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SPECTRAL THEORY FOR THE NEUMANN LAPLACIAN
ON PLANAR DOMAINSWITH HORN-LIKE ENDS

JULIAN EDWARD

ABSTRACT. Thespectral theory for the Neumann L aplacian on planar domains with
symmetric, horn-like endsis studied. For alarge class of such domains, it is proven that
the Neumann Laplacian has no singular continuous spectrum, and that the pure point
spectrum consists of eigenvalues of finite multiplicity which can accumulate only at O
or co. The proof uses Mourre theory.

1. Introduction. Given an unbounded domain Q in R? obeying the segment condi-
tion ([11]), the Neumann Laplacian is defined as the unique self-adjoint operator whose
guadratic form q is given by

o v = [ | vuP

on the domain {u € L2(Q)| 7 u € L%Q)}. One can show that the Neumann Laplacian
isadifferential operator with expression

%2 9?2
“32 "y
and with domain
a2u N a2u

[uelz@)|s 5+ e1%@) a“‘m =0}.

ax2 " ay? Tan
Here o /91 denotes the unit outward normal derivative.

Let Q be a connected planar domain which obeys the segment condition and assume
Q hasthe following form:;

(1) Q= {(xy).x > 0.|y| <fX)} Ur.

where k isadomain with compact closure.
Denote the j-th order derivative of f by 0. Then f(x) will be assumed to satisfy the
following conditions:

2 f>0 fO <o

() f=0x1). f®=0x?), f? =0x?), andf®, f@ O {© al| bounded:;
(%) (W /H0 = oY), j=0,1,234

(5) (f /10 bounded, j = 1. 2,3, 4;

(6) (F)?/f = O(x?).
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The purpose of this paper is to prove the following:

THEOREM 1. SupposeQ isa planar domain obeying the segment condition and of the
form given by Equation 1, with f(x) satisfying Equations 2-5 above. Then the spectrum
of the Neumann Laplacian is the set [0, o). Furthermore,

1) Thereisno singular continuous spectrum.

2) The pure point spectrum consists of embedded eigenvalues of finite multiplicity,
which can accumulate only at 0 and co.

That the assumption that Q satisfiesthe segment condition is necessary is made clear
by the examples presentedin [7].

Although the conditions 2-5 on the function f are restrictive, they are satisfied if
f = (x+1)™P,p > 1, orif f isof theformf(x) = exp(—x?), e € (0,1/2]. It should also be
remarked that the proof of the theorem is adaptable to a more general class of functions,
but we assume Equations 2-5 for simplicity of the proof.

Theorem 1 in some ways extends the following results due to Davis-Simon [3] and
Jaksic [8]:

THEOREM 2. Suppose Q hasthe form
Q={(xy).x>0.ly| <f(x)}.

Lete > 0, and let

1/,f0\2 1,fO\@ (fD)?
=Z(— - = |f@ ASEPA
v=Z(F) +3(F) s w=iwi o
[3]: Suppose V = O(x~ 1) and k = O(x~1~¢). Then the conclusions of Theorem 1
hold.
[8]: Suppose VD = O(x1¢) and k = O(x~17¢), and suppose further that V is
dilation-analytic. Then the conclusions of Theorem1 hold.

(Actually in [3] and [8] it is further stated that the eigenvalues cannot accumulate at
zero, but their argument does not actually provethis. Seein[3]: p. 115, line9. Theclaim
“we can make ||g(H)un — up|| uniformly small for all n” will befalseif u, is a sequence
of normalised eigenfunctions corresponding to eigenvalues converging to zero because
g is supported away from zero).

Weremark that [ 3] containsanumber of other results on the spectrum of the Neumann
Laplacian on domains with horn-like ends. Also see[1], [5], [9].

The domains in Theorem 2 are called by its authors “horn-like domains’, and thus
the domains studied in this paper will be called domains with horn-like ends.

The basic idea behind the proof of Theorem 2 is the following. Let S be the set of
functionsin Q dependent on x alone. It is proved that resolvent of Neumann Laplacian,
restricted to the orthogonal complement of S, iscompact. To study the resolvent restricted
to Sthe authors proceed as follows. Consider the inclusion operator

J:L2((0. 00). 2f (X)dx) — L*(Q, dx dy)
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given by
Ju(x, y) = u(x).

Thisinclusionisaunitary operator onto S. The quadratic form associated to the Neumann
Laplacian restricted to Sinduces, via J, the quadratic form

')
V2t'(0)

on LZ((O. 00), 2f (x)dx) . Let Hy bethe operator associatedto ¢, and let A bethe Neumann
Laplacian on Q. Then it is shown that the operator

G =2 [ JuP(dx— uO)?

A+2)Y—JH +2)

is compact for z £ [0, oo). The operator Hj is then shown to be unitarily equivalent to
the Schrodinger operator on the L2( (0. 00), dx):

u(t) — —u"(t) + V(Hu) for t>0, and u'(0) = O,

with V is the potential given in Theorem 2. Theorem 2 is then proven by applying the
Enss Theory.

The methodsused to prove Theorem 2 cannot be extended to domains with non-trivial
compact part x (although it should be possible to extend the results of Theorem 2 to
such domains by methods other than those exhibited in this paper). Theorem 1 is also
interesting because it applies to some horn-like domains not covered by [3], [8]. For
instance, non-analytic perturbations of f(x) = exp(—x%/2) will be covered by Theorem 1,
provided thederivativesof f satisfy Equations 2—-5. However, webelievethemaininterest
of this paper are the methods used. It is possible, for instance, to extend the methods of
this paper to domains with ends having positive thickness at infinity. This will be done
in acompanion paper ([4]).

The proof of Theorem 1 is structured along the lines of the proof of an analogous
result by Froese and Hislop in [6]. In that work, the spectrum of the Laplace-Beltrami
operator A on boundaryless manifolds with endsis studied. The ends are diffeomorphic
N x R*, where N is a compact manifold without boundary, and R* denotes the strictly
positive reals. The metric is assumed to be such that, on the end, the Laplace-Beltrami
operator is aperturbation of

— 9 2 2
Ny = —W —h (I")AN.
with Ay the Laplace-Beltrami operator on N induced by the restriction of the metric
to N, and r the unit parametrization of R*. The end pinching at infinity is equivalent
to h(r) — oo asr — oo (the authors aso consider the casesh ~ const. and h — 0).
Assuming that the coefficients of A — Ag are of order O(r—2) in the pinching case, the
conclusions of Theorem 1 are proven to hold for the Laplace-Beltrami operator.
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The proofs of Theorem 1 and the analogousresult in [6] follow from applying Mourre
theory to the operatorsin question. For abackground on Mourretheory, see[10], [2]. We
shall simply state the hypothesesfor the Mourre theory, and the conclusion that follows.

We denote the domain of an operator A by Dom(A). The Mourre hypotheses pre-
suppose the existence of three of operators H, Ho, and A, with H, Hy self-adjoint and
A skew-adjoint. We define a scale of spaces associated to H as follows. For s > 0 let
W = Dom((1 + [H[)*/2), with norm

lulls = [1(2+ [HD* ?ull 2.

HYPOTHESIS 1. Dom(A) N'W? isdensein WA,

HYPOTHESIS 2. The form [H, A], defined on Dom(A) N W2, extends to a bounded
operator from W? to W1

HyPOTHESIS 3. Dom(Hp) = Dom(H), the form [Hp, A] extends to a bounded map
from W2 to WP, and Dom(A) N Dom(HoA) is a core for Ho.

HYPOTHESIS 4. The form [[H, A]. A], where [H. A] is as in Hypothesis 2, extends
from W? N Dom(HA) to abounded operator from W? to W2,

Thekey estimateisthe following. Given aninterval 1, let E, bethe spectral projection
for H associated with the interval 1.

HYPOTHESIS 5. Suppose there exist a number «, o« > 0, and a compact operator K
such that the following quadratic form inequality holds:

E|[H,A]E| > af +K.

THEOREM 3. Suppose the operators H, Hp, and A satisfy hypotheses 1-5. Then H
has finitely many eigenvalues, of finite multiplicity, in |. Furthermore H has no singular
continuous spectrumin I.

In this paper we will prove

PrROPOSITION 1. There exists an operator H, unitarily equivalent to the Neumann
Laplacian, and there exist operators Hy and A such that

i) Mourre Hypotheses 14 hold,

ii) for every real number z > O, there exists an interval | containing z such that
Hypothesis 5 holds.

Theorem 1 follows from this proposition, along with the observation that the dimen-
sion of the zero-eigenspacefor the Neumann Laplacian can be at most one dimensional.
Part ii) of the propositionfails at z = 0, and this explainswhy this paper does not exclude
the possibility of eigenvaluesaccumulating at 0.

To define the appropriate spaces and operators for our case we proceed as follows.
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We first construct coordinates r, s on the non-compact part of Q, so that the non-
compact part of Q consists of the strip

{(r.9);r €[0.00).s € (—1.1)}.

We will define r so that near infinity, x is sufficiently close to r that in the estimatesin
Equations 3-5, x can bereplaced by r.

The Euclidean metric, in the coordinates r, s, can be written as o?dr? + 32ds?, with
the functions «, 3 satisfying

ofr,s) ~ 1, g(r,s) ~f(r), asr— oo.

(The precise order of the asymptotics will be calculated later.) The Neumann boundary
conditionsin ther, s coordinates are

au
— =0.
as|s=i1

Note that the measure associated to the metric above is a8 dr ds. If w is a positive,
smooth function defined by

Szl on{r<0}Uk
“lag forr>1

then one can define a unitary transformation from L2(Q, dxdy) to L?(Q.wdxdy) by
UV = (w)~Y2v. The main reason this transformation is useful is that for r > 1,

wdxdy = drds.

The operator H is now defined as the Neumann Laplacian transformed under U. One
calculatesthat H, as adifferential operator, hasthe following expressionfor r > 1:
1 2 1 2
——Dr — —Dg + lower order terms.
o g
Here D} denotesd’ /a1, etc.
The boundary conditions transform under U to

au/an=0 onkU{r<0}NaQ
(7) (aU+ Us)l;il = 0, r > 0

Herea = a(r, s) isafunction whoseformulaat s = +1 we give explicitly in Equation 15.
Because f satisfies Equations 3-5, the function a can be shown to vanish asr — oo.
Thus the boundary conditions in Equation 7 can be viewed as asymptotically Neumann.
The operator Hy is defined to be a perturbation of H. We define Hg to coincide with
H asadifferential operator on < U {r < N}, with N alarge number. Forr > N+1, Hp is
given by
Ho = —D? —f(r)"2D2.
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For N < r < N + 1 the coefficients of Ho will be determined so that Hg is an elliptic
differential operator, whose closure as an operator in L2(Q. wdx dy) under the boundary
conditions of Equation 7 is self-adjoint. It is possible to choose N and Hg so that
furthermore, H and Hp are mutually relatively bounded and the difference of their
resolventsis compact.

Because the resolvents of H and Hy differ by a compact operator, it follows from a
generalisation of Weyl's theorem that the essential spectra of H and Hy coincide. The
essential spectrum of Hy is then proven to be [0, oo) by constructing a Weyl sequence
for an arbitrary positive real number. Thefirst part of Theorem 1 then follows.

The Sobolev spaces W° are defined as those induced by Hy. Since H and Hp are
relatively bounded, this scale of spacesis equivalent to the scale of spacesinduced by H.

The operator A is defined as follows. Consider the Sturm-Liouville problem

€)) u’(s) +Au(s) =0, au(—1) + us(—1) = au(l) + us(1) = 0,

with aasin Equation 7. Define P to be the orthogonal projection of LZ((— 1,1), ds) onto
the elgenspace associated with the unique, smallest eigenvalue of Equation 8. Let x bea
cutoff function which localises to a neighbourhood of infinity. Define the operator A by

A =D;Pry + xrPD.

Formally, this is the same operator as used by Froese and Hislop to prove Mourre
estimatesin [6]. The proof of the Mourre estimates now in fact proceeds along the lines
of [6], except for four significant complications.

The first complication is that unlike in [6], the operator P given here is r-dependent
(since the boundary conditionsin Equation 8 are r-dependent). Thusthe operators D! (j a
positive integer) and P do not commute. It will be proven that the coefficients associated
with the commutators vanish sufficiently rapidly that the commutators make negligible
contributions to the bounds found in Mourre Hypotheses.

The second complication is that smallest eigenvalue of Equation 8 is not necessarily
non-negative, unlikein [6]. Because of thisit is not clear that the operator

u—f(r)™?Du, r>1

(and by consequence the operator Hg) is semibounded. We will show that the smallest
eigenvalue of Equation 8 vanishes sufficiently rapidly to ensure the semi-boundedness
of Ho.

The third complication is that the presence of the boundary in our case will make it
harder to provethe relative boundednessof the operators H and Hg, becausethe boundary
terms that arise in integration by parts must be estimated in terms of interior norms.

The final complication is that some of the coefficients of H — Hp are not necessarily
of order O(r=2), as required in the statement in [6]. However, careful study of the
calculationsin [6] show that weaker estimates are sufficient for the proof of the Mourre
Hypotheses. Since this part of the proof also applies to manifolds without boundary,
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including some not covered by the hypothesesin [6], this part of the paper (Section 4)
might be of independent interest.

The paper is organised as follows. In Section 2, the operators H and Hy are defined,
and Hy is proven to be self-adjoint and semi-bounded. In Section 3, it is proven that H
and Hy are relatively bounded, and that the difference of their resolventsis compact. In
Section 4 the operator A is defined, and the validity in our setting of Mourre Hypotheses
1-4is proven. In Section 5, the Mourre Hypothesis 5 is proven. This is followed by an
appendix, whereanumber of estimatespertaining to the change of variables(x. y) — (r. s)
are proven, followed by estimates for the coefficients of H — Ho.

We end this section by remarking that the conclusions of this paper should also hold
for domainsin higher dimensions with horn-like ends.

ACKNOWLEDGEMENT. The author gratefully acknowledges Vojkan Jaksic, who sug-
gested that the methodsin [6] should be applicable to the setting given in this paper.

2. Transformed operator. The overline symbol () shall be used to denote both
complex conjugate (when referring to a function) and the topological closure (when
referring to a Euclidean domain).

Let C>*(Q) be the set of infinitely differentiable functions on Q.

Let

Qo ={(x, y);x>0,|y| <f(¥)}.
We define coordinatesr, son Qg asin [8]. Let
_ Y
s= 00"
We construct the coordinater to be orthogonal to s. Note that the slopes of level curves
of sare given by

dy _ )
vl sFY(X).
Hencethe slopes of the level curves of an orthogonal coordinate will be given by
dy _ —f(®)
dx  fOX)y

Solving this equation we obtain
o fo
27 ./t=0 fO(t) at=C,
for a constant C. Let f
X
FO= [, g
Note that F is decreases monotonicaly to —oo because f® < 0 and f® /f — 0. The

inverse function F~1(x) is well defined on (—o0. 0], and can be extended infinitely
differentiably and monotonically to positive x, so that

y2

r=r(x.y)= F_l(E + F(x))
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iswell defined for al (x,y) € Qo. Themapping (x,y) — (r, s) is adiffeomorphism from
Qo onto a subset of the strip (—1, 1) x R. Itiseasy to check, in particular, that the image
contains{(r,s),r > 0.—1 < s<1}.

For simplicity we write

{(r.9),r <0,-1<s< 1} ={r <0},

and so on.
Let ro be such that the set K given by

liU{r<ro}

obeysthe segment condition. By trandlating Q if necessary, we can assume without loss
of generality that ro = 0. Thus we have the following decomposition of Q:

Q={r>0}UK.

Note that for any a > 0, K U {r < a} will also obey the segment condition.
We establish some notation. Denote D; = 9 /ar, Ds = d /ds Let gs = Dsg, gr = D;Q,

Or = D,?g, etc.
The metric induced by the change of variablesis easily calculated to be o?dr? + 3°ds?,
with
~1/2
_ (1909 ( f0) )2

© 9= (g )(fw(r))(“yz( ) )

~1/2

_ 190917\

(10) ﬁ(r.s)—f(x)<1+y2( s ) ) .

(It is convenient here to use simultaneously the coordinates r, s and X, y). The induced
volume element is a3drds, and the associated L aplace-Beltrami operator is
1 16} o

(12) o (DraDr + DSBDS).

It is clear by the choice of r, sthat for r > 0, the boundary condition du/dn[yq = 0
can bewritten us = 0 for s = £1.

We now define a unitary transformation U on L?(Q. dxdy) as follows. Let w be a
positive function in C*(Q) such that:

1 1 onkK,

v afp forr > 1.

Let Uv = w~2v. Then U isaunitary transformation from L?(Q, dx dy) to L%(Q. wdx dy).
Notice that in the coordinatesr, s,

U:L2({r > 1}, a8 drds) — L2({r > 1},dr ds).
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Under the transformation U, the Neumann Laplacian transforms to an elliptic differ-
ential operator with C* coefficients, H. A direct calculation of using Equation 11 shows
that for r > 1 the differential operator H can be written as
Bs

(o4
D? +2a—;Dr + ZED_@V.

1
3
—Dya?D; — Dgf2Ds + V,

— 1 2
H=——Df~

(12)

with V a C* function which we write for future reference:

V= - 20; 2 Bro /24 502/ 2 — oran 8 — o' + exan )
(13) — 205]2_54 (02?2 /2+ 50232 /2 — aassB? — 0P + aarsB3s).

The boundary conditions for the transformed operator will be:

du/an=0 onKNJQ,
(14) (wsu/2+wug)|e11 =0 forr > 0.

In particular, for r > 1 this implies (—(aﬁ)s/(Zaﬂ)u + u5)|;ﬂ = 0. It will be
convenient to write
(aB)s

(15) ar,s) = —m(r.s).
It will be convenient to give the following definition:
(16) W = {ue CP(Q) : usatisfies Equation 14}.

Here C‘g"(ﬁ) denotes functions of bounded support in Q which extend to C* functions
in an open set containing Q.

Since U is unitary, it follows that H is a self-adjoint operator on L(Q, wdx dy).

We defineadifferential operator Hp on Q asfollows. On K we set Hp equal toH asa
differential operator. For r > 0, the choice of coefficientsis motivated by Equation 12.
Fix N > 1 andlet

(17) Ho = —D/A(r.8) 2D, — DB(r.s) ?Ds + V*;
here A, B, V* are positive, C*> functions, satisfying

A:{a forr <N

1 forr>N+1,

Bz{ﬁ forr <N
f(r) forr >N+1,

V forr <N

v :{0 forr > N+1.
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Heref isviewed as afunction on the half-line, so that f(r) isafunction on {r > N}.
We impose the following further conditions on A, B, V*, and N. First, since the
functions «, 3 are symmetric in s, it follows that we can, without loss of generality,
choose A, B to be symmetricins.
Next, fix e > 0. It follows from Lemma 14 in the appendix that there exists N; such
that for r > Ny, the coefficient functions of H satisfy

(18) |a?—1<e, |B2—1()7? <e ‘% <e, <e. |V|<e

3

Bs
63

Notethat H and Hy coincide as differential operatorson KU {r < N}, andforr > N+1,
Ho coincides with

(19) —D?—f7%(r)D2.

It thus follows from Equation 18 that we can choose A, B, V* above so that the absolute
values of the coefficientsof H — Hg are globally bounded above by e. The exact choice
of e will be made in the proof of Lemma 4.

The next requirement we impose on the coefficients of Hg is the following. Note that
by Equation 18 and the fact that f(r)~? — oo asr — oo, one can choose N, and B such
that forr > Ny,

(20) B(r.s)~2 > 2.

Finally, we choose N = max(Nz, Ny).

Before continuing we establish some notation. We denote the norm on L?(Q. wdx dy)
by || * ||_2. We denote the associated inner product by (x,*). The supremum norm is
denoted || * || L.

The norm for bounded operators on L%(Q, wdx dy) isgiven by || * ||.

LEMMA 1. Consider the operator Hg acting on W, with W asin Equation 16. Then
the operator Hy is elliptic and essentially self-adjoint in L?(Q, wdx dy).

ProoF. Assumefor simplicity that N = 1. To proveellipticity notefirst that forr < 1
this follows from the ellipticity of H. For r > 0 ellipticity follows from the formula for
Ho, and from the fact that the functions «, 3, A, B are al strictly positive.

Next we provethat Hg issymmetric. Letu, v € W. Wewill view (Hou, v) asanintegral
over the components: K U {r < 1} and {r > 1}. It follows from the self-adjointness of
H that

(22)
Fothv = THov— [ oL 9(TL 9w (L 9 — G(L UL ) d
/Ku{r<1}( OG)V_/KU{r<1}u OV_/;,l (1, 8)(U(L, YV (L, 9) — U (L 9V(L, 9)) ds.
Next, applying integration by parts, and applying Equation 14, one obtains
-2 _2 «
.[{1<r<oo}((_DrA Dr — DsB™?Ds + V*)u)vdr ds

— Som . .
/{l<l’<oo} U( DrA™“Dy — DsB™“Ds +V )le’ ds

1 _ —
(22) + /;_1 (L 9)(UL 9V (1.9) — B (L. V(L 9)) ds.
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Adding Equations 21 and 22 one obtains (Hou, v) = (u. Hov), and hence Hg is sym-
metric. It follows that Hy admits a symmetric closure, which we again label Hy. Clearly
the boundary conditions associated to the closure will be those given by Equation 13.

Let HE betheadjoint of the closed operator Ho. It will beconvenient hereto distinguish
between the closed operator Hy and the associated differential expression, whichwelabel
P. Suppose v € Dom(H}). First we show that Hiv = Pv. For any point (x,y) € Q, let
u € C3(Q) be supported in a neighbourhood of (x,y). Clearly u € Dom(Hop) and
Hou = Pu, a.e. Hence by the definition of adjoint,

(u, Hgv) = (Pu,v).

Since u is supported away from the boundary it follows from integration by parts that
(Pu,v) = (u,Pv). Thus (u,Hjv) = (u,Pv) when (x,x) is viewed as a distributional
pairing. It follows that Hiv = Pva.e. in Q, and Pv € L%(Q).

Now we prove Dom(Hg) € Dom(Ho). Assumethat v € Dom(Hg) and u € Dom(Ho).
Since Hiv = Pv ae. and Pv € L?(Q), the integration by parts shows that (Hou, V) =
(u, HZVv) only if the following three integrals are zero:

./IZmaQ U3, v,
o T D (—esr. DVT 1) /2 + w(r, Dws(r, 1),
/roz u(r, —D)(—ws(r, —DV(r. —1) /2 + w(r. —1)vs(r. —1)) dr.

By a density argument it follows that v satisfies Equation 14, a.e. Hencev € Dom(Hp)
and thus Dom(Hg) € Dom(Ho). Self-adjointness follows.

LEMMA 2. The operator Hg is bounded below.

PrOOF. Assume u € Dom(Hp). We write (Hou, u) as an integral over the regions
KU {r < N}, {N > r}. Note that Hy = H in the region K U {r < N}. Thus the first
integral is non-negative because the corresponding integral for H is non-negative.

The second integral equals

[{r>N} ((_DrA Dr — DsB™“Ds+V )J)U drds.
SinceA > 0, theterminvolving —D;A~2D; can be proven non-negativeusingintegration

by parts (the boundary term at r = N will cancel with a corresponding one from the first
integral). Also, by construction, the function V* is bounded below, so

* 2 _ % . 2
gy VUl dr s> = V7l

It remains to bound the term involving DsB=2Ds for r > N. We use integration by
parts, followed by application of the boundary conditions (Equation 14), the fact that
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B(r,—1) = B(r, 1), |a(r, 1)| = |a(r, —1)|, Equation 20, to show that for fixed r, and then
the Fundamental Theorem of Calculusto show

1
/ (—DsB2Dsl)uds
s=—1

[, B2 ds— (B2mRu)(r. 1) + (B2 (r. ~1)

v

/_l L B7?lug? ds— [B~%al(r. D(Ju(r. DI — Ju(r. D)

V

2_/; |us|?ds — [B~2a(r. )| (Ju(r. D* — u(r. —1)?)

1 1
2‘/71 |us|? ds — |B‘2a(r.1)|/$71 Ds(|ul?) ds

(23)

v

1 1
2/_l |us|?ds — |[B~2a(r, 1) /y_l 2|usul ds.

By Lemma 14 in the appendix, f ?(r)a(r, ==1) = O(1) asr — oo. Thus by construction
of B, B~2a(r. 1) is globally bounded. This, and application of the elementary inequality
2cd < ec® + d?z (for c, d, e positive reals), implies that for sufficiently small ¢, the right
hand side of Equation 23 is bounded below by

L 2~ [t 2
_[l|us| ds C./;71|u| ds.

with C some positive constant. It follows that

1 -~ _ B oo rl 2
/:Z/F_l( DsB “Dsu)udsdr > C./r:N /;—1 |u|* dsdr.
This completes the proof.

3. Reélative boundedness. We prove a sequence of lemmas regarding the relative
boundedness of Hy and H.

First, we define a cutoff function which localises to a neighbourhood of infinity. Let
x (t) be a smooth monotone function on R suchthat x(t) = 0fort < N+2and x(t) = 1
fort > N + 3. We define the function yr on Q by

(29 xr(r) =x(r/R). withxg=0o0nK.

Here R > 1 isaconstant to be determined later.
Next, note that by the proof of Lemma 2, there exists a positive constant M such that
the operators
(Ho+M). xr(—f(r)?DZ+M)

are positive operators.
Let W° be the Sobolev spaces associated with Hp, defined as the completion of
Dom(Hg) with respect to the norm

lulls = | (Ho + M)¥?ul o.

For consistency of notation, we shall write ||u|| > = ||u]|o in the proofs that follow.
Note that since Hg(\/\/j/z) C L%(Q) and since Hy is dliptic, it follows by elliptic
regularity that Wé  C*(Q).
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LEMMA 3. Let WP be the scale of spaces defined by Hp, and let yr be defined as in
Equation 24. Then
i) xrDr:W° — WeLisboundedfor s € [-1, 2],
i) xrRD?: W® — WA~2 is bounded for s € [0, 2],
i) yr(—F20)D2 +M)"%:We — We1 iis bounded for s € [1, 2],
iv) xr(—f%(r)DZ +M):Ws — W2 is bounded for s € [0, 2],
v) xrf 71(r)Ds: W — WP is bounded.
Furthermore, the bounds are uniformin R for large R.

We remark that the proof of partsi)—iv) runslargely along thelines of the samelemma
in [6], although it is complicated in this case by the presence of boundary conditions.

PrROOF. Let C denote various positive constants. Denote DgD; (h) by hys, etc.
It will be convenient in this proof to denote yr simply as x. Wefirst prove that there

exists C such that
(25) IXDr(Ho + )~/ < 1.
Let = (1—x?)Y2. ThusTisaC> function. The IMS localisation formula[C-F-K-S]
yields
(26) Ho +M = x(Ho + M)x +7(Ho + M)r — (7:)? — (x+)*-

This, along with the positivity of Ho + M and —f (r)=2DZ + M, implies
Ho+C > x(=Df)x — (xr)* — ()%
Thisinequality should be understood as aform inequality on the set W (see Equation 16
for definition of W). Since x(—D?)x = —Drx?D; — x®@y, and
| = xx = () = (@) < C,

it follows that
_DrXZDr <Hp+C.

Thus, for every ¢ € W,
IXDréllo < [[(Ho + )26 ]lo.

and hence for every ¢ € (Ho + C)Y/2(W),
IXDe(Ho + )25 ]lo < [l ello.

Theproof of Equation 25 can thus be completed if one can show that the set (Ho+C)Y/2(W)
is dense in L%(Q. wdx dy). For this, first note that since W is a core for Ho + C, the set
(Ho + C)¥ is L2-dense. A simple topological argument now shows that (Ho + C)Y/2(W)
is L?-dense.

Next, we prove part v). Notefirst that for u € W, applying integration by parts,

@7 <(_Dsf_2Ds)XU~ Xu> = ”Xf_lequ - /r:Of_ZXZ[U_SU]il dr.
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We bound the second term on the right hand side from below.
We recall the boundary conditions associated with W2, for r > 1:

(28) (U + Ug)|s=+1 = 0,
with
afr,s) = —%.
Hence
[Tu]ty] = |[aluf]ty|

1
= | [, ptalupy e

Js=—1

1
< [, lad Juf? + 2Jamsu] ds

! 1
< 2 2,412
< [, 1l luP +[al (luf? + Z|u?) ds

In the last step, we applied the inequality 2cd < ec? + %2 forc,d,e > 0. By Lemmal4
part vi), the following estimates hold:

af2=0(1). af2=0(1).

Hence, we can choose e so that

o f=2 1 1
—f(r)~?[meu]t, > < Jess |us|?ds — C/y_l |ul? ds.

Thisand Equation 27 imply
1
(29 (—(Dsf 2Dg)xu. xu) > 5 |f Dsxullj — Cljull5.

for u € Y. Onthe other hand, by the |.M.S. localisation formulaand the semi-positivity
of —D?,
Ho+ C > x(—f?D3)x — (xr)* — ()

Combining this and Equation 29, we obtain
2]|(Ho+ C)*2ull§ > [If~*Dsxull:
this holding for u € W. Hence
IF=*Dexullo < Cllullx

for all u € W. Since W is densein W, part v) now follows.
Next, we prove that
(30) XD (Ho+CO) | < C.
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Since we have not established the existence of a subset of C‘a"(ﬁ) N W* which is dense
in W* (which would play the role of W), some care must be taken in discussing the
commutation of derivatives, and also in discussing some of the inner products, in the
arguments that follow. Hence, in what follows, we will assumeu is an arbitrary element
in WO, Since W6 c C*(Q), derivativesin r and s of order up to 4 commute. It will be
convenient to expressthe inner product (xu, xVv) in the following manner:

1 00
H 2 2 .
{xu, xVv) = l\!!ro]o/;—l/mOTN(r)X uvdrds;

here 73 = 1 — x&, and x = xr as in Equation 24. For notational simplicity we write
7 =T in what follows.
First, note the following quadratic form inequality which holds for We:

(31) (Ho +M)? > (Ho + M)x’(Ho + M).

Next, an exercise in commutation shows that the following holds for We:
(Ho + M)x?(Ho + M) = Dfx*D7 — D7x*Q — x*QD7 + Q°x”

(32) = D?x?D? — 2DrxQxDr — (x*Q@ + xQ%x;

here Q = f(r)72D2 + M and (x2Q)® = (x*~2),DZ + M(x?)r. We will need to provide
lower bounds for the terms on the right hand side.
First, we bound y Q%y. We prove that

(33)  (Tf7*Dexu. xu) > [lrf72DExull§ — Cl|ullf — Cllmxt ~*DsDrulfo]|ullo-
It follows from integration by parts that
Sl L PRV £
/r:o /5__717 f~"Dgx“uudsdr
00 1
(34) = /ro( L, |Tf-ZD§Xu|2ds—Xzf—“fz[u—ssus—@u]il)dr.

To estimate the second term on the right hand side, we must first discuss the boundary
conditions associated to WE. Since W C W2, it follows that Equation 28 holds for
u € WA, Also, since Hou € W2, we have that Hou satisfies Equation 28 and hence for
r>1

(35) (aurr + f_zuss) *Urs + f_2u355)|9i1 =0.

Sinceu € We C C4(§), we have Uyrs = Ugr. Thussince
D3(au+us) =0
for s = +1, Equation 35 can be rewritten as

(36) — arU— 2a,U; + af PUg+f PUss =0
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fors==+1.
Thus by Equations 28, 36,

—[av|u® + 2a U]t
1 —
— /;—1 Ds(@|u|? + 28,0, u) ds

f2[UsUs — TssU]

1 _ _ _ _
- /;_ L aurs|U[* + @ (UsU + UUs) + 2aysUr U + 23, Uy Us + 23, UrsU dS
Hence
— [ PP Osus — Ty o
> —C([[rxull§ + llrxt ~tusullol|rxullo + [[7xf ~ us]lollTxrlo
+lmxullollmxur lollTxf ~*DsDr ulloflmxullo)
> —Cllullf — Cllxf~"DsDyulfol|ullo;
the first of the inequalities above follows from the Holders and Schwartz Inequalities

and from the bounds

37) o'a

ariog

=0@f(r)»). i+j=k

proven in Lemma 14, from the bound (f —2), = O(f ) (Equation 3), and from parts i)
and v) of thislemma. The second of the inequalities follows from the boundednessof ,
7. Equation 33 now follows from Equation 34.

To prove a lower bound on the quadratic form —(x2Q)@, note that x,; and x,, are
bounded functions. Also, by Equation 3, (f~2)® = O(f 72) and (f 2)@ = O(f ~2). Hence
an argument similar to the proof of part v) shows that

(39) (—*(x*QPu.u) > —Cl|ull3.

Next, note that by the definition of Q,

1 o, ~
/F—l /r:oT (=DrxQxDr)uudrds
1
= /;—l /:ZTZ((DrXf_ZDngr)Uu+ M(_DrXZDr)UU) dr ds.

Using integration by parts and part i) of the lemma, the second term on the right hand
sideis bounded below by C||ul|2. To bound the first term on the right hand side, we first
note that by integration by parts:

(39)
| POxd 2D D)iudr = — [ (22D @xDu — () f HD3D)uyudr.

We bound the last two terms. Note u;s = ug = —(au); at s = 1 by Equation 28. Hence
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—/_11 /r:(rz(f‘zDngrmeru) drds
= rxf D3 — [ A A Tsu ] dr
= rxf DD+ [ A7) uly dr
= |lrxf'DsDrul|3 + /r:Tszzxz /;_1 Ds((au),ur) dr
(40) > ||xf~"DsDru|§ — C(llrxf ~*DsDrullofjull + ulf3).

The last inequality follows from Equation 37, the Schwartz Inequality, part i) of the
lemma, and the observation ||7xullo < ||ullo- To bound the second term on the right
hand side of Equation 39, we apply integration by partsin s, followed by the Schwartz
inequality and the argument used in the proof of Equation 40 to obtain the estimate:

./;—1 /r:(TZ)’XZfiz(DgDFG)Udr ds > —2||x7f " Dsul|o]| x7f "*DsDrullo — Cllull3.
Noting that ||7¢ || is bounded uniformly in N, we obtain
(41) (r*(=DrxQxDr)u. u) > |rxf~*DsDrull§ — Cllxf ~*DsDrullol|ulls — Clullz.
Using similar arguments, one can prove
(42) (r*Dfx*Dfu. u) > lrxD?ull — ClirxDfullollulls — Cllull.

The details are omitted.
Combining Equations 31, 32, 33, 38, 41, and 42 we obtain

((Ho +M)?u,u) > ||rxf~2D3ul|3 + [rxDZul|§ + [[rxf ~'DsDrull3
—C(||rxD2ullo||ul|1 + ||7xf " DsDrulof|ull1 + ||u]|3).

By inspecting the proof up to now it is easy to verify that the the constant C isindependent
of u, N and R. Letting N — oo we obtain

((Ho +M)?u.u) > [Ixf?D2ul|§ + [|xDZul[5 + || xf ~*DsDrull§
(43) —C(|xD7ullofull + [Ixf~"DsDruljof|ullz + [Jull3).
It follows that
[xD2ul|5 < C((Ho + M)?u. u).

and hence
IxD?ullg < Cllullf,

for u € WP, with C independent of u and R. This leads to Equation 30 by a density
argument.
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From Equation 30 it follows that
(44) [xDZ(Ho + C)*|| < C,

for Re(z) = —1. A similar argument shows that Equation 44 remains true when yD? is
replaced by D?y. Taking adjoints it follows that (Ho + C)?*yrD? extends to a bounded
operator with

I(Ho + Cy*xD?|| < C,

for Re(z) = —1. It follows by complex interpolation that
I(Ho + C)™**xD(Ho + C) 7| < C

for Re(2) € [0, 1]. This proves part ii) of the lemma.

Similarly, the proof of iv) follows from Equation 43 together with an interpolation
argument.

To prove part i) of the lemma, it suffices to apply complex interpolation to the
inequalities:

|(Ho + C)~*xDi(Ho + O)¥2|| < C,
[(Ho + ©)Y2xDr(Ho + C) || < C.

We provethe first of these inequalities. The second follows by a similar argument. Note
that

I(Ho +C)~*xDi(Ho + ©)M?
< ||XDr(Ho + ©)2|| +|(Ho + C)*[(Ho + C). XDy ](Ho + C)*/2]|.

Thefirst of the terms on the right hand sideis bounded by Equation 25. The second term
can be decomposedinto two parts; thefirst, involving [D?, xD;] is bounded Equation 25
and part ii) of the lemma. The second part consists of

- f 1
(I D2 = (~2xg5 +xr 73 ) O

which is bounded by iv) along with assumption 3 on the function f.
The proof of iii) is similar to the proof of i).

LEMMA 4. Let E be the differential operator given by E = H — Hg. One can choose
the coefficient functions of Hg so that

i) E:W°— W52 ishounded for s € [0, 2].

i) ||E(Ho + M) < L.

iii) TheoperatorsH and Hp are mutually relatively bounded.

iv) The domains of H and Hy coincide, and the scales of spaces generated by H and
Ho arethe samefor s € [—2, 2].
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PROCF. Parti) of thelemmafollowsimmediately from L emma3 and the boundedness
of the coefficients of E. By the construction of Hy, the coefficients of Hg can be chosen
so that the coefficients of E are arbitrarily small in supremum norm. Part ii) of the lemma
thus follows by choosing the coefficients of E to be small enough.

Part iii) follows from the previous lemma along with part ii) and a Neumann series
argument. Part iv) follows from part iii) and an interpolation argument.

We will need the following compactness result:

LemmMA 5. Supposeh € CP(R), p € Cgo(ﬁ), and suppose D isany differential opera-
tor with C* coefficients. Then pDh(H), pDh(Ho) are compact oper atorson L%(Q. wdx dy).

PrROOF. First, note that by the Spectral Theorem, h(Ho): L?(Q. wdx dy) — WA(Q) is
abounded operator of all s. Thus the same holds for h(H) by relative boundedness.

Let U be a bounded open set in Q. Assume furthermore that U obeys the segment
condition and contains the support of p. Let s be a positive integer. Define WS(U) to be
the closure of C*(U) with respect to the norm

(f, @-02— D22 dxdy)l/ ’.

Assume that D is an operator of order d. It then follows from standard arguments
involving the ellipticity of Ho that for al s, pD is bounded from W5(Q) to We~9(U).

Now assume s > d. Since U obeys the segment condition, it follows ([11]) that the
inclusion Ws~4(U) — WP(U) is compact. Also, it is clear that the inclusion WO(U) —
L2(Q, wdx dy) is bounded. The lemma now follows.

PROPOSITION 2. 1) Assumez ¢ o(Hp) U o(H). Then
H+2 ™"~ (Ho+2)™
is compact on L%(Q, wdx dy).
i) For h € C3(R), the operator h(H) — h(Ho) is compact on L%(Q, wdx dy).

ProOF. The proof of Proposition 2 runs along the lines of the proof of the corre-
sponding resultsin [6] (Lemma 1.4, Corollary 1.5) and hence is omitted.
Thefirst of the following corollaries follows from [11]:

COROLLARY 1. The essential spectrumof H and Hg coincide.
COROLLARY 2. The spectrumof H is [0, 0o).

PrOOF. Fix aconstant o« > 0. Let vo(r, ) be the eigenfunction corresponding to the
smallest eigenvalue of the Sturm-Liouville problem:

Uss(S) + Au(s) = 0,
au(—1) +us(—1) =0,
au(1) +ug(1) =0,
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with a given by Equation 15. This, of course, is the Sturm-Liouville problem given in
Equation 8 and studied in Appendix 2. Approximationsto € vy(r. s) will furnish aWeyl
sequence for o. Hence the essential spectrum of Ho contains [0, 00). By Corollary 1,
the same holds for H. But since H is non-negative, Corollary 2 now follows.

4. MourreHypotheses1-4. We begin this section by studying the problem:

Uss(S) + Au(s) =0
bu(—1) +u®P(—-1) =0
(45) cu(l) +u®@) =o.

For the moment we suppose b, ¢ are arbitrary real numbers.
It is well known that this Sturm-Liouville problem has a spectrum consisting of a
discrete set of eigenvalues of multiplicity 1.

LEMMA 6. Let A\g < A1 < --- be the set of eigenvalues of Surm-Liouville prob-
lem (Equation 45), with corresponding normalised eigenvectors vo, V1, .... Then the
eigenvalues and eigenvectorsare jointly analyticin b, c.

PROOF. The quadratic form associated with the problem aboveis

auw = [ O ds— blu(-1) + cjun)’>

Thus in each of the variables b and c, the operator associated to the Sturm-Liouville
problem is Type B analytic in the sense of Kato; thus the eigenvalues and eigenvectors
are analytic in each b and ¢ ([11]). Since analyticity in b, ¢ separately implies joint
analyticity in (b, ¢), the lemma now follows.
We now set
_(@B)s __(aB)s

(46) b= 20([’3 |S=*1~, c 20’5 |5:1'

Thusb =c¢ = a(r, £1), with a asin Equation 15.
Now ) isr dependent.

LEMMA 7. 1. Ao(r) = O(r~(r)?),
2. Z(h0)=0("2),n=1.23.
Furthermore, there exists M such that for r > M,

A(r) > 1.

PrROOF. In the notation of the previous lemma, Ao(0, 0) is the smallest eigenvalue of
the Sturm Liouville problem with Neumann boundary conditions. Hence Ao(0, 0) = 0,
and so by analyticity,

Ao(b. €) = O(b) + O(c)

as (b, c) — (0, 0). The estimates for Ag(r) now follow immediately from Lemma 14.
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Similarly,
2
M(b,c) = % +0(b) + O(c).

and thus \1(r) > 1for larger.
To compute the asymptotics of % Ao, We calculate

d d ab d Jac
R = (— — 4+ (— —_—
ar 0 = Gprogr * Gy
Thedesired estimatesnow follow immediately from the estimatesfor ((3)s/3), given
in Lemma 14, together with the continuity of X0, 2 Ao.

Let vp be the normalised eigenvector corresponding to Ao in the Sturm-Liouville
problem (Equations 45, 46). It is straightforward to show that for fixed r and for Ag > O,

(47) Vo(9) = (1 + 9227\/\%_0)1/ * cos(y/A09).

For fixedr > 1, let P be the orthogonal projection of L?((—1. 1), ds) onto vo. Thus,
1
(48) Pu=vo / U(9vo(9)ds.
Js=—

The operator yrP naturally defines a bounded operator L?(Q, wdxdy) = WP. In what
follows we write  instead of xg for notational simplicity.

Since xD2Pu = y APy, it follows that the operator xrD2P extends to be bounded on
L%(Q. wdx dy), satisfying the estimate

(49) [IxrDEPU[| 2 < CJIf (r)’r XUl 2.

for a positive constant C independent of R.
LEMMA 8. The following operators extend to bounded operators:
rzx[Djr, Pl:W1 — WP,
Furthermore, the operator bounds can be chosen ind_ependent of R.
ii) P extendsto a bounded operator fromW to W for all positive|.

Proor. Assumefirst that u € W, and is hence differentiable. Then, forr > 1,

(50) [Dr.Plu= % | /;_1 U(SVo(S) ds +vo | 1_1 u(s)%(s) ds.

Js=
In the notation of Lemma 7,

Vo _ 3V03b+ dVgadcC
ar  dboar dcoar’
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It follows from Lemma 14 and the boundedness of dvp/db, dVo/d c with respect to r

that the mapping

ar
is bounded from [1. 00) to L?((—1.1).ds). In what follows in this lemma, we denote
dVo/dr by (Vo)r, [|ullLzq—1.1).a9 bY llUll, and [|ull L2q,waxay) bY llUl] 2. Let

1(vo)e (r. )|l = r=2M(r);
thus M is a bounded function. Then
1 1
| r2x (Vo)r /;—1 uvo ds||Z; = /Q r4X2|(V0)r|2|/F_l Vo ds|? dr dr
o0l
< [0 oo Plute. AP vote. ) P o
o) Plur. )2 dr dr
2 [XPM@EYlu(r, )2 dr
Jr
2 / 2M(0)?|u(r, 9)|? dsdr.
JI.s

r—r

This gives the desired bound on || (Vo)r J*; Uvol| 2. The bound on ||xVo J2; U(vo): || 2 is
proven similarly. Thus xr?[D;, P] is bounded uniformly when applied to elements of W.
Uniform boundedness on WP now follows by density.

The operator A for the Mourre estimate is defined by

(51 A =ryrPD; + D;Pxrr.
Since P is self-adjoint, it is clear that A is skew-adjoint.

LEMMA 9. LetH and Hgbeasin Section 2, and Aisin Equation 51. Then Hypotheses 1
and 3 for the Mourre estimate are satisfied.

PROOF. It is clear that the set W is contained in Dom(A) N W?, so Hypothesis 1 is
satisfied.

To estimate [Ho. A] it sufficesto estimate [DZ, A] and [f ~2D2, A].

We begin with [f~2D2, A]. Note that when applied to functions in W2 = Dom(Ho),
the operator P commutes with the operator D2. Also, it is clear from Equation 50 that
[xrP, D] commutes with multiplication by afunction of r. Thus we calculate

(52) [f~2D2. A] = —2ryr(f)VPD2,
Sincef satisfies Equations 3, 4,
(53) (f2)® = o 2r-%/?)

This and Equation 49, show that the operator [f ~2D2, A] is bounded from W2 to WP.
Boundednessfor [D?, A] followsby an exercisein differentiation and useof Lemmas3
and 8. The details are omitted.
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LEMMA 10. The operator [[Ho. Al, A] extends from Dom(HoA?) to a bounded opera-
tor from W2 to W2,

The proof of this lemma involves no new ideas and hence is omitted. We remark in
passing that one of the terms that arisesin the calculationsis X?(f ~2)@PD2, which fails
to be bounded when f(r) = exp(—x®), o € (1/2.1). It is precisely here that Equation 4
is necessary for Theorem 1 to hold, rather than some weaker estimates for (f® /£)0).

To prove Mourre hypotheses 2, 4, and 5, the following estimates are needed:

LEMMA 11. Let E =H — Hg. Then:

i) [E.A] extendsfrom ¥ to a bounded operator from W2 to W1,

ii) thereexistse > 0 such that r‘[E, A] extendsfrom W to a bounded operator from
W2 to WL,

iii) [[E. A], A| extends from W to a bounded operator fromW? to W2,

Note that partsi) and iii) of this lemma, along with Lemmas 9 and 10, immediately
prove Mourre Hypotheses 2 and 4.

PrOOF. Recall that for larger, the differential operator E is given by

_ _ _ a B
E=(1—-a?)Df+(f(N?-5 2)D§+2a—;Dr+25—§DS+V,

with V given by Equation 13.
We cite the bounds obtained in Lemma 14 of the appendix:
o 1—a?2=0(72),
o f(N2—-572=00D,
o o/a®=0(72),
o Bs/3°=0O((FM /1)7).
V=001, V,=002). Ve=0("2)., V,=0(?).

(54)

As was noted in the introduction, the perturbation coefficients here have weaker decay
rates than those hypothesised in [6]. To prove boundness with the weaker decay rates,
the following idea is added to the methods in [6]. To fix ideas, consider the term [V, P,
which arises in our estimate for [E, A]. In [6], the decay rate of the coefficients of this
integro-differential operator are obtained simply from the decay rates of each PV and
VP. In our proof, we observe that asr — oo, V becomes constant in s in the sense that
Vs = O(r~2), while P convergesto the orthogonal projection onto constants functions on
(—1, 1). Consequently, PV — VP decays more rapidly than the individual terms PV and
VP.

For notational convenience, let X = xr. We begin with the proof of part ii). Part i)
will obviously follow.

Wefirst prove boundson ré(1—a~2)DZXPD;. Thisterm can be bounded by commuting
D? to the right, and then applying Lemmas 3, 6, and the above bound on =2 — 1. The
other termsin re[(1 — o~2)D?, A] can be treated similarly.
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The bound on ré[«; / &®Dy, A] is proven similarly.
Next, we prove the bound on r¢(f =2 — 3~2)D2XPD;; the proof of the bound on the
other termsin re[(f =2 — 372)DZ, A] is similar. Note that X commutes with D2. Thus

r{(f~2 — B~3)D2XPD, = r¢(f 2 — 3~2)X(D2P)D;.

Since
f2-32=00Y,

the estimate for D2P (Equation 49), shows that the operator r<(f =2 — 3-2)XD2P extends
to abounded map on WP. Thus the operator

re(f =2 — B~2)D2XPD,

is bounded from W to WP, and hence from W? to W—2.

The proof of the bound for re[V, A] isslightly more difficult, becauseindividual terms
in the expansion of the commutator are not necessarily bounded from W? to W°. We
consider the term ré[V, XPDy]. The other term in r¢[V. A] is treated similarly. We have

r{(VXPD; — XPD,V) = r‘X[V., P|D, — Pr‘XV.

By Equation 54, the second term is bounded from WP to WP, and hence from W? to W2,
To bound the first term, we first note that

V(r,s) = V(r,0) +sVq(r, 2),
with z between 0 and s. Note that P commutes with V(r. 0). Thusfor fixed r, we have
[P, V]u = P(sVsu) — sVsPu.

(Herewe have suppressed the dependence onthevariablesr. s, zfor simplicity.) It follows
that

L P VIR ds < 2| V. 2 ' 2d
P VIu ds < 2 Ve(r. #) 21y [ JuCr. 9 ds.

It now follows from the estimate on Vs that
[[FXIV, Plul| > < Clixrul2.

for some constant C. Thusr<X[V, P]D; is bounded from W? to W~ as desired.
The bound on ré[3s/3*Ds, A] is proven as follows. Consider the term

re (XPDr %Ds) ;
the other terms will be treated similarly. Commuting r¢X to the right, we obtain

r‘XPDr&DS - pp,rex Ds— P(er)r&Ds.
33 Ik Ik
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To bound the first of the two terms on the right hand side, note that

PDrer%DS =PD; o r‘X%f of!Ds.
By Lemma 3, f~1Ds is bounded from W2 to W0. By the estimate 25 = O(f ~1r=2), the
term reXZf is bounded from WP to WP. Finally, by Lemmas 3 and 8, PD; is bounded
from WP to WL, This gives the desired bounds on the first term. The second term is
bounded similarly.

This completesthe proof of part i) of the lemma.

The proof of part ii) involves no new ideas and hence is omitted.

5. Proof of Proposition 1. In this section we will complete the proof of Proposi-
tion 1. The proof of this goes largely along the lines of the corresponding result in [6]
(see Lemmas 2.3 and 1.8 of that paper) except at one step. We will sketch the proof
except at the one step which we prove in detail.

Step 1. We show
[Ho. A] = 4PpH0pP +T.
Herep(r) = +/x(r), and T isan operator which, when composed with E;, iscompact. This
result is proven using Lemmas 3 and 5, and the hypotheseson f, along with Equation 49.

Step 2. Using Lemmas 3 and 5 we show that
h(Ho)[Ho, Alh(Ho) > 4h(Ho)Hoh(Ho) — CJ[h(Ho)(P — 1)prl| + K,
with K compact and C a positive constant independent of R.

Step 3. We show that ||h(Ho)(P — 1)pg|| can be made arbitrarily small by shrinking
the support of h and letting R go to infinity. We prove

A) 1img oo lime_o, sUp| pr(P — Dh(t(Ho — 20))[ =0,

B) 1iMg oo liMi_o0 SUP| pr(P — Dh(t(Ho — 20))| = 0.
Using a Stone-Weierstrass argument, this reduces to proving A) and B) for h(x) =
(x — 2~ It is here that we depart somewhat from the proof in [6]. We have

pR(1 — P)(t(Ho — 20) — 2) + (t(Ho — 20) — 2)(1 — P)*s
= 2pr(1 — P)(t(Ho — 20) — Re(2))(1 — P)pr
+pr(1 — P)[pr(1 — P). (Ho — 20)]
+[(Ho — 2). (1 — P)prl(1 — P)pr.
Denote the sum of the last two terms as tT.
Let )\, bethe second smallest eigenvalueof the Sturm-Liouville problem (Equation 8),

with a given by Equation 15. By Lemma 6, A, > 1 for |a|] < 1. It follows that for r
sufficiently large,

pr(1— P)(Ho — 20)(1 — P)pr > 2pr(1 — P)*pr.
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This showsthat for | Re(z/t)| < 1,
20r(1 — P)(t(Ho — 20) — Re(2))(1 — P)or > 2tpi(1 — P)*.
Thuswe have
(55) pR(L— P)*(t(Ho — 20) — 2) + (t(Ho — 20) — 2)(1 — PY*p = 2tp}(1 — P)? +tT.

Let B = (t(Ho — o) — 2. Multiplying Equation 55 by B* on the |eft and by B on the
right, we obtain

B*p&(1 — P)? + (1 — P)?p&B > 2tB*p3(1 — P)?B + tB*TB.
Applying this quadratic form inequality to afunction u of norm one, one obtains

2t pr(1 — P)BU|I2 < 2]|p&(L — P)’BullL + [t(TBu, Bu)|
(56) < 2||pr(1 — P)BU]| .2 + t|(TBu, Bu)|.

Applying the quadratic formulato Equation 56, one obtains

2+/4+8t2|(TBu, Bu)|
1—P)Bul> < .
[[or(1 — P)BU| 2 < at

Thus, for any ¢ > 0, one can choose My such that for t > My,
1
V2

Fix t > Mo. We now show that the term (TBu, Bu) vanishesas R — oo. We expand T:

lpr(L — P)Bull> < —=|(TBu. Bu)| +e.

T = —2(pR)*(1 — P)? + 2pRpr[Dr. P](1 — P) — pi(1 — P)[DZ. P|
(57) +pr[DZ, Plpr(1 — P).

By construction of pr = /Xr, ||p%]| — 0 as R — oo (see Equation 24). Thus the
first two terms in Equation 57 tend to 0 in norm as R — oo. Lemma 6 shows that the
coefficients of pr[D?, P] tend to 0 as R — oo, and thus the last two terms will tend to
0 in norm after being multiplied by B* on the left and B on the right. In particular, for
sufficiently large R,

1

ﬁ((TBu. Bu)) <e.

This proves
HpR(l— P)BUHLZ < 2¢.

Equations A) and B) now follow.
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Step 4. Now choose a positive number ¢ > 0 satisfying zy — ¢ > 0. Choose R
sufficiently large, and h with support of h sufficiently closeto z, so that

(59) Ih(Ho)(P — L)prllLe < /2.

(59) h(Ho)Hoh(Ho) — 2oh(Ho)? > —Zh(Ho)’.
Hence one obtains

(60) h(Ho)[Ho. Alh(Ho) > 4(zo — € /2)h(Ho)” — 2¢ + K.

SteP 5. Recall we defined E, as the spectral projection of H onto the interval I.
We use Lemmas 5 and 11 and Proposition 2 to replace h(Hp) by E;, and Hg by H, in
Equation 60, absorbing the resulting, compact error terms into K. This completes the
proof of Mourre Hypothesis 5, and hence of Proposition 1.

5.1. Appendix Recall that r, sare given by

_Y S )
(612) S—f(x). r=F (—2 +F(X) |,
with FO(x) = f(x) /fD(x).

LEMMA 12. A) Thefunction x = X(r, s) satisfies
x—r=0(f(NfD(r)).

the estimate being uniformin s.
B) Onehas
fOx) f(r)
f() fO(r)

the estimate uniformin s.

—1=O(f(FAM)]| + VP,

ProoF. To prove part A), we proceed as follows. First, since F, F~! are decreasing,
Equation 61 implies the following inequalities:

re,y) <x, r<x(r.s).

Now since
r=F1(y*/2+F(x).
it follows by Taylor’s theorem that

2
X—r = (F‘l)(l)(F(i))yE. %e(r.x)

10 2E(x2
=70
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Sincef isadecreasing function, it follows that

o) 2
(62) r = P

Next, we estimate == (x) Note that

@( X) = @( r+ ((f o ) (7 ))()"(—r), e (r.X).
Note that
e < ol = [ @Y
It follows that ‘@ ‘
—® = —(r)+o(—(x))
and hence

® 0
fT(Y()(l +o(1)) = fT(r).

This, along with Equation 62, proves part A).
Part B) easily follows from Taylor’s theorem and part A).

REMARK. Part A) of Lemma 12 will alow us to replace x by r in the estimates we

make below.
We now estimate the coefficients of E = H — Hg. Recall the formulae for H, Hg for
larger:
_ 1 2 Bs
(63) H——gDr—?D +2%0 Dr+2ﬂ Ds+V,
with
1
- 2R (,BrZO‘Z/2 + 50‘?52/2 - aarrﬁz - azﬁﬁrr + o B0r)
(64) 254 (‘Xsﬁ /2 +5a 53/2 - aassﬁ - 555’5 + aas(fs);
(65) H=-D? —f(r)"?D2.

It will be convenient to adopt the following notation:
Z=1+s(fD)(x)?2.

Then we have the following formulae for «, 5:

_ (20 ( F() Y-y
(66) a(r.s)—( o )(f(l)(r))z 12,
(67) B(r.s) = f(x)Z7Y/2.
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Note that by Equation 3,
(68) limzZ=1.

r—oo

From this and Lemma 12 part B), it isimmediate that lim,_.., o = 1. One calculates

1 (fO) f(r) \ (O f(r) \?
1= (Fo0 ) (( oy ) LU0

Thus by Lemma 12 part B), followed by Equation 3 and Lemma 12 part A),

1— iz = O(fP (%)% + O(f(NfA(n))
o
(69) =0 3).
Next we estimate f =2 — 5~2. Note that Equation 67 along with Taylor’s formula give

11 (f+M)(EOMe) — ST O

fn?z f(r)?f ()2
with |e| < |x—r|. Applying Lemma 12 part A) followed by Equation 4, one obtains

1/f(r)? —1/8% = O(FD(r)?/£(r)?)
(70) =0o(r ).

Before estimating the other coefficientsin E, we will need the following.

i = 9% t0) -1
LEMMA 13. 1) 0X/0r = “58* s Z

i) ax/as=—sf(x)fD(x)z1.

PrOOF. By Equation 61, the derivative J of the transformation (x, y) — (r. S) isgiven

by
O £ 0 (r)
j= (T me ST
\ -0 a1 )
) 0
Hence

Jfl = 271 / f(X) m

fOx) () —of (X)f 1) (X) )
@) (yy2 .
s, 9

Thelemmafollows.
An exercisein differentiation, using Equations 2, 3, 4, 5 for f, and Lemma 1l part A),
now shows that

9°x/ar? = O((fDY?| + [ff D] + [f] + [fIf O] + |f£@]) = O )
a%x/as> = O(|ff M| + |21 Wi @)) = O(r~3)
9% /85> = O(f (F)°| + [F2(FD)?) + V@] + |3 (D)%) = O(r %)
a%x/aras=O(|ff |+ |(fD)?)) = O(r~?)
a3x/aras=0O(f DA +|ffd)) = Or2).
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The following estimates will also be useful:
Zs=0((f™)?)
Zss = O(If D + |(F D) @)
Zis = O(f(l)f(Z))
Z = Off (1)f(2))
Ziy = O(|f?] + |(FV)?] +[ff D))

We now estimate o / o® asr — oo. It is an exercise to show

o (DK £(r)
— —O(f D12 4 1O 4 [FDF( 2
i f(x) f(l)(r)) O(f ™[ + [F1] + [FOD] +|f£)).

It now follows from this, the estimate above on Z;, and Equations 2, 3, 4, 5 for f, that
=5 = Of O+ [ +[fOF@)] + )
It isa simple calculation to show, using the assumptionson f of Equation 4, that
& =or™.

From this and the assumptionson f made in Equation 3, it follows that

(o4

(71) a—; =0(r?).

To estimate 35/ 33, note that by Lemma 12 and the estimate above for Z,
ad _
S (fZ 12y = O(f2).
It follows immediately that
(72) % =0((f/)?) = o).

LEMMA 14. The coefficientsof E = H = Hqg all vanishasr — oo. Furthermore,

i) a2 —1=0(r2),

i) p2—f(r)2=0("1),
i) o /o =0(r2),

iv) 55/63 =0(r ™), (ﬁs/ﬂs)r =0(r?), (ﬁs/ﬁs)rr =0(r?), (,63/53)5 =0(r 2.

V) V=001, Vi = O(r=%/2), Vs = O(r2), Viy = O(r=2).
Vi) 525 ((@B)s/aB) = OF?) for i +j =k < 3.

PROOF. Parts i)-iii) of the lemma have been proven (Equations 69, 70, 71), as has

the first estimate in part iv) (Equation 72). The reminder of the lemma is a long but

straightforward application of differentiation and the estimates above for the derivatives
of x and Z. The proof is omitted.
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