)D2

s ÒA] is similar. Note that X commutes with D2
s . Thus

rè(f�2 � å�2)D2
s XPDr = rè(f�2 � å�2)X(D2

s P)Dr

Since
f�2 � å�2 = O(r�1)Ò

the estimate for D2
s P (Equation 49), shows that the operator rè(f�2 �å�2)XD2

s P extends
to a bounded map on W0. Thus the operator

rè(f�2 � å�2)D2
s XPDr

is bounded from W1 to W0, and hence from W2 to W�2.
The proof of the bound for rè[VÒA] is slightly more difficult, because individual terms

in the expansion of the commutator are not necessarily bounded from W2 to W0. We
consider the term rè[VÒXPDr]. The other term in rè[VÒA] is treated similarly. We have

rè(VXPDr � XPDrV) = rèX[VÒP]Dr � PrèXVr

By Equation 54, the second term is bounded from W0 to W0, and hence from W2 to W�1.
To bound the first term, we first note that

V(rÒ s) = V(rÒ 0) + sVs(rÒ z)Ò

with z between 0 and s. Note that P commutes with V(rÒ 0). Thus for fixed r, we have

[PÒV]u = P(sVsu)� sVsPu

(Here we have suppressed the dependence on the variables rÒ sÒ z for simplicity.) It follows
that Z 1

s=�1
j[PÒV]uj2 ds � 2kVs(rÒ Ł)k2

L1(�1Ò1)

Z 1

s=�1
ju(rÒ s)j2 ds

It now follows from the estimate on Vs that

krèX[VÒP]ukL2 � CküRukL2Ò

for some constant C. Thus rèX[VÒP]Dr is bounded from W2 to W�1 as desired.
The bound on rè[åsÛå3DsÒA] is proven as follows. Consider the term

rè
�

XPDr
ås

å3
Ds

�
;

the other terms will be treated similarly. Commuting rèX to the right, we obtain

rèXPDr
ås

å3
Ds = PDrr

èX
ås

å3
Ds � P(rèX)r

ås

å3
Ds
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To bound the first of the two terms on the right hand side, note that

PDrr
èX
ås

å3
Ds = PDr Ž rèX

ås

å3
f Ž f�1Ds

By Lemma 3, f�1Ds is bounded from W2 to W0. By the estimate ås

å3 = O(f�1r�2), the

term rèX ås

å3 f is bounded from W0 to W0. Finally, by Lemmas 3 and 8, PDr is bounded

from W0 to W�1. This gives the desired bounds on the first term. The second term is
bounded similarly.

This completes the proof of part i) of the lemma.
The proof of part ii) involves no new ideas and hence is omitted.

5. Proof of Proposition 1. In this section we will complete the proof of Proposi-
tion 1. The proof of this goes largely along the lines of the corresponding result in [6]
(see Lemmas 2.3 and 1.8 of that paper) except at one step. We will sketch the proof
except at the one step which we prove in detail.

STEP 1. We show
[H0ÒA] = 4PöH0öP + T

Here ö(r) =
pü(r), and T is an operator which, when composed with EI, is compact. This

result is proven using Lemmas 3 and 5, and the hypotheses on f , along with Equation 49.

STEP 2. Using Lemmas 3 and 5 we show that

h(H0)[H0ÒA]h(H0) ½ 4h(H0)H0h(H0) � Ckh(H0)(P � 1)öRk + KÒ

with K compact and C a positive constant independent of R.

STEP 3. We show that kh(H0)(P � 1)öRk can be made arbitrarily small by shrinking
the support of h and letting R go to infinity. We prove

A) limR!1 limt!1 sup



öR(P � 1)h

�
t(H0 � z0)

�


 = 0,

B) limR!1 limt!1 sup



öR(P � 1)h̄

�
t(H0 � z0)

�


 = 0.
Using a Stone-Weierstrass argument, this reduces to proving A) and B) for h(x) =
(x � z)�1. It is here that we depart somewhat from the proof in [6]. We have

ö2
R(1 � P)2

�
t(H0 � z0) � z

�
+
�
t(H0 � z0)� z̄

�
(1 � P)2ö2

R

= 2öR(1 � P)
�
t(H0 � z0) � Re(z)

�
(1 � P)öR

+töR(1 � P)[öR(1 � P)Ò (H0 � z0)]

+t[(H0 � z0)Ò (1 � P)öR](1 � P)öR

Denote the sum of the last two terms as tT̃.
Letï2 be the second smallest eigenvalue of the Sturm-Liouville problem (Equation 8),

with a given by Equation 15. By Lemma 6, ï2 Ù 1 for jaj Ú 1. It follows that for r
sufficiently large,

öR(1 � P)(H0 � z0)(1 � P)öR ½ 2öR(1 � P)2öR
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This shows that for jRe(zÛt)j Ú 1,

2öR(1 � P)
�
t(H0 � z0)� Re(z)

�
(1 � P)öR ½ 2tö2

R(1 � P)2

Thus we have

ö2
R(1 � P)2

�
t(H0 � z0) � z

�
+
�
t(H0 � z0)� z̄

�
(1 � P)2ö2

R ½ 2tö2
R(1 � P)2 + tT̃(55)

Let B = (t(H0 � z0) � z)�1. Multiplying Equation 55 by BŁ on the left and by B on the
right, we obtain

BŁö2
R(1 � P)2 + (1 � P)2ö2

RB ½ 2tBŁö2
R(1 � P)2B + tBŁT̃B

Applying this quadratic form inequality to a function u of norm one, one obtains

2tköR(1 � P)Buk2
L2 � 2kö2

R(1 � P)2BukL2 + jthT̃BuÒBuij
� 2köR(1 � P)BukL2 + tjhT̃BuÒBuij(56)

Applying the quadratic formula to Equation 56, one obtains

köR(1 � P)BukL2 � 2 +
q

4 + 8t2jhT̃BuÒBuij
4t



Thus, for any è Ù 0, one can choose M0 such that for t Ù M0,

köR(1 � P)BukL2 � 1p
2
jhT̃BuÒBuij + è

Fix t Ù M0. We now show that the term hT̃BuÒBui vanishes as R !1. We expand T̃:

T̃ = �2(ö0R)2(1 � P)2 + 2ö0RöR[DrÒP](1 � P)� ö2
R(1 � P)[D2

r ÒP]

+öR[D2
r ÒP]öR(1 � P)(57)

By construction of öR =
püR, kö(1)

R k1 ! 0 as R ! 1 (see Equation 24). Thus the
first two terms in Equation 57 tend to 0 in norm as R ! 1. Lemma 6 shows that the
coefficients of öR[D2

r ÒP] tend to 0 as R ! 1, and thus the last two terms will tend to
0 in norm after being multiplied by BŁ on the left and B on the right. In particular, for
sufficiently large R,

1p
2

(hT̃BuÒBui) Ú è

This proves

köR(1 � P)BukL2 � 2è

Equations A) and B) now follow.
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STEP 4. Now choose a positive number è Ù 0 satisfying z0 � è Ù 0. Choose R
sufficiently large, and h with support of h sufficiently close to z0, so that

kh(H0)(P � 1)öRkL2 Ú èÛ2Ò(58)

h(H0)H0h(H0) � z0h(H0)2 ½ �è
2

h(H0)2(59)

Hence one obtains

h(H0)[H0ÒA]h(H0) ½ 4(z0 � èÛ2)h(H0)2 � 2è + K(60)

STEP 5. Recall we defined EI as the spectral projection of H onto the interval I.
We use Lemmas 5 and 11 and Proposition 2 to replace h(H0) by EI, and H0 by H, in
Equation 60, absorbing the resulting, compact error terms into K. This completes the
proof of Mourre Hypothesis 5, and hence of Proposition 1.

5.1. Appendix Recall that r, s are given by

s =
y

f (x)
Ò r = F�1

 
s2f (x)2

2
+ F(x)

!
Ò(61)

with F(1)(x) = f (x)Ûf (1)(x).

LEMMA 12. A) The function x = x(rÒ s) satisfies

x � r = O
�
f (r)f (1)(r)

�
Ò

the estimate being uniform in s.
B) One has

f (1)(x)
f (x)

f (r)
f (1)(r)

� 1 = O(jf (r)f (2)(r)j + j(f (1)j2)Ò

the estimate uniform in s.

PROOF. To prove part A), we proceed as follows. First, since F, F�1 are decreasing,
Equation 61 implies the following inequalities:

r(xÒ y) � xÒ r � x(rÒ s)

Now since
r = F�1

�
y2Û2 + F(x)

�
Ò

it follows by Taylor’s theorem that

x � r = (F�1)(1)
�
F(x̃)

�y2

2
Ò x̃ 2 (rÒ x)

=
f (1)

f
(x̃)

s2f (x)2

2

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Since f is a decreasing function, it follows that

jx � rj � f (1)

f
(x̃)

s2f (r)2

2
(62)

Next, we estimate f (1)

f (x̃). Note that

f (1)

f
(x̃) =

f (1)

f
(r) +

 � f (1)

f

�(1)
(r̃)
!

(x̃ � r)Ò r̃ 2 (rÒ x̃)

Note that

jx̃ � rj � jx � rj =
þþþþ f

(1)

f
(x̃)

y2

2

þþþþ
It follows that

f (1)

f
(x̃) =

f (1)

f
(r) + o

� f (1)

f
(x̃)
�
Ò

and hence
f (1)

f
(x̃)
�
1 + o(1)

�
=

f (1)

f
(r)

This, along with Equation 62, proves part A).
Part B) easily follows from Taylor’s theorem and part A).

REMARK. Part A) of Lemma 12 will allow us to replace x by r in the estimates we
make below.

We now estimate the coefficients of E = H � H0. Recall the formulae for H, H0 for
large r:

H = � 1
ã2

D2
r �

1
å2

D2
s + 2

ãr

ã3
Dr + 2

ås

å3
Ds + VÒ(63)

with

V = � 1
2ã4å2

(å2
rã2Û2 + 5ã2

rå2Û2 � ããrrå2 � ã2åårr + ããråår)

�� 1
2ã2å4

(ã2
så2Û2 + 5ã2å2

sÛ2 � ããsså2 � ã2ååss + ããsåås);(64)

H = �D2
r � f (r)�2D2

s (65)

It will be convenient to adopt the following notation:

Z = 1 + s2(f (1))(x)2

Then we have the following formulae for ã, å:

ã(rÒ s) =
 

f (1)(x)
f (x)

! 
f (r)

f (1)(r)

!
Z�1Û2Ò(66)

å(rÒ s) = f (x)Z�1Û2(67)
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Note that by Equation 3,
lim
r!1

Z = 1(68)

From this and Lemma 12 part B), it is immediate that limr!1 ã = 1. One calculates

1 � 1
ã2

=
 

f (1)(x)
f (x)

f (r)
f (1)(r)

!�2
0
B@
 

f (1)(x)
f (x)

f (r)
f (1)(r)

!2

� 1 � s2f (1)(x)2

1
CA

Thus by Lemma 12 part B), followed by Equation 3 and Lemma 12 part A),

1 � 1
ã2

= O(f (1)(x)2) + O
�
f (r)f (2)(r)

�
= O(r�3)(69)

Next we estimate f�2 �å�2. Note that Equation 67 along with Taylor’s formula give

1
f (r)2

� 1
å2

=

�
f (x) + f (r)

�
(f (1)(r)è) � s2f (r)2f (1)(x)2

f (r)2f (x)2
Ò

with jèj � jx � rj. Applying Lemma 12 part A) followed by Equation 4, one obtains

1Ûf (r)2 � 1Ûå2 = O(f (1)(r)2Ûf (r)2)

= O(r�1)(70)

Before estimating the other coefficients in E, we will need the following.

LEMMA 13. i) ] xÛ] r = f (1) (x)
f (x)

f (r)
f (1)(r) Z�1

ii) ] xÛ] s = �sf (x)f (1)(x)Z�1.

PROOF. By Equation 61, the derivative J of the transformation (xÒ y) ! (rÒ s) is given
by

J =

0
@ f (1)(r)

f (r)
f (x)

f (1)(x) sf (x) f (1)(r)
f (r)

� sf (1)(x)
f (x)

1
f (x)

1
A 

Hence

J�1 = Z�1

0
@ f (1)(x)

f (x)
f (r)

f (1)(r) �sf (x)f (1)(x)

s f (1)(x)2

f (x)
f (r)

f (1)(r) f (x)

1
A 

The lemma follows.
An exercise in differentiation, using Equations 2, 3, 4, 5 for f , and Lemma 11 part A),

now shows that

] 2xÛ] r2 = O(j(f (1))2j + jf f (1)j + jf j + jf (1)f (2)j + jf f (2)j) = O(r�1)

] 2xÛ] s2 = O(jf f (1)j + jf 2f (1)f (2)j) = O(r�3)

] 3xÛ] s3 = O(jf (f (1))3j + jf 2(f (1))2j + jf 2f (1)f (2)j + jf 3(f (1))2f (3)j) = O(r�3)

] 2xÛ] r] s = O(jf f (2)j + j(f (1))2j) = O(r�2)

] 3xÛ] r2] s = O(jf (1)f (2)j + jf f (3)j) = O(r�2)
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The following estimates will also be useful:

Zs = O
�
(f (1))2

�
Zss = O(jf (1)j2 + jf 3(f (1))4f (4)j)

Zrs = O(f (1)f (2))

Zr = O(f (1)f (2))

Zrr = O
�
jf 2j + j(f (1))2j + jf f (1)j

�

We now estimate ãrÛã3 as r !1. It is an exercise to show

]

] r

� f (1)(x)
f (x)

f (r)
f (1)(r)

�
= O(jf (1)j2 + jf f (3)j + jf (1)f (2)j + jf f (2)j)

It now follows from this, the estimate above on Zr, and Equations 2, 3, 4, 5 for f , that

ãr

ã3
= O(jf (1)j2 + jf f (3)j + jf (1)f (2)j + jf (2)j)

It is a simple calculation to show, using the assumptions on f of Equation 4, that

f (3) = O(r�1)

From this and the assumptions on f made in Equation 3, it follows that

ãr

ã3
= O(r�2)(71)

To estimate åsÛå3, note that by Lemma 12 and the estimate above for Zs,

]

] s
(f (x)Z�1Û2) = O(f f 02)

It follows immediately that

ås

å3
= O

�
(f (1)Ûf )2

�
= O(r�1)(72)

LEMMA 14. The coefficients of E = H = H0 all vanish as r !1. Furthermore,
i) ã�2 � 1 = O(r�2),

ii) å�2 � f (r)�2 = O(r�1),
iii) ãrÛã3 = O(r�2),
iv) åsÛå3 = O(r�1), (åsÛå3)r = O(r�2), (åsÛå3)rr = O(r�2), (åsÛå3)s = O(r�2).
v) V = O(r�1), Vr = O(r�3Û2), Vs = O(r�2), Vrr = O(r�2).

vi) ] k

] si] rj

�
(ãå)sÛãå

�
= O(f 2) for i + j = k � 3.

PROOF. Parts i)–iii) of the lemma have been proven (Equations 69, 70, 71), as has
the first estimate in part iv) (Equation 72). The reminder of the lemma is a long but
straightforward application of differentiation and the estimates above for the derivatives
of x and Z. The proof is omitted.
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