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Abstract

In the present paper, we study the evolution of an overloaded cyclic polling model that
starts empty. Exploiting a connection with multitype branching processes, we derive fluid
asymptotics for the joint queue length process. Under passage to the fluid dynamics, the
server switches between the queues infinitely many times in any finite time interval
causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero.
Moreover, the fluid limit is random. In addition, we suggest a method that establishes
finiteness of moments of the busy period in an M/G/1 queue.
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1. Introduction

This paper is dedicated to stochastic networks called polling models. Broadly speaking,
a polling model can be defined as multiple queues served one at a time by a single server.
As for further details—service disciplines at the queues, routing of the server, and its walking
times from one queue to another—there exist numerous variations motivated by the wide range
of applications. The earliest polling study to appear in the literature seems to be the 1957 study
by Mack [13], who investigated a problem in the British cotton industry involving a single
repairman cyclically patrolling multiple machines, inspecting them for malfunctioning, and
repairing them. Over the past few decades, polling techniques have been of extensive use in
the areas of computer and communication networks as well as manufacturing and maintenance.
Along with that, a vast body of related literature has grown. For overviews of the available
results on polling models and their analysis methodologies, we refer the reader to Takagi [17],
[18], [19], Boxma [3], Yechiali [25] and Borst [2].

Across the great variety of polling models, there exists the ‘classical’one, which was first used
in the analysis of time-sharing computer systems in the early 1970s. This model is cyclic, i.e. if
there are I queues in total, they are visited by the server in the cyclic order 1, 2, . . . , I, 1, 2, . . . .

All of the queues are supposed to be infinite-buffer queues, and to each of them there is a Poisson
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stream of customers with independent and identically distributed (i.i.d.) service times. After all
visits to a queue, i.i.d. walking, or switchover, times are incurred. All interarrival times, service
times and switchover times are mutually independent, and their distributions may vary from
queue to queue as well as the service disciplines. Examples of the most common service
disciplines are exhaustive (the queue is served until it becomes empty), gated (in the course of
a visit, only those customers get served who are present in the queue when the server arrives
at, or polls, the queue), and k-limited (at most k customers get served per visit). The present
paper is also centered around the classical polling model. We assume zero switchover times
and allow a wide class of service disciplines that includes both exhaustive and gated policies
which we discuss later in more detail.

Amongst desirable properties of any service system, the first is stability. So, naturally, the
major part of the polling related literature is focused on the performance of stable models.
Foss and Kovalevskii [7] obtained an interesting result of null recurrence over a thick region
of parameter space for a two-server modification of polling. MacPhee et al. [14], [15] have
recently observed the same phenomenon for a hybrid polling/Jackson network, where the service
rate and customer rerouting probabilities are randomly updated each time the server switches
from one queue to another.

The study of critically loaded polling models was initiated about two decades ago by Coffman
et al. [4], [5], who proved a so-called averaging principle: in the diffusion heavy-traffic limit,
certain functionals of the joint workload process can be expressed via the limit total workload,
which was shown to be a reflected Brownian motion and a Bessel process in the case of zero
and nonzero switchover times, respectively. In subsequent years, the work has been carried
on by Kroese [11], Vatutin and Dyakonova [20], Altman and Kushner [1], van der Mei [21]
and others. In particular, heavy-traffic approximations of the steady state and waiting time
distributions have been derived.

Although overloaded service systems are an existing reality and it is of importance to control
or predict how fast they blow up over time, to the best of the authors’ knowledge, for polling
models, this problem has not been addressed in the literature so far. The present paper aims
to fill in the gap. Moreover, this appears to be a really exciting problem because it reveals the
following unusual phenomenon. Our interest is in fluid approximations, i.e. the limit of the
scaled joint queue length process

(Q1, . . . , QI )
(x(n)·)
x(n)

along a deterministic sequence x(n) → ∞. Remarkably, in contrast to the many basic queueing
systems with deterministic fluid limits, overloaded polling models preserve some randomness
under passage to the fluid dynamics. Other examples of simplistic designs combined with
random fluid limits are the two-queue two-server models of Foss and Kovalevskii [7] and
Kovalevskii et al. [10]. We refer the reader to [10] for an insightful discussion of the nature of
randomness in fluid limits in general and for an overview of the publications on the topic.

To illustrate the key idea that has led us to the result, consider the simple symmetric model
of I = 2 queues with exhaustive service, zero switchover times, and empty initial condition
(without the last assumption the analysis becomes much simpler). In isolation, the queues are
stable and the whole system is overloaded, i.e. 1

2 < λ/μ < 1, where λ and 1/μ are the arrival
rate and the mean service time, respectively (in both queues). Denote the supposedly existing
limit queue length process by (Q1, Q2)(·). Note that, given the limit size of the queue in
service at any nonzero time instant, the entire trajectories of both queues can be restored by the
strong law of large numbers (SLLN). Indeed, the limit total population (Q1 + Q2)(·) grows at
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Figure 1: Fluid limit of a symmetric two-queue model with exhaustive service.

rate 2λ − μ. Because of the symmetry, at any fixed time T > 0, the queues might (in the limit)
be in service with equal probabilities, let it be queue 1. Then in Figure 1 the limit queues 1
and 2 follow the solid and dashed trajectories, respectively. Starting from time T , the limit
queue 1 gets cleared up at rate λ − μ until it becomes empty, say, at time t

(1). After t
(1), when

the limit total population (2λ − μ)t
(1) comes from queue 2 alone, queue 2 gets cleared up at

rate λ−μ until it becomes empty at time t
(2), while queue 1 grows at the arrival rate λ. Moving

forward and backward in this way, we can continue the two trajectories onto [T , ∞) and (0, T ],
respectively, and see that they oscillate at an infinite rate when approaching zero. Now, the same
algorithm applies if t (1) is known, which is the first switching instant after T , and the following
crucial observation makes it possible to find the distribution of t (1) (so the randomness of t (1)

makes the fluid limit random). Let customer 2 be a descendant of customer 1 if customer 2
arrives at the system while customer 1 is receiving service, or customer 2 is a descendant of
a descendant of customer 1. Then the size of the nonempty queue at switching instant forms
a branching process.

The idea of representing arriving customers as descendants of the customer in service, has
appeared in the work of Foss [6] in the studies of an extension of Klimov’s μc-rule, and then in
the study by Resing [16], who introduced a wide class of service disciplines that, for the classical
polling model (more general periodic server routing is also allowed), guarantee the joint queue
length at the successive polling instants of a fixed queue to form a multitype branching process
(MTBP). This embedded MTBP is the cornerstone of the analysis that we carry out in this
paper.

We now describe the class of service disciplines that we allow in this paper. It is a subclass of
the MTBP policies, and we call them multigated meaning that each visit to each queue consists
of a number of consecutive gated service phases. The upper bound on the number of phases,
called the gating index, comes from the input data (together with the interarrival and service
times). Gating indices for different visits to the same queue are i.i.d. random variables whose
distribution may vary from queue to queue, and gating indices for different queues are mutually
independent. Gating indices equal to 1 and ∞ correspond to exhaustive and the classical gated
service, respectively. Multigated policies with deterministic gating indices were studied (and,
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in fact, introduced) recently by van Wijk et al. [24] with the purpose of balancing fairness and
efficiency of polling models. Van der Mei and co-authors [22], [23] consider multi-stage gated
policies, but those are different to those in [24] and here.

Throughout the paper we consider the case of zero switchover times. The case of nonzero
switchover times can be treated with similar methods.

As for the proofs, multiple asymmetric queues with nonexhaustive service create more
work compared with the simple two-queue example discussed above. Knowing the limit total
population is of little use now since it only reduces the dimension of the problem by one.
We show that, in our general situation, the fluid limit queue length trajectory (Q1, . . . , QI )(·)
is determined by 2I random parameters: the earliest polling instants t1, . . . , tI that, in the limit,
follow a fixed time instant, and the limit sizes Q1(t1), . . . , QI (tI ) of the corresponding polled
queues. The overload assumption and multigated policies provide the framework of supercrit-
ical MTBPs, and we can apply the Kesten–Stigum theorem [9], [12] (the classical result on
asymptotics of supercritical MTBPs) to find the distribution of, for example, (Q1, . . . , QI )(t1).
Then suitable SLLNs imply that the other parameters t1, . . . , tI , Q2(t2), . . . , QI (tI ) can be
expressed either via the Kesten–Stigum limit (Q1, . . . , QI )(t1) or via each other. Note also
that the Kesten–Stigum theorem requires certain moments of the offspring distribution to be
finite. The visit at a queue is the longest when service is exhaustive, implying more customers
in the other queues at the end of the cycle. So attempts to satisfy the moment conditions of the
Kesten–Stigum theorem boil down to proving finiteness of the corresponding moment for the
busy period of an M/G/1 queue, which is an interesting and novel result by itself. In addition,
we obtain an estimate for this moment, and our approach is valid for a wide class of regularly
varying convex functions, in particular power and logarithmic functions.

The rest of the paper is organized as follows. Section 2 describes the cyclic polling model
and the class of service disciplines. Section 3 explains the connection between the model and
MTBPs, gives some preliminaries from the theory of MTBPs, and derives characteristics of the
embedded MTBP. In Section 4, we state our main result, the fluid limit theorem, and discuss
the optimal representation of the fluid limit from the computational point of view (Remark 5).
Section 5 proves the results of Section 3; see the proof of Lemma 3 for estimates on the moments
of the busy period of an M/G/1 queue. Section 6 proves the fluid limit theorem. Proofs of
some auxiliary statements are given in Appendix A.

1.1. Notation

With x := y we mean that x is defined as equal to y.
The standard sets are: positive integers N := {1, 2, . . .}; nonnegative integers Z+ := N∪{0};

integers Z := {0, ±1, ±2, . . .}.
All vectors are I -dimensional row vectors, ·� denotes the operation of transposition. All

vectors are typeset in bold italic. The vector with all coordinates equal to 0 is denoted by 0,
with all coordinates equal to 1 by 1, and with coordinate i equal to 1 and the other coordinates
equal to 0 by ei . The following operations are defined on vectors x = (x1, . . . , xI ), y =
(y1, . . . , yI ):

• partial order, x ≤ y if xi ≤ yi for all i;

• L1-norm |x| = ∑I
i=1 |xi |;

• coordinate-wise product x × y = (x1y1, . . . , xI yI );

• power, if all xi > 0, then xy = ∏I
i=1 x

yi

i ;
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• binomial coefficient, if y ≤ x,

(
x

y

)
= ∏I

i=1

(
xi

yi

)
= ∏I

i=1 xi !/yi !(xi − yi)!.

For a real x, let �x	 be its maximum integer lower bound, 
x� its minimum integer upper
bound, and put {x} = x − �x	.

If a superscript is in parentheses, then it is an upper index, otherwise a power.
If random objects X and Y are equal in distribution, we write X

d= Y and say that X is a copy
of Y .

2. Model description

This section contains a detailed description of the cyclic polling model and the class of
service disciplines that we allow for this model. It also specifies the stochastic assumptions.
All stochastic primitives introduced throughout the paper are defined on a common probability
space (�, F , P) with expectation operator E.

2.1. Cyclic polling

Consider a system that consists of multiple infinite-buffer queues labeled by i = 1, . . . , I ,
where I is finite, and a single server. There are external arrivals of customers to the queues
that line up in the corresponding buffers in the order of arrival. The server idles if and only if
the entire system is empty. While the system is nonempty, the server works at unit rate serving
one queue at a time and switching from one queue to another in the cyclic order: after a period
of serving queue i, called a visit to queue i, a visit to queue (i + 1) mod I follows. Note that,
while the system is nonempty, empty queues get visited as well in the sense that, once the server
arrives at (or polls) an empty queue, say at time t , it has to leave immediately, and the visit
in this case is defined to be the empty interval [t, t). Now suppose that, at a particular time
instant, the system empties upon completion of a nonempty visit to queue i. For mathematical
convenience, we assume that such an instant is followed by a single (empty) visit to each of the
empty queues i + 1, . . . , I . Then the server idles until the first arrival into the empty system.
If that arrival is to queue i, a single (empty) visit to each of the empty queues 1, . . . , i − 1
precedes the visit to queue i. In the course of a visit, a number of customers at the head of the
queue get served in the order of arrival and depart. The service disciplines at the queues specify
how many customers should get served per visit; we now proceed with their description.

2.2. Multigated service

By multigated service in a queue we mean that each visit to that queue consists of a number
of consecutive gated service phases. More formally, we say that the server gates a queue
at a particular time instant meaning that the queue is in service at the moment, and all of the
customers found in the queue at the moment are guaranteed to receive service during the current
visit. Customers gated together are served in the order of arrival. For each visit, its gating index
is defined: it is the upper bound on the number of times the server is supposed to gate the queue
in the course of the visit. The gating indices for different queues and for different visits of the
same queue might be different. The first time during a visit when the server gates the queue
is upon polling the queue. The other gating instants are defined by induction: as soon as the
customers found in the queue the last time it was gated have been served, the queue is gated
again provided that the total number of gating procedures is not going to exceed the gating
index. If the queue is empty upon gating, the server switches to the next queue, and thus the
actual number of gating procedures performed during a visit might differ from the gating index
for that visit. Now we define a generic multigated service discipline.
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Definition 1. Let a random variable X take values in Z+ ∪ {∞}. The service discipline at
a particular queue is called X-gated if the gating indices for different visits of this queue are
i.i.d. copies of X. If a gating index equals 0, the server should leave immediately after polling the
queue. The values 1 and ∞ of a gating index correspond to conventional gated and exhaustive
service, respectively.

Remark 1. Multigated service disciplines guarantee the population of the polling system, at
polling instants of a fixed queue, to be an MTBP, laying the foundation for the analysis that we
carry out in this paper. We discuss this connection with MTBPs in detail in the next section.

2.3. Stochastic assumptions

We consider the cyclic polling system described above to evolve in the continuous-time
horizon t ∈ [0, ∞). At t = 0, the system is empty. Arrivals of customers to queue i form
a Poisson process Ei(·) of rate λi . Hence, we introduce the vector of arrival rates

λ := (λ1, . . . , λI ).

Service times of queue i customers are drawn from a sequence {B(n)
i }n∈N of i.i.d. copies of

a positive random variable Bi with a finite mean value 1/μi . Gating indices for queue i are drawn
from a sequence {X(n)

i }n∈N of i.i.d. copies of a random variable Xi taking values in Z+ ∪ {∞}.
The random elements Ei(·), {B(n)

i }n∈N, and {X(n)
i }n∈N, i = 1, . . . , I , are mutually independent.

In addition, we impose the following conditions on the load intensities and service times.

Assumption 1. For all i, λi/μi < 1, and
∑I

i=1 λi/μi > 1.

Assumption 2. For all i, EBi log Bi < ∞.

We study the system behavior in terms of its queue length process

Q(·) = (Q1, . . . , QI )(·),
where Qi(t) is the number of customers in queue i at time t .

3. Connection with MTBPs

This section is devoted to a MTBP embedded in the queue length process Q(·) and enabling
its further analysis.

To start with, we divide the time horizon into pairwise-disjoint finite intervals in such a way
that each interval includes a single (possibly, empty) visit of the server to each of the queues
starting from the first one. Let

[0, ∞) =
⋃

n∈Z+
[t (n), t (n+1)),

[t (n), t (n+1)) = [t (n), t
(n)
1 )

I⋃
i=1

[t (n)
i , t

(n)
i+1),

where:

• t (0) = 0 and t (n) ≤ t
(n)
1 ≤ · · · ≤ t

(n)
I+1 = t (n+1);

• if the system is empty at t (n), then the interval [t (n), t
(n)
1 ) is the period of waiting until

the first arrival, otherwise t (n) = t
(n)
1 ;
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• the interval [t (n)
i , t

(n)
i+1) is the visit to queue i following t (n), with t

(n)
i = t

(n)
i+1 if the queue

is empty.

The interval [t (n), t (n+1)) is called session n. The interval [t (n)
i , t

(n)
i+1) is called visit n to queue i,

and the gating index for this visit is X
(n)
i .

For multigated service disciplines that we consider in this paper, the following holds.

Property 1. For all i = 1, . . . , I , the customers found in queue i at a polling instant get
replaced during the course of the visit by i.i.d. copies of a random vector Ľi = (Ľi,1, . . . , Ľi,I )

that has the distribution of Q(t
(n)
i+1) given that Q(t

(n)
i ) = ei (this distribution does not depend

on n).

By Resing [16], Property 1 implies that the sequence

{Q(t(n))}n∈Z+

forms an MTBP with immigration in state 0. In the rest of the section, we introduce a number
of objects associated with this MTBP and discuss some of its properties.

The random vector Ľi , mentioned in Property 1, we call the visit offspring of a queue i

customer. Define also the visit duration at queue i to be a random variable Vi equal in
distribution to t

(n)
i+1 − t

(n)
i given thatQi(t

(n)
i ) = 1, and the session offspring of a queue i customer

to be a random vector Li = (Li,1, . . . , Li,I ) that has the distribution of Q(t(n+1)) given that
Q(t(n)) = ei . Then the immigration distribution is given by

G(k) := P{Q(t(n+1)) = k | Q(t(n)) = 0} =
∑I

i=1 λiP{Li = k}∑I
i=1 λi

, k ∈ Z
I+.

The following lemma computes the mean values

γi := EVi, m̌i = (m̌i,1, . . . , m̌i,I ) := EĽi , mi = (mi,1, . . . , mi,I ) := ELi .

Lemma 1. For all i,

m̌i,i = E

(
λi

μi

)Xi

and γi = 1 − m̌i,i

μi − λi

,

and, for i = j ,
m̌i,j = λjγi .

For the mi,j , there is a recursive formula:

mI,j = m̌I,j for all j,

and, for i = 1, . . . , I − 1, mi is computed via mi+1,

mi,j = m̌i,j 1(i ≥ j) +
I∑

k=i+1

m̌i,kmk,j for all j .

The proof follows in Section 5.1.
By the Perron–Frobenius theorem (see e.g. [8, Theorem 5.1]), the mean session offspring

matrix M := {mi,j }Ii,j=1 has a positive eigenvalue ρ that is greater in absolute value than any
other eigenvalue of M . The eigenspace associated to ρ is one-dimensional and parallel to
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a vector with all coordinates positive. Consequently, there exist vectors u = (u1, . . . , uI ) and
v = (v1, . . . , vI ) with all coordinates positive such that

Mu� = ρu�, vM = ρv and vu� = 1.

Now introduce an auxiliary MTBP {Z(n)}n∈Z+ with no immigration and such that, given
Z(n) = ei , the next generation Z(n+1) is equal in distribution to Li . Denote by qi the
extinction probability for the process {Z(n)}n∈Z+ given that Z(0) = ei , and introduce the vector
of extinction probabilities

q := (q1, . . . , qI ).

Then the probability for the process {Q(t(n))}n∈Z+ to return to 0 is given by

qG :=
∑

k∈Z
I+

G(k)qk.

Remark 2. Since all time instants t such that Q(t) = 0 are contained among the t (n), the
probability for the process Q(·) to return to 0 also equals qG.

By Assumption 1, the MTBPs {Q(t(n))}n∈Z+ and {Z(n)}n∈Z+ are supercritical (concerning
this, the proof of Lemma 2 is postponed to Appendix A).

Lemma 2. For the Perron–Frobenius eigenvalue ρ and the extinction probabilities qi , we have
ρ > 1 and qi < 1 for all i. By the latter, qG < 1 too.

Assumption 2 guarantees the finiteness of the corresponding moments for the offspring
distribution of the MTBPs {Q(t(n))}n∈Z+ and {Z(n)}n∈Z+ (see Section 5.2 for the proof of
Lemma 3).

Lemma 3. For all i and j , ELi,j log Li,j < ∞, where 0 log 0 := 0 by convention.

Finally, we utilize the Kesten–Stigum theorem for supercritical MTBPs (see, e.g. [9]
and [12]). It is our starting point when proving the convergence results of the next section.
By that theorem and Lemmas 2 and 3, the auxiliary process {Z(n)}n∈Z+ has the following
asymptotics.

Proposition 1. Given Z(0) = ei ,

Z(n)

ρn
→ ζiv almost surely (a.s.) as n → ∞,

where the distribution of the random variable ζi has a jump of magnitude qi < 1 at 0 and
a continuous density function on (0, ∞), and Eζi = ui .

4. Fluid limit

In this section, we present out main result which concerns the behavior of the model under
study on a large time scale.

For each n ∈ Z+, we introduce the scaled queue length process

Q
(n)

(t) := Q(ρnt)

ρn
, t ∈ [0, ∞). (1)

https://doi.org/10.1239/aap/1396360104 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360104


84 M. REMEROVA ET AL.

We are interested in the almost sure limit of the processes (1) as n → ∞, which we call the fluid
limit of the model. It appears that, in order to precisely describe the fluid limit, the information
provided by Theorem 1 below is sufficient.

For n ∈ Z, let

ηn :=
{

min{k : t (k) ≥ ρn} if n ≥ 0,

0 if n < 0.

Theorem 1. There exist constants bi ∈ (0, ∞) and ai = (ai,1, . . . , ai,I ) ∈ [0, ∞)I , i =
1, . . . , I + 1, and a random variable ξ with values in [1, ρ) such that, for all k ∈ Z+ and i,

t
(ηn+k)
i

ρn
→ ρkbiξ and

Q
(
t
(ηn+k)
i

)
ρn

→ ξρkai a.s. as n → ∞. (2)

The bi and ai are given by

b1 = 1, bi+1 = t i +
(

vi

α
+ λi(bi − b1)

)
γi, i = 1, . . . , I, (3)

and

a1 = v

α
, ai+1 = ai + (bi+1 − bi)λ − (bi+1 − bi)μiei , i = 1, . . . , I, (4)

where

α =
∑I

i=1 vi/μi∑I
i=1 λi/μi − 1

.

For x ∈ [1, ρ), the distribution of ξ is given by

P{ξ ≥ x} = 1

1 − qG

∑
k∈Z

I+,

|k|≥1

G(k)
∑
l≤k,
|l|≥1

(
k

l

)
(1 − q)lqk−l

× P

{{
logρ

(
α

I∑
i=1

li∑
j=1

ξ
(j)
i

)}
≥ logρ x

}
,

where ξ
(j)
i , j ∈ N, are i.i.d. random variables with the distribution of ζi given that ζi > 0, and

the sequences {ξ (j)
i }j∈N, i = 1, . . . , I , are mutually independent.

The proof of Theorem 1 combines the Kesten–Stigum theorem with various dynamic
equations and laws of large numbers, see Section 6.

Remark 3. Since t
(n)
I+1 = t

(n)
1 , we also have

bI+1 = ρb1 and aI+1 = ρa1.

Remark 4. There is an alternative way to compute the ai :

a1 = v, ai+1 = ai − ai,iei + ai,im̌i , i = 1, . . . , I,

which implies that ai,j > 0 if |i − j | = 1 and ai,i+1 = 0 if and only if the service discipline
at queue i is exhaustive. See Lemma 7 and Remark 6 in Section 6.2.
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xQi (t/x)
—

rk+1bix
—

rk ai ,ix
—

rk+1 ai ,ix
—

rk bi+1x
—

rk bix
—

li  – mi

li

t

Figure 2: Fluid limit of queue i.

Based on the results of Theorem 1, Theorem 2 below derives the fluid limit equations from
the suitable dynamic equations, see Section 6 for the proof.

Theorem 2. There exists a deterministic function

Q(·) = (Q1, . . . , QI )(·) : [0, ∞) → [0, ∞)I

such that, a.s. as n → ∞,

Q
(n)

(·) → ξQ

( ·
ξ

)
uniformly on compact sets, where the random variable ξ is defined in Theorem 1.

The function Q(·) is continuous and piecewise linear and given by

Q(t) =

⎧⎪⎨⎪⎩
0 if t = 0,

ρkai + (t − ρkbi)λ − (t − ρkbi)μiei if t ∈ [ρkbi, ρ
kbI+1),

i = 1, . . . , I, k ∈ Z,

(5)

or, equivalently, by

for all i, Qi(t) =

⎧⎪⎨⎪⎩
0 if t = 0,

ρkai,i + (λi − μi)(t − ρkbi) if t ∈ [ρkbi, ρ
kbi+1), k ∈ Z,

ρk+1ai,i − λi(ρ
k+1bi − t) if t ∈ [ρkbi+1, ρ

k+1bi), k ∈ Z.

(6)

Remark 5. By (6), the whole process Q(·) is defined by the constants bi and ai,i . The fastest
way to compute the bi and ai,i is using the simultaneous recursion

b1 = 1, ai,i = vi

α
+ λi(bi − b1), bi+1 = bi + ai,iγi, i = 1, . . . , I.

See the last part of the proof of Lemma 7 (namely, (32) and (33)) and Remark 6 in Section 6.2.

Finally, Figure 2 depicts a trajectory of the limiting process ξQ(·/ξ).
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5. Proofs for Section 3

In this section, we prove the properties of the offspring distribution of the embedded MTBP
{Q(t(n))}n∈Z+ .

5.1. Proof of Lemma 1

First we compute the γi . For k ∈ Z+ ∪{∞}, let a random variable Vi(k) be the visit duration
at queue i given that the service discipline at queue i is k-gated. Recall that the gating index
∞ corresponds to exhaustive service, and hence

EVi(∞) = 1

μi − λi

.

Now note that

Vi(0) = 0 and Vi(k + 1)
d= Bi +

Ei(Bi)∑
l=1

V
(l)
i (k), k ∈ Z+. (7)

where the random elements Bi , Ei(·) and {V (l)
i (k)}l∈N are mutually independent, and V

(l)
i (k),

l ∈ N, are i.i.d. copies of Vi(k). Then, for k ∈ Z+,

EVi(k + 1) = 1

μi

+ λi

μi

EVi(k) = 1

μi

(
1 + λi

μi

)
+

(
λi

μi

)2

EVi(k − 1)

= · · ·

= 1

μi

(
1 + λi

μi

+ · · · +
(

λi

μi

)k)
+

(
λi

μi

)k+1

EVi(0)

= 1

μi

1 − (λi/μi)
k+1

1 − λi/μi

, (8)

and

γi =
∑

k∈Z+∪{∞}
P{Xi = k}EVi(k) = 1 − E(λi/μi)

Xi

μi − λi

.

In a similar way, we compute the m̌i,i . For k ∈ Z+ ∪ {∞}, let a random variable Ľi,i (k) be
the queue i visit offspring of a queue i customer given that the service discipline at queue i is
k-gated. Since

Ľi,i (∞) = 0, Ľi,i (0) = 1, and Ľi,i (k + 1)
d=

Ei(Bi)∑
l=1

Ľ
(l)
i,i (k), k ∈ Z+,

where the random elements Bi , Ei(·) and {Ľ(l)
i,i (k)}l∈N are mutually independent, and Ľ

(l)
i,i (k),

l ∈ N, are i.i.d. copies of Ľi,i (k), we have

EĽi,i (k + 1) = λi

μi

EĽi,i (k) = · · · =
(

λi

μi

)k+1

, k ∈ Z+,

m̌i,i = E

(
λi

μi

)Xi

.
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The formulas for the m̌i,j , i = j , and the mi,j follow, respectively, by the representations

Ľi,j
d= Ej(Vi), i = j, (9)

where Vi and Ej(·) are independent, and

Li,j
d=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Ľi,j +

Ľi,i+1∑
l=1

L
(l)
i+1,j + · · · +

Ľi,I∑
l=1

L
(l)
I,j , i ≥ j,

Ľi,i+1∑
l=1

L
(l)
i+1,j + · · · +

Ľi,I∑
l=1

L
(l)
I,j , i < j,

(10)

where L
(l)
i,j , l ∈ N, are i.i.d. copies of Li,j , and the sequences {L(l)

i,j }l∈N, i, j = 1, . . . , I , are
mutually independent and do not depend on the vectors Ľi , i = 1, . . . , I .

5.2. Proof of Lemma 3

The cornerstone of this proof is finiteness of the corresponding moments for the busy periods
of the queues in isolation, which we check with the help of the auxiliary Lemmas 4 and 5 that
follow below together with their proofs.

Lemma 4. Suppose that a function f (·) : [0, ∞) → [0, ∞) is bounded in a finite interval
[0, T ] and nondecreasing in [T , ∞), and that f (x) → ∞ as x → ∞. Suppose also that, for
some (and, hence, for all) c > 1,

lim sup
x→∞

f (cx)

f (x)
< ∞. (11)

Consider an i.i.d. sequence {Y (n)}n∈N of nonnegative, nondegenerate at 0 random variables,
and the renewal process

Y (t) = max

{
n ∈ Z+ :

n∑
k=1

Y (k) ≤ t

}
, t ∈ [0, ∞).

Let τ be a nonnegative random variable which may depend on the sequence {Yn}n∈N. Assume
that Ef (τ) < ∞. Then Ef (Y (τ)) is finite too.

Proof. Without loss of generality, we can assume that the function f (·) is nondecreasing in
the entire domain [0, ∞) (otherwise, instead of f (·), one can consider f̃ (·) = sup0≤y≤· f (y)),
and also that f (·) is right-continuous.

First we show that, if (11) holds for some c > 1, then it holds for any c′ > 1. For c′ = ck ,
k ∈ N, we have

lim sup
x→∞

f (ckx)

f (x)
≤ lim sup

x→∞
f (ckx)

f (ck−1x)
lim sup
x→∞

f (ck−1x)

f (ck−2x)
· · · lim sup

x→∞
f (cx)

f (x)
< ∞.

Then, for c′ > 1 other than powers of c, (11) follows by the monotonicity of f (·).
Condition (11) also implies that

lim
x→∞

log(f (x))

x
= 0. (12)
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Indeed, in (11) take c = e, the exponent. Since M := lim supx→∞ f (ex)/f (x) < ∞,
there exists a large enough T ′ > 0 such that supx∈[T ′,∞) f (ex)/f (x) ≤ 2M . Note that any
x ∈ [eT ′, ∞) admits a unique representation x = ek(x)y(x), where y(x) ∈ [T ′, eT ′) and
k(x) ∈ N. Hence, for any x ∈ [eT ′, ∞),

f (x) = f (ek(x)y(x))

f (ek(x)−1y(x))

f (ek(x)−1y(x))

f (ek(x)−2y(x))
· · · f (ey(x))

f (y(x))
f (y(x)) ≤ (2M)k(x)f (eT ′)

and
log(f (x))

x
≤ k(x) log(2M) + log(f (eT ′))

T ′ek(x)
,

implying (12).
Now define the pseudo-inverse function

f (−1)(y) := inf{x ∈ [0, ∞) : f (x) ≥ y}, y ∈ [0, ∞).

For any c′ > 0, we have

Ef (Y (τ)) ≤
∑
n∈Z+

P{f (Y (τ)) ≥ n}

≤
∑
n∈Z+

P{Y (τ) ≥ f (−1)(n)} ≤
∑
n∈Z+

P

{
f (−1)(n)�∑
k=1

Y (k) ≤ τ

}

≤
∑
n∈Z+

P

{
f (−1)(n)�∑
k=1

Y (k) ≤ c′
f (−1)(n)�
}

︸ ︷︷ ︸
=: �1(c

′)

+
∑
n∈Z+

P{c′f (−1)(n) < τ }
︸ ︷︷ ︸

=: �2(c
′)

.

By condition (11), Ef (τ/c′) < ∞ for any c′ > 0 and, hence,

�2(c
′) ≤

∑
n∈Z+

P

{
f

(
τ

c′

)
≥ n

}
≤ 1 + Ef

(
τ

c′

)
< ∞.

We now pick a c′ such that �1(c
′) < ∞, and this will finish the proof. By Markov’s inequality,

P{∑n
k=1 Y (k) ≤ c′n} = P{e− ∑n

k=1 Y (k) ≥ e−c′n} ≤ (ec′
Ee−Y (1)

)n. Let c′ be small enough so

that c̃ := ec′
Ee−Y (1)

< 1. Since 
f (−1)(n)� = m implies n ≤ f (m + 1), we have

�1(c
′) ≤

∑
m∈Z+

P

{ m∑
k=1

Y (k) ≤ c′m
}
f (m + 1) ≤ 1

c̃

∑
m∈N

c̃ mf (m).

Take an ε ∈ (0, |log(̃c)|). By (12), there exists a large enough N ∈ N such that f (m) ≤ emε

for m > N . Then

�1(c
′) ≤ 1

c̃

N∑
m=1

c̃ mf (m) + 1

c̃

∞∑
m=N+1

(̃ceε)m,

where c̃eε = eε−|log(̃c)| < 1 by the choice of ε and, hence, �1(c
′) < ∞.
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Lemma 5. Consider a sequence {Y (n)}n∈N of nonnegative random variables that are identically
distributed (but not necessarily independent), and also a Z+-valued random variable η that
does not depend on {Y (n)}n∈N. If f (·) : [0, ∞) → R is a convex function, then

Ef

( η∑
k=1

Y (k)

)
≤ Ef (ηY (1)).

Proof. By the convexity of f (·), for any n ∈ Z+,

Ef

( n∑
k=1

Y (k)

)
= Ef

( n∑
k=1

1

n
(nY (k))

)
≤

n∑
k=1

1

n
Ef (nY (k)) = Ef (nY (1)).

Then Lemma 5 follows by the independence between {Y (n)}n∈N and η:

Ef

( η∑
k=1

Y (k)

)
=

∑
n∈Z+

P{η = n}f
( n∑

k=1

Y (k)

)
≤

∑
n∈Z+

P{η = n} Ef (nY (1)) = Ef (ηY (1)).

Now we proceed with the proof of Lemma 3. It suffices to show that

Ef (Li,j ) < ∞, for all i and j,

where

f (x) =
{

0, x ∈ [0, 1],
x log x, x ∈ [1, ∞).

Note that the function f (·) is convex: in (1, ∞), its derivative log(·) + 1 is nondecreasing, and
in the other points, it is easy to check the definition of convexity. Also note that

f (xy) ≤ xf (y) + yf (x), x, y ∈ [0, ∞). (13)

The rest of the proof is divided into three parts. The two key steps are to show that the
f -moments of the visit duration Vi and the same type visit offspring Ľi,i are finite. Then the
finiteness of the f -moments of the session offspring Li,j follows easily.

5.2.1. Finiteness of Ef (Vi). It suffices to show that, in the M/G/1 queue with the arrival
process Ei(·) and service times B

(n)
i , n ∈ N, the f -moment of the busy period is finite.

Suppose that at time t = 0, there is one customer in the queue, and his/her service time B
(0)
i is

equal in distribution to Bi and is independent from Ei(·) and {B(n)
i }n∈N. Let

τi = min{t ∈ (0, ∞) : the queue is empty at t},

τi(0) = 0, τi(1) = B
(0)
i , τi(k + 2) = τi(k + 1) +

Ei(τi (k+1))∑
n=Ei(τi (k))+1

B
(n)
i , k ∈ Z+.

Whilst τi is a busy period, τi(k) is equal in distribution to the visit duration in queue i of the
polling system given that the service discipline in that queue is k-gated, and

τi(k) ↑ τi a.s. as k → ∞.
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Now we show that the moments Ef (τi(k)), k ∈ Z+, are bounded. Then the finiteness of Ef (τi)

follows by the continuity of f (·) and the dominated convergence theorem.
Mimicking (7) , we have

τi(k + 1)
d= B

(0)
i +

Ei(B
(0)
i )∑

l=1

τi(k)(l), k ≥ 1,

where τi(k)(l), l ∈ N, are i.i.d. copies of τi(k) that are independent from B
(0)
i and Ei(·). Then,

by the monotonicity and convexity of f (·), and the auxiliary Lemma 5 combined with (13),

Ef (τi(k)) ≤ Ef (τi(k + 1)) ≤ 1

2
Ef (2B

(0)
i ) + 1

2
Ef

(
2

Ei(B
(0)
i )∑

l=1

τi(k)(l)
)

≤ 1

2
Ef (2B

(0)
i ) + 1

2
Ef (2Ei(B

(0)
i )τi(k)(1))

≤ 1

2
Ef (2B

(0)
i ) + λi

μi

Ef (τi(k)) + 1

2
Eτi(k)Ef (2Ei(B

(0)
i )),

where Ef (2Ei(B
(0)
i )) < ∞ by the auxiliary Lemma 4, and Eτi(k) ≤ 1/(μi −λi) by (8). Thus,

for all k ≥ 2,

Ef (τi(k)) ≤ c

1 − λi/μi

,

where

c = Ef (2B
(0)
i )

2
+ Ef (2Ei(B

(0)
i ))

2(μi − λi)
< ∞.

5.2.2. Finiteness of Ef (Ľi,i ). Note that Lii is bounded stochastically from above by the number
of service completions during the busy period of the M/G/1 queue introduced when proving
the finiteness of Ef (Vi). The number of service completions during the first busy period τi is
given by 1 + Ei(τi), and the finiteness of Ef (1 + Ei(τi)) follows by the auxiliary Lemma 4.

5.2.3. Finiteness of Ef (Li,j ). This part of the proof uses mathematical induction. Now that
we have shown the finiteness of the moments Ef (Ľi,i ), (9) and Lemma 4 imply that

Ef (Ľi,j ) < ∞ for all i and j . (14)

Then we have the basis of induction: Ef (LI,j ) = Ef (ĽI,j ) < ∞ for all j . Suppose that
Ef (Lk,j ) < ∞ for k = i +1, . . . , I and all j . Then the induction step (from i +1 to i) follows
by (10), the convexity of f (·), Lemma 5 combined with (13), and (14).

6. Proofs for Section 4

First we make preparations in Sections 6.1 and 6.2, and then proceed with the proofs of
Theorems 1 and 2 in Sections 6.3 and 6.4, respectively.

6.1. Additional notation

In this section we introduce a number of auxiliary random objects that we operate with when
proving the almost sure convergence results of the paper.
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6.1.1. Queue length dynamics. Define the renewal processes

Bi(t) := max

{
n ∈ Z+ such that

n∑
k=1

B
(k)
i ≤ t

}
, t ∈ [0, ∞),

and the processes

Ii(t) :=
∫ t

0
1(queue i is in service at time s) ds, t ∈ [0, ∞),

that keep track of how much time the server has spent in each of the queues. Then the number
of queue i customers that have departed up to time t is given by

Di(t) := Bi(Ii(t)).

Most of the almost sure convergence results of the paper we derive from the basic equations

Qi(·) = Ei(·) − Di(·).
The preliminary results of Section 6.2 depend on when the system empties for the last time.
The number of indices n such that Q(t(n)) = 0 has a geometric distribution with parameter
qG < 1 (see Lemma 2). Denote by ν the last such index, i.e.

Q(t(ν)) = 0 and Q(t(n)) = 0 for all n > ν.

6.1.2. Ancestor-descendant relationships between customers. By the following three rules, we
define the binary relation ‘is a descendant of’ on the set of customers:

• each customer is a descendant of himself/herself;

• if customer 2 arrives while customer 1 is receiving service (the two customers are allowed
to come from different queues), then customer 2 is a descendant of customer 1;

• if customer 2 is a descendant of customer 1, and customer 3 a descendant of customer 2,
then customer 3 is a descendant of customer 1.

Now suppose that a customer is in position k in queue i at the beginning of visit n to queue i.
Denote by V

(n,k)
i the amount of time during the visit that his/her descendants are in service,

and by Ľ
(n,k)
i,j the number of his/her descendants in queue j at the end of the visit. If a customer

is in position k in queue i at the beginning of session n, denote by L
(n,k)
i,j the number of his/her

descendants in queue j at the end of the session. Introduce also the random vectors

Ľ
(n,k)
i := (Ľ

(n,k)
i,1 , . . . , Ľ

(n,k)
i,I ) and L

(n,k)
i := (L

(n,k)
i,1 , . . . , L

(n,k)
i,I ).

6.2. Preliminary results

In this section, we characterize the asymptotic behavior of the system at the switching
instants t

(n)
i , laying the basis for Theorem 1 that concerns the bigger scale times t

(ηn)
i .

From the Kesten–Stigum theorem, we derive the following result for the t
(n)
1 .
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Lemma 6. There exists a positive random variable ζ such that

Q(t(n))

ρn
→ ζv and

Q(t
(n)
1 )

ρn
→ ζv a.s. as n → ∞.

For x ∈ (0, ∞), the distribution of ζ is given by

P{ζ ≥ x} = 1

1 − qG

∑
n∈Z+

P{ν = n}
∑

k∈Z
I+,

|k|≥1

G(k)
∑
l≤k,
|l|≥1

(
k

l

)
(1 − q)lqk−l

× P

{ I∑
i=1

li∑
j=1

ξ
(j)
i ≥ ρn+1x

}
, (15)

where the random variables ξ
(j)
i are the same as in Theorem 1.

Proof. Since t
(n)
1 = t (n) for n > ν, it suffices to find the almost sure limit of Q(t(n))/ρn.

First we find the asymptotics of the auxiliary MTBP {Z(n)}n∈N (without immigration) under
the assumption that Z(0) is distributed according to {G(k)}k∈Z

I+ (the immigration distribution
for the MTBP {Q(t(n))}n∈N ).

By Proposition 1, if the distribution of Z(0) is {G(k)}k∈Z
I+ , we have

Z(n)

ρn
→

( ∑
k∈Z

I+

1(Z(0) = k)

I∑
i=1

ki∑
j=1

ζ
(j)
i

︸ ︷︷ ︸
=: ζG

)
v a.s. as n → ∞,

where ζ
(j)
i , j ∈ N, are i.i.d. copies of ζi , and the sequences {ζ (j)

i }j∈N, i = 1, . . . , I , are
mutually independent and also independent from Z(0).

With x ∈ (0, ∞), the distribution of ζG is given by

P{ζG = 0} = qG,

P{ζG ≥ x} =
∑

k∈Z
I+,

|k|≥1

G(k)
∑
l≤k,
|l|≥1

(
k

l

)
p(l)

I∏
i=1

P{ζi > 0}li P{ζi = 0}ki−li

︸ ︷︷ ︸
= (1 − q)k−lql

, (16)

where

p(l) = P

{ I∑
i=1

li∑
j=1

ζ
(j)
i ≥ x

∣∣∣∣ ζ
(j)
i > 0 for all i and j = 1, . . . , li

}

= P

{ I∑
i=1

li∑
j=1

ξ
(j)
i ≥ x

}

with the random variables ξ
(j)
i defined in Theorem 1.
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Now, on the event {ν = N},
Q(N+1+n)

ρn
→ ζNv a.s. as n → ∞,

where

P{ζN ∈ ·} = P{ζG ∈ · | Z(n) = 0 for all n ∈ Z+} = P{ζG ∈ · | ζG > 0}.
Then

Q(t(n))

ρn
→

( ∑
N∈Z+

1(ν = N)
ζN

ρN+1︸ ︷︷ ︸
=: ζ

)
v a.s. as n → ∞,

and it is left to check that the distribution of ζ is given by (15).
For x ∈ (0, ∞), we have

P{ζ ≥ x} =
∑

N∈Z+

P{ν = N}P{ζG ≥ ρN+1x}
P{ζG > 0} ,

and then (15) follows by (16).

To deal with the other t
(n)
i , we combine the previous lemma with laws of large numbers.

Lemma 7. For i = 1, . . . , I , there exist constants bi ∈ (0, ∞) and ai = (ai,1, . . . , ai,I ) ∈
[0, ∞)I such that

t
(n)
i

ρn
→ biζ and Q

(
t
(n)
i

ρn

)
→ ζai a.s. as n → ∞.

The bi and ai are given by

b1 =
∑I

i=1 vi/μi∑I
i=1 λi/μi − 1

, bi+1 = bi + (vi + λi(bi − b1))γi, i = 1, . . . , I, (17)

and

a1 = v, ai+1 = ai + (bi+1 − bi)λ − (bi+1 − bi)μiei , i = 1, . . . , I. (18)

The ai also satisfy

a1 = v, ai+1 = ai − ai,iei + ai,im̌i , i = 1, . . . , I. (19)

Remark 6. As we compare (17) and (18) with (3) and (4), it immediately follows that

bi = αbi, ai = αai

Proof of Lemma 7. First we show that the sequences of t
(n)
i /ρn and Q(t

(n)
i ) converge a.s.,

and that their limits satisfy the relations (18). Then we derive equations (17) and (19) relying
on an LLN that, generally speaking, guarantees the bi to be in-probability limits only.
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6.2.1. Asymptotics of t
(n)
1 . By the definition of ν, which is a.s. finite, we have, for n > ν,

t
(n)
1 = t (n) =

ν∑
l=0

(t
(l)
1 − t (l))︸ ︷︷ ︸
=: �

+
I∑

i=1

Di(t
(n))∑

k=1

B
(k)
i .

where � is a.s. finite.
The last equation, with Di(t

(n)) = Ei(t
(n)) − Qi(t

(n)) substituted, can be transformed into

t
(n)
1 = t (n) = � + t (n)

I∑
i=1

∑Di(t
(n))

k=1 B
(k)
i

Di(t(n))

Ei(t
(n))

t (n)︸ ︷︷ ︸
=: �

(n)
1

−ρn
I∑

i=1

∑Di(t
(n))

k=1 B
(k)
i

Di(t(n))

Qi(t
(n))

ρn︸ ︷︷ ︸
=: �

(n)
2

,

and then into
t
(n)
1

ρn
= t (n)

ρn
= �

(n)
2 − �/ρn

�
(n)
1 − 1

. (20)

By the SLLN and Lemma 6,

�
(n)
1 →

I∑
i=1

λi

μi

and �
(n)
2 →

( I∑
i=1

vi

μi

)
ζ a.s. as n → ∞,

which, together with (20), implies that

t (n)

ρn
→ b1ζ and

t
(n)
1

ρn
→ b1ζ a.s. as n → ∞, (21)

where the value of b1 is the one claimed in the lemma.

6.2.2. Convergence of t
(n)
i /ρn. Note that

t
(n)
i+1 − t

(n)
i = Ii(t

(n+1)) − Ii(t
(n)),

and, hence,

t
(n)
i+1

ρn
= t

(n)
i

ρn
+ Ii(t

(n+1))

Bi(Ii(t (n+1)))

Di(t
(n+1))

ρn+1 ρ − Ii(t
(n))

Bi(Ii(t (n)))

Di(t
(n))

ρn
. (22)

By the SLLN,
Bi(Ii(t

(n)))

Ii(t (n))
→ μi a.s. as n → ∞. (23)

By the SLLN, (20) and Lemma 6,

Di(t
(n))

ρn
= Ei(t

(n))

t (n)

t (n)

ρn
− Qi(t

(n))

ρn
→ (λib1 − vi)ζ a.s. as n → ∞. (24)

As we put (21)–(24) together, it follows that there exist positive numbers bi such that

t
(n)
i

ρn
→ biζ a.s. as n → ∞, i = 1, . . . , I + 1. (25)

(The value of b1 is the one claimed in the lemma, and the equations for the other bi that follow
from (21)–(24) are not given here since they will not be used anywhere in the proofs.)
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6.2.3. Convergence of Q(ti)/ρ
n and (18). Since, during the time interval [t (n)

i , t
(n)
i+1), there are

no departures from queues other than i, we have

Qj(t
(n)
i+1) − Qj(t

(n)
i ) = Ej(t

(n)
i+1) − Ej(t

(n)
i ) − 1(j = i)(Bi(Ii(t

(n+1))) − Bi(Ii(t
(n)))). (26)

By the SLLN and (25),

Ej(t
(n)
i+1) − Ej(t

(n)
i )

ρn
→ λj (bi+1 − bi)ζ a.s. as n → ∞. (27)

By (25),

Ii(t
(n))

ρn
=

∑n−1
k=1(t

(k)
i+1 − t

(k)
i )

ρn
→ bi+1 − bi

ρ − 1
ζ a.s. as n → ∞, (28)

which, together with the SLLN, implies that

Bi(Ii(t
(n+1))) − Bi(Ii(t

(n)))

ρn
→ μi(bi+1 − bi)ζ a.s. as n → ∞ (29)

As we put Lemma 6 and (26)–(29) together, it follows that

Q(t
(n)
i )/ρn → ζai a.s. as n → ∞, i = 1, . . . , I + 1,

where the vectors ai = (ai,1, . . . , ai,I ) are given by (18).

Proof of (17) and (19). We derive (17) from the equations

t
(n)
i+1 = t

(n)
i +

Qi(t
(n)
i )∑

k=1

V
(n,k)
i , (30)

Qi(t
(n)
i ) = Qi(t

(n)
1 ) + Ei(t

(n)
i ) − Ei(t

(n)
1 ). (31)

To (30), we apply the following form of the LLN (the proof is postponed to Appendix A).

Proposition 2. Let a random variable Y have a finite mean value and, for each n ∈ N, let
Y

(k)
n , k ∈ N, be i.i.d. copies of Y . Let τn, n ∈ N, be Z+-valued random variables such that τn

is independent of the sequence {Y (k)
n }k∈N for each n and τn → ∞ in probability as n → ∞.

Finally, let a sequence {Tn}n∈N of positive numbers increase to ∞. If there exists an a.s. finite
random variable τ such that τn/Tn → τ in probability as n → ∞, then

τn∑
k=1

Y
(k)
n

Tn

→ τEY in probability as n → ∞.

By (30) and Proposition 2,
bi+1 − bi = ai,iγi . (32)

By (31) and the SLLN,
ai,i = vi + λi(bi − b1). (33)

Then (17) follows by substituting (33) into (32).
Finally, (19) follows as we apply Statement 2 to the equation

Q(t
(n)
i+1) = Q(t

(n)
i ) − Qi(t

(n)
i )ei +

Qi(t
(n)
i )∑

k=1

Ľ
(n,k)
i .
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6.3. Proof of Theorem 1

This proof converts the results of Lemma 7 using the following tool.

Lemma 8. Suppose that random variables Y (n), n ∈ Z, and Y are such that

Y (n)

ρn
→ Yζ a.s. as n → ∞.

Then, for all k ∈ Z,

Y (ηn+k)

ρn
→ Y

ρ�logρ(αζ )	ρk

α
a.s. as n → ∞.

Proof. First we show that, a.s.,

n − ηn = �logρ(αζ )	 for all n big enough. (34)

Indeed, we have logρ(t(n)) − n = logρ(αζ ) + δ(n), where δ(n) → 0 a.s. as n → ∞. Then
ηn = min{k : logρ(t(k)) ≥ n} = min{k : k + δ(k) ≥ n − logρ(αζ )}. Introduce the event
�′ := {δ(n) → 0, logρ(αζ ) /∈ Z}. When estimated at any ω ∈ �′, ηn = 
n − logρ(αζ )� =
n − �logρ(αζ )	 for all n big enough; and P{�′} = 1 since the distribution function of random

variable ζ is continuous in (0, ∞) (see (15), where the random variables ξ
(j)
i have continuous

densities on (0, ∞) by Proposition 1).
Now fix a k ∈ Z. By (34),

Y (ηn+k)

ρn
= Y (ηn+k)

ρηn+k

ρk

ρn−ηn
→ Yζ

ρk

ρ�logρ(αζ )	 a.s. as n → ∞,

where
ζ

ρ�logρ(αζ )	 = ρlogρ(αζ )

ρ�logρ(αζ )	
1

α
= ρ{logρ(αζ )}

α
,

and, hence, Lemma 8 is proven.

Now we proceed with the proof of Theorem 1.
Lemmas 7 and 8 imply that the convergence (2) holds with

ξ := ρ{logρ(αζ )}.

By definition, ξ takes values in [1, ρ), and it is left to calculate its distribution.
Fix an x ∈ [1, ρ). Since

P{ξ ≥ x} = P{{logρ(αζ )} ≥ logρ x}
=

∑
m∈Z

P{m + logρ x ≤ logρ(αζ ) < m + 1}

=
∑
m∈Z

P

{
ρmx

α
≤ ζ <

ρm+1

α

}
,
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we have, by Lemma 6,

P{ξ ≥ x} = 1

1 − qG

∑
n∈Z+

P{ν = n}
∑

k∈Z
I+,

|k|≥1

G(k)
∑
l≤k,
|l|≥1

(
k

l

)
(1 − q)lqk−l

×
∑
m∈Z

P

{
ρm+n+1x

α
≤

I∑
i=1

li∑
j=1

ξ
(j)
i <

ρm+n+2

α

}
︸ ︷︷ ︸

=: �n,l

.

Note that �n,l does not depend on n,

�n,l =
∑
m∈Z

P

{
ρmx

α
≤

I∑
i=1

li∑
j=1

ξ
(j)
i <

ρm+1

α

}

=
∑
m∈Z

P

{
m + logρ x ≤ logρ

(
α

I∑
i=1

li∑
j=1

ξ
(j)
i

)
< m + 1

}

= P

{{
logρ

(
α

I∑
i=1

li∑
j=1

w
(j)
i

)}
≥ logρ x

}
,

and this finishes the proof of Theorem 1.

6.4. Proof of Theorem 2

The proof consists of several steps. Throughout the proof, we assume that the function Q(·)
is defined by (6). First we show that the process ξQ(·/ξ) coincides a.s. with the pointwise

limit of the scaled processes Q
(n)

(·). Then we check that Q(·) satisfies (5) and is continuous.
Finally, we prove that the pointwise convergence of the processes Q

(n)
(·) implies their uniform

convergence on compact sets.

6.4.1. Pointwise convergence. To start with, we define the auxiliary event �′ on which, as
n → ∞,

t
(ηn+k)
i

ρn
→ ρkbiξ and

Q(t
(ηn+k)
i )

ρn
→ ξρkai, i = 1, . . . , I + 1, k ∈ Z,

I (t
(ηn+k)
i )

ρn
→ ρk bi+1 − bi

ρ(ρ − 1)
ξ, i = 1, . . . , I, k ∈ Z,

Ei(t)

t
→ λi and

Bi(t)

t
→ μi, i = 1, . . . , I.

By Theorem 1, (28) and the SLLN, P{�′} = 1.
We will now show that on �′, as n → ∞,

Q
(n)

(t) → ξQ

(
t

ξ

)
for all t ∈ [0, ∞), (35)

where Q(·) is given by (6).
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Fix a queue number i and an outcome ω ∈ �′. All random objects in the rest of this part of
the proof will be evaluated at this ω.

For t = 0, the convergence (35) holds since the system starts empty. For t > 0, we consider
the three possible cases.

Case 1: t ∈ [ρkbiξ, ρkbi+1ξ) for a k ∈ Z. By the definition of �′, for all n big enough,

t
(ηn+k)
i

ρn
< t <

t
(ηn+k)
i+1

ρn
,

implying that queue i is in service during [t (ηn+k)
i , ρnt), and hence

Qi(ρ
nt) = Qi(t

(ηn+k)
i ) + (Ei(ρ

nt) − Ei(t
(ηn+k)
i ) − (Di(ρ

nt) − Di(t
(ηn+k)
i ),

where

Di(ρ
nt) − Di(t

(ηn+k)
i ) = Bi(Ii(t

(ηn+k)
i ) + (ρnt − t

(ηn+k)
i )) − Bi(Ii(t

(ηn+k)
i )).

Again by the definition of �′, the last two equations imply that, as n → ∞,

Q
(n)

i (t) → ρkai,iξ + λi(t − ρkbiξ) − μi(t − ρkbiξ) = ξQi(t/ξ).

Case 2: t ∈ [ρkbi+1ξ, ρk+1biξ) for a k ∈ Z. In this case, for all n big enough,

t
(ηn+k)
i+1

ρn
< t <

t
(ηn+k+1)
i

ρn
,

and, hence, queue i is not in service during [ρnt, t
(ηn+k+1)
i ), i.e.

Qi(t
(ηn+k+1)
i ) = Qi(ρ

nt) + Ei(t
(ηn+k+1)
i ) − Ei(ρ

n),

implying that

Q
(n)

i (t) → ρk+1ai,iξ − λi(ρ
k+1biξ − t) = ξQi

(
t

ξ

)
.

Case 3: t = ρkbiξ for a k ∈ Z. Since, as n → ∞,

t
(ηn+k−1)
i+1

ρn
→ ρk−1bi+1ξ,

t
(ηn+k)
i

ρn
→ t and

t
(ηn+k)
i+1

ρn
→ ρkbi+1ξ

and the limits satisfy the inequality

ρk−1bi+1ξ < t < ρkbi+1ξ,

all n big enough fall into the two sets

N1 := {n : t
(ηn+k)
i ≤ ρnt < t

(ηn+k)
i+1 } and N2 := {n : t

(ηn+k−1)
i+1 < ρnt < t

(ηn+k)
i }.

For l = 1, 2, we have to check that, if the set Nl is infinite, then

Q
(n)

i (t) → ρkai,iξ as n → ∞, n ∈ Nl . (36)

For l = 1, (36) follows along the lines of Case 1. For l = 2, we can prove (36) following the
lines of Case 2 and replacing k + 1 with k.
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6.4.2. Equivalence of (5) and (6). Let Q̃(·) = (Q̃1, . . . , Q̃I )(·) be the unique solution to (5),
whereas Q(·), as before, is given by (5). Fix a queue number i. The slopes of Qi(·) and Q̃i(·)
coincide everywhere. Also Qi(0) = 0 = Q̃i(0), and Qi(ρ

kbi) = ρkai,i = Q̃i(ρ
kbi), k ∈ Z.

Then it is left to check that

Qi(ρ
kbj ) = ρkaj,i = Q̃i(ρ

kbj ), j = i, k ∈ Z. (37)

We have,

ρkbj ∈ [ρk−1bi+1, ρ
kbi) and Qi(ρ

kbj ) = ρk(bi − λi(bi − bj )), j < i,

ρkbj ∈ [ρkbi+1, ρ
k+1bi) and Qi(ρ

kbj ) = ρk(ρbi − λi(ρbi − bj )), j > i.

Then (37) follows from the equations

Qi(t
(n)
i ) = Qi(t

(n)
j ) + Ei(t

(n)
i ) − Ei(t

(n)
j ), j < i,

Qi(t
(n+1)
i ) = Qi(t

(n)
j ) + Ei(t

(n+1)
i ) − Ei(t

(n)
j ), j > i,

by Lemma 7 and Remark 6.

6.4.3. Continuity of Q(·). Fix a queue number i. As defined by (6), the function Qi(·) might
have discontinuities only at t = 0 and t = ρkbi+1, k ∈ Z.

Note that supt∈[ρk−1bi ,ρ
kbi )

Qi(t) = ρkai,i , k ∈ Z. Then

sup
t∈(0,ρkbi )

Qi(t) = sup
l∈Z,l≤k

ρkai,i → 0 as k → −∞,

and, hence, Qi(t) → 0 = Qi(0) as t → 0.
At t = ρkbi+1, k ∈ Z, the function Qi(·) is right-continuous with the left limit given by

limt↑ρkbi+1
Qi(t) = ρk(ai,i + (λi − μi)(bi+1 − bi)). By (4) and (37), we have

lim
t↑ρkbi+1

Qi(t) = Qi(ρ
kbi+1) = ρkai+1,i .

6.4.4. Uniform convergence on compact sets. Define the auxiliary event �′′ on which, as
n → ∞, Q

(n)
(·) → ξQ(·/ξ) pointwise, and Ei(ρ

n·)/ρn → λi · uniformly on compact sets,
i = 1, . . . , I . As follows from the first part of the proof and the functional SLLN, P{�′′} = 1.
For the rest of the proof, we estimate random objects at an outcome ω ∈ �′′. Consider the scaled
departure processes Di(ρ

n·)/ρn = Ei(ρ
n·)/ρn − Q

(n)

i (·). These processes are monotone and,
by the definition of �′′, converge pointwise to the continuous functions λi · −ξQi(·/ξ). Then

they converge uniformly on compact sets, and the same is true for the processes Q
(n)

i (·).

Appendix A

Proof of Lemma 2. Suppose that ρ ≤ 1. Then, by [8, Theorem 7.1], we have qi = 1
for all i and qG = 1. The latter implies that the queue length process Q(·) hits 0 infinitely
many times, and the same holds for the workload process. Let {t (nk)}k∈Z+ be the sequence of
consecutive time instants such that Q(t(nk)) = 0. For different k, the differences t (nk+1) − t (nk)

are bounded from below by the waiting times until the first arrival into the empty system,
which are i.i.d. random variables distributed exponentially with parameter

∑I
i=1 λi . Hence, we
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have t (nk) → ∞ a.s. as k → ∞. This leads to a contradiction with the fact that the
system is overloaded and its total workload grows infinitely large with time (by the SLLN,
(
∑I

i=1
∑Ei(t)

k=1 B
(k)
i − t)/t → ∑I

i=1 λi/μi − 1 > 0 a.s. as t → ∞). Hence, ρ > 1 and,
consequently, [8, Theorem 7.1] implies that qi < 1 for all i and qG < 1.

Proof of Proposition 2. First we show that

τn∑
k=1

Y
(k)
n

τn

→ EY in probability as n → ∞. (38)

By the independence between τn and {Y (k)
n }k∈N, for all N ∈ Z+,

P

{∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

− EY

∣∣∣∣ ≥ ε, τn = N

}
= P

{∣∣∣∣ N∑
k=1

Y
(k)
1

N
− EY

∣∣∣∣ ≥ ε

}
P{τn = N}.

Then, for any M ∈ Z+,

P

{∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

− EY

∣∣∣∣ ≥ ε

}
≤ P{τn ≤ M} + sup

N>M

P

{∣∣∣∣ N∑
k=1

Y
(k)
1

N
− EY

∣∣∣∣ ≥ ε

}
,

and (38) follows as we first let n → ∞, and then M → ∞.
Now that we have shown (38), the statement follows by

P

{∣∣∣∣ τn∑
k=1

Y
(k)
n

Tn

− τEY

∣∣∣∣ ≥ ε

}

≤ P

{∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

∣∣∣∣∣∣∣∣ τn

Tn

− τ

∣∣∣∣ ≥ ε

2

}
+ P

{
τ

∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

− EY

∣∣∣∣ ≥ ε

2

}

≤ P

{
C1

∣∣∣∣ τn

Tn

− τ

∣∣∣∣ ≥ ε

2

}
+ P

{∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

∣∣∣∣ ≥ C1

}

+ P

{
C2

∣∣∣∣ τn∑
k=1

Y
(k)
n

τn

− EY

∣∣∣∣ ≥ ε

2

}
+ P{τ ≥ C2}

as we first let n → ∞, and then C1 → ∞, C2 → ∞.
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