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An Introduction to Crowns in Finite Groups
Gareth Tracey

Notation and Conventions

The following is a list of notation and conventions that will be used
throughout the chapter. In what follows, G is a group.

• The notation H ≤ G means that H is a subgroup of G; while H�G means
that H is a normal subgroup of G.

• For a subgroup H of G, H\G denotes the set of right cosets of H in G.

• CG(H) denotes the centraliser of the subgroup H in G.

• Z(G) denotes the centre of G, while Φ(G) denotes the Frattini subgroup of
G (see Definition 9.9).

• Aut(G) denotes the automorphism group of G.

• For elements x and g of G, we write xg = g−1xg.

• More generally, group actions will always be written on the right. So if the
group G acts on the set Ω, we will write ωg for the image of ω ∈Ω under
the action of g ∈ G.

• For a positive integer k, we will write Gk for the direct product of k copies
of G. That is, Gk is the group which, as a set, is the cartesian product of k
copies of G, equipped with pointwise multiplication.

• coreG(H) :=
⋂

g∈G Hg denotes the core of the subgroup H in G (i.e. the
largest normal subgroup of G contained in H).

• We will write Zn for the cyclic group of order n, and Fp for the finite field of
order p, for p prime.

• Altn and Symn will denote the alternating and symmetric groups of degree
n, respectively.

• We will write SLn(F) and GLn(F) for the special and general linear groups
of dimension n over the field F.

• Abelian groups will always be written multiplicatively.
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318 Gareth Tracey

• The term minimal normal subgroup will always refer to a non-trivial
minimal normal subgroup.

• If f : X → Y is a map between sets X and Y , and A⊆ X , we will write f ↓A

for the restriction of f to A.

9.1 An Introduction to the Theory of Crowns

Roughly speaking, crowns are certain quotients of finite groups which have
a “large” normal subgroup isomorphic to a direct product of simple groups.
In order to define crowns rigorously, a number of basic notions from group
and representation theory are required. In this section, we note the definitions
and results necessary. We then conclude (see Subsection 9.1.3) by defining an
equivalence relation on the set of chief factors of a finite group. This will set us
up to define and study the notion of a crown (see Section 9.2).

9.1.1 Chief Factors in Finite Groups

Recall that for finite groups G and H, H ≤ G means that H is a subgroup of
G, and H�G means that H is a normal subgroup of G. We begin by defining
sections and normal sections in G.

Definition 9.1 Let G be a finite group. A section of G is a group X/Y , where
X ,Y ≤G with Y �X . If X and Y are both normal in G, then we say that X/Y is
a normal section of G.

Thus, the composition factors in a finite group G are all sections of G, but
are not necessarily normal sections. To study crowns in finite groups, we will
be interested in the normal sections in G, and specifically the “minimal normal
sections”. These are called the chief factors of G, and their formal definition is
as follows:

Definition 9.2 Let G be a finite group. A chief factor of G is a normal section
X/Y of G with the property that if Y ≤ Z ≤ X with Z�G, then either Z = X or
Z = Y .

The most common (and some of the most important) examples of chief fac-
tors of a finite group G are the minimal normal subgroups of G. That is, those
normal subgroups N of G with the property that if Z ≤ N with Z�G, then
Z = 1 or Z = N. These can be seen as chief factors of G by taking Y := 1 and
X := N in Definition 9.2. These groups are particularly important for inductive
arguments in finite group theory, and they have a very particular structure:
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9 An Introduction to Crowns in Finite Groups 319

Lemma 9.3 Let G be a finite group, and let N be a minimal normal subgroup
of G. Then N ∼= St is isomorphic to a direct product of t copies of a finite simple
group S.

Proof We prove the lemma by induction on |G|. The socle soc(X) of a fi-
nite group X is the product of its minimal normal subgroups, and is clearly
a non-trivial characteristic subgroup of X . Thus, soc(N), being characteristic
in N �G, is normal in G. Hence, soc(N) = N, since N is a minimal normal
subgroup of G.

Now, let N1 be a minimal normal subgroup of N. Then ∏g∈G Ng
1 is a normal

subgroup of G contained in N, so must be equal to N, by the minimality of N
(we caution the reader that the product ∏g∈G Ng

1 here is not necessarily a direct
product). Choose a set {N1, . . . ,Nr} of G-conjugates Ni of N1 which is minimal
with the property that N = ∏

r
i=1 Ni. Then Ni 6≤∏ j 6=i N j, for each i. Since Ni is

a minimal normal subgroup of N, it follows that Ni intersects ∏ j 6=i N j trivially,
for each i. Hence N = N1× . . .×Nr. If N = G, then G is simple, and the result
follows. So assume that N <G. Then the inductive hypothesis implies that each
Ni is a direct product of isomorphic simple groups: Ni

∼= T ki
i . But all Ni are G-

conjugate, so Ti
∼= Tj for all i, j. This completes the proof.

Since a chief factor X/Y of G is a minimal normal subgroup of G/Y , the
following is immediate.

Corollary 9.4 Let G be a finite group, and let X/Y be a chief factor of G.
Then X/Y ∼= St is isomorphic to a direct product of t copies of a finite simple
group S.

We finish this section by noting that one can inductively define a series of
subgroups of a finite group G as follows: Set X0 := 1, and for i> 1, let Xi/Xi−1

be a minimal normal subgroup of the group G/Xi−1. We then have a series:

1 = X0 < X1 < .. . < Xt = G. (9.1.1)

This is a so-called normal series (i.e. every group Xi in the series is normal in
G, not just in Xi+1).

Definition 9.5 Let G be a finite group. A series (9.1.1) in G is called a chief
series for G.

Like a composition series for G, a chief series for G is unique in the follow-
ing sense: if 1 = X0 < X1 < .. . < Xt and 1 = Y0 < Y1 < .. . < Ys are two chief
series for G, then s = t and there is a bijection f from {Xi/Xi−1 : 1≤ i ≤ t} to
{Yi/Yi−1 : 1 ≤ i ≤ s} such that Xi/Xi−1

∼= f (Xi/Xi−1) for all i. Thus, we may
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320 Gareth Tracey

speak of t as the chief length of G, and the set {Xi/Xi−1 : 1 ≤ i ≤ t} as the set
of chief factors of G.

9.1.2 Representations and the Action of a Finite Group
on Its Chief Factors

Suppose that G and A are finite groups, and that G acts on A via a→ ag, a ∈ A,
g ∈ G. We say that G acts on A via automorphisms if (ab)g=agbg for all
a,b∈A, and all g ∈ G. In this case, the map θg : A→ A, a→ ag, is an auto-
morphism of A. The associated map g→ θg is a homomorphism from G to
Aut(A) with kernel denoted CG(A) = {g ∈ G : ag = a for all a ∈ A}.

For example, a finite group G acts via automorphisms (by conjugation)
on any normal section of G. In particular, if X/Y is a chief factor of G and
X/Y ∼= St , for a simple group S, we get a well-defined map G→ Aut(St) with
kernel denoted CG(X/Y ). The group G/CG(X/Y ) is called the group induced
by G on X/Y . Since G/CG(X/Y ) is isomorphic to a subgroup of Aut(X/Y ), we
will abuse notation and write G/CG(X/Y )≤ Aut(X/Y ).

We would now like to garner more information on the groups induced by
a finite group on its chief factors. Before doing so, we need the following
definition:

Definition 9.6 Let A be a finite group, and let T be a subgroup of the symmetric
group Symt of degree t > 1. Then the (permutational) wreath product of A by
T is the group A oT := At oT , where the action of T on At is defined by

(a1,a2 . . . ,at)
x = (a

1x−1 ,a2x−1 . . . ,atx−1 )

for x ∈ T , ai ∈ A. The subgroups At and T are called the base group and top
group of A oT , respectively.

Definition 9.6 will be useful not only for our next lemma, but also for exam-
ples throughout the chapter.

Now let G be a finite group, and let X/Y be a chief factor of G. By Corollary
9.4, X/Y is isomorphic to a direct product St of t copies of a finite simple
group S. Then S is either abelian (i.e. S ∼= Zp, for a prime p), or S is a non-
abelian simple group. Since the induced group G/CG(X/Y ) is a subgroup of
Aut(X/Y )∼=Aut(St), it will be useful to have information on the automorphism
group of a direct product of isomorphic simple groups.

Lemma 9.7 Let S be a finite simple group, t > 1.

1 If S is abelian (i.e. S∼= Zp for a prime p), then Aut(St)∼= GL t(p).
2 If S is non-abelian, then Aut(St)∼= Aut(S) oSymt .
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9 An Introduction to Crowns in Finite Groups 321

Proof For part (i), note that an elementary abelian p-group is simply a vector
space over Fp, and that an automorphism is an invertible linear map. Part (ii) is
straightforward, but requires a bit more effort. We refer the interested reader to
[3, Theorem 3.1] for the details.

Recall that a representation of a finite group G over a field F is a homomor-
phism from G into GLn(F). We call n the degree of the representation, and the
vector space Fn is called the natural module for G. We remark that we view
matrices as acting on row vectors, so all modules considered here are right
modules. Lemma 9.7(i) then states that each abelian chief factor X/Y ∼= Zt

p of a
finite group G yields a t-dimensional representation for G over the field Fp of p
elements. Similarly, a permutation representation of a finite group G is a homo-
morphism from G into Symn, for some n > 1. The natural number n is called
the degree of the permutation representation. Lemma 9.7(ii) states that each
non-abelian chief factor of a finite group G yields a permutation representation
for G of degree t.

The following lemma gives more information on the groups induced by a
finite group on its chief factors.

Lemma 9.8 Let G be a finite group, and let X/Y be a chief factor of G so
that X/Y is isomorphic to a direct product, St , of t isomorphic copies of a non-
abelian finite simple group S.

(i) If S is abelian (i.e. S∼= Zp for a prime p), then G/CG(X/Y )≤ GLt(Fp)

acts irreducibly on the natural module Ft
p.

(ii) If S is non-abelian, then consider the projection
π : Aut(St)∼= Aut(S) oSymt → Symt . Then π(G/CG(X/Y )) is a transitive
subgroup of Symt .

Proof The proof follows immediately from the fact that if A is normal in G
with Y ≤ A≤ X , then A = Y or A = X .

9.1.3 An Equivalence Relation on a Special Set of Chief Factors
of a Finite Group

Recall that our aim in the first section of these notes is to define an equivalence
relation on the set of chief factors in a finite group G. We are almost ready to
do so. But first, we require a standard definition.

Definition 9.9 Let G be a finite group.

(a) The Frattini subgroup, written Φ(G), of G is the intersection of all
maximal subgroups of G. Thus, Φ(G) :=

⋂
M<maxG M.
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(b) A chief factor X/Y of G is called non-Frattini if X/Y is not a subgroup of
Φ(G/Y ).

Recall that a finite group G is nilpotent if all Sylow subgroups of G are nor-
mal in G. The following lemma states, in particular, that Φ(G) is nilpotent. Its
proof can be found in any standard textbook in finite group theory (for example,
see [6, Chapter 1]).

Lemma 9.10 Let G be a finite group.

(i) The subgroup Φ(G) is nilpotent.

(ii) G is nilpotent if and only if G/Φ(G) is abelian.

(iii) Φ(G) is the set of “non-generators” of G. More precisely,
Φ(G) = {x ∈ G : A⊆ G and 〈x,A〉= G if and only if 〈A〉= G}.

Notice that Lemma 9.10(i) implies that every non-abelian chief factor of
G is non-Frattini. Suppose, then, that X/Y is an abelian chief factor of G. If
X/Y is non-Frattini, then either G = X or G/Y has the form G/Y = X/Y o
H/Y , for some subgroup H of G containing Y . Indeed, X/Y being non-Frattini
implies that there exists a maximal subgroup H/Y of G/Y not containing X/Y .
Then G/Y = (X/Y )(H/Y ). Moreover, (X/Y )∩ (H/Y ) is a normal subgroup
of G/Y (we leave the proof of this fact as an exercise). Thus, (X/Y )∩ (H/Y )
must be either trivial or equal to X/Y . Thus, either G/Y = X/Y or G/Y =

X/Y oH/Y , as claimed. For this reason, the non-Frattini chief factors in a finite
group are often also called the complemented chief factors of G (a complement
of a subgroup H in a finite group G is a subgroup K such that HK = G and
H ∩K = 1).

We would now like to define an equivalence relation on the set of non-
Frattini chief factors in a finite group G. We begin with a definition.

Definition 9.11 A finite group L is called monolithic if L has a unique minimal
normal subgroup N. If in addition N is not contained in Φ(L), then L is called
a monolithic primitive group.

The reason for the terminology “primitive” in Definition 9.11 is that if
N 6≤Φ(L), then there exists a maximal subgroup M of L which does not contain
N. It follows that M is core-free in L (i.e. coreL(M) = 1), and hence that L has
a faithful primitive permutation action on the cosets of M (we will discuss this
in more depth in Subsection 9.2.1).

Our next definition introduces the “crown” terminology:
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9 An Introduction to Crowns in Finite Groups 323

Definition 9.12 Let L be a monolithic primitive group and let N be its unique
minimal normal subgroup. For each positive integer k, let Lk be the k-fold direct
power of L. The crown-based power of L of length k is the subgroup Lk of Lk

defined by

Lk = {(l1, . . . , lk) ∈ Lk | l1 ≡ ·· · ≡ lk mod N}.

Equivalently, Lk = Nk diag(Lk), where diag(Lk) = {(l1, . . . , lk) ∈ Lk | li = l j

for all i, j}.

Example 9.13 Let A := Zp be a cyclic group of order p, with p an odd prime.
Let H = 〈h〉 be a cyclic group of order 2, and define an action of H on the k-fold
direct power Ak by ah = a−1 for all a ∈ Ak. Let L := AoH. Then Ak oH ∼= Lk

is the crown-based power of L of length k.

We are now almost ready to define the equivalence relation on chief factors
in finite groups mentioned at the beginning of the section. First, recall that if a
group G acts on a group A via automorphisms, then we say that A is a G-group.
Some of the most widely studied G-groups are the groups of the form A = Fn,
for some field Fn: these are the F[G]-modules, and the associated maps G→
Aut(A)∼= GLn(F) are the F[G]-representations. Our next definition generalises
some basic notions in representation theory to arbitrary G-groups.

Definition 9.14 Let G be a finite group, and let A and B be G-groups.

(a) If G does not stabilise (set-wise) any non-trivial subgroup of A, then A is
called an irreducible G-group.

(b) If there exists an isomorphism f : A→ B such that f (a)g = f (ag) for all
g ∈ G, then A and B are said to be G-isomorphic.

We are now ready to define G-equivalent G-groups:

Definition 9.15 Let G be a finite group. We say that two G-groups A1 and A2

are G-equivalent and we put A1 ∼G A2, if there are isomorphisms ϕ : A1→ A2

and Φ : A1 oG→ A2 oG such that the following diagram commutes:

1 −−−−→ A1 −−−−→ A1 oG −−−−→ G −−−−→ 1yϕ

yΦ

yid

1 −−−−→ A2 −−−−→ A2 oG −−−−→ G −−−−→ 1.

(9.1.2)

Note that the two rows in the diagram (9.1.2) represent split short exact
sequences. Moreover, the map Ai → Ai oG is the usual inclusion map, while
Ai oG→ G is the quotient map (ai,g) 7→ g for ai ∈ Ai, g ∈ G.
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The following lemma shows that being G-equivalent is weaker than being
G-isomorphic.

Lemma 9.16 Let G be a finite group, and let A1 and A2 be G-groups.

(i) If A1 and A2 are G-isomorphic, then A1 and A2 are G-equivalent.

(ii) In the particular case where A1 and A2 are abelian the converse is true: if
A1 and A2 are abelian and G-equivalent, then A1 and A2 are also
G-isomorphic.

Proof For Part (i), let f : A1 → A2 be a G-isomorphism. Then define the iso-
morphisms ϕ and Φ from Definition 9.15 by ϕ := f and Φ : A1 oG→ A2 oG,
a1g→ f (a1)g. It is straightforward to check that these maps are indeed isomor-
phisms. It is then trivial to see that the diagram (9.1.2) commutes.

For part (ii), assume that A1 and A2 are abelian, and that A1 and A2 are
G-equivalent. Let ϕ and Φ be the maps from Definition 9.15. We claim that
ϕ : A1 → A2 is in fact a G-isomorphism. Indeed, fix g ∈ G, and let a1 be an
element of A1. Then using the commuting diagram (9.1.2), we have

ϕ(ag
1) = Φ(ag

1) = Φ(a1)
Φ(g), (9.1.3)

where the last equality follows since Φ is a group homomorphism. The diagram
(9.1.2), however, implies that Φ(g) = ug, for some u ∈ A2. Since A2 is abelian,
we deduce from equation (9.1.3) that ϕ(ag

1) = Φ(a1)
g. Since Φ ↓A1= ϕ , it fol-

lows that ϕ is a G-isomorphism, as claimed.

Remark Note that if two G-groups A1 and A2 are G-isomorphic, then it follows
from the definition of G-isomorphism that CG(A1) = CG(A2). This is often a
quick and easy way to show that two G-groups are not G-isomorphic.

The following is an example where two G-groups are G-equivalent, but not
G-isomorphic:

Example 9.17 Let G = Alt5×Alt5, and let A1 and A2 be the normal subgroups
A1 := Alt5×1, A2 := 1×Alt5. Using the conjugation actions of G on A1 and
A2, we can construct the (external) semidirect products A1 oG and A2 oG.

Now, CG(A1) = A2 and CG(A2) = A1, so A1 and A2 are not G-isomorphic
(see Remark 9.1.3).

On the other hand, define ϕ : A1 → A2 by ϕ((x,1)) = (1,x), and Φ : A1 o
G→ A2 oG by Φ(((x,1),(g,h))) = ((1, xgh−1),(g,h)). Then it is a routine
exercise to check that ϕ and Φ are isomorphisms, and the associated diagram
as at (9.1.2) commutes.
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9 An Introduction to Crowns in Finite Groups 325

9.2 Equivalence Classes of Non-Frattini Chief Factors

In this section, our aim is to build on our work in Section 9.1 to define the set
of crowns of a finite group G (see Definition 9.30). We begin with a necessary
discussion on permutation group theory.

9.2.1 Primitive Permutation Groups

As Definition 9.11 suggests, primitive permutation groups play an important
role in the theory of crowns in a finite group. In this subsection, we will briefly
recall some important notions from permutation group theory and, in particular,
from the theory of primitive groups.

First, recall from Subsection 9.1.2 that a permutation group on a set Ω is a
subgroup G of the symmetric group Sym(Ω). In this case, Ω is called a G-set.
If Ω is finite of cardinality n, then we say that G is a permutation group of
degree n. Recall also that if G is a finite group acting on a set Ω, then the
associated homomorphism G→ Sym(Ω) is called a permutation representation
of G.

As with G-groups, we have a notion of isomorphism between G-sets.

Definition 9.18 Let G be a finite group. Two G-sets Ω1 and Ω2 are said to be
G-isomorphic if there is a bijection f : Ω1→Ω2 such that f (ωg

1 ) = f (ω1)
g for

all ω1 ∈Ω1, g ∈ G.

The following are special types of permutation representations.

Definition 9.19 Let G be a finite group acting on a finite set Ω.

(a) G is said to act transitively on Ω if, for all ω1, ω2 ∈Ω, there exists g ∈ G
such that ω

g
1 = ω2.

(b) G is said to act primitively on Ω if G acts transitively on Ω and a point
stabiliser Gω = {g ∈ G : ωg = ω} is a maximal subgroup of G.

The following are basic, but important, remarks about transitive and primi-
tive permutation representations of a finite group. See [6, Chapter 8] for a more
detailed discussion.

Remark Suppose that G is a finite group acting transitively on a finite set Ω.

(1) All point stabilisers are G-conjugate, so if one point stabiliser is maximal
in G, then they all are.

(2) Consider the G-set Gω\G (i.e. the set of right G-cosets of Gω , acted upon
by G by right multiplication). Then the G-sets Ω and Gω\G are
G-isomorphic. Thus, each transitive permutation representation of a finite
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group G may be viewed as an action on the set of right cosets of a
subgroup. In particular, each primitive permutation representation of G
can be viewed as an action on the set of right cosets of a maximal
subgroup of G.

(3) The kernel of the action of G on Ω is the set {g∈G : ωg=ω for all ω∈Ω}.
When H is a subgroup of G, the kernel of the action of G on H\G is
precisely the core of H in G.

A famous result, due independently to O’Nan and Scott, characterises the
primitive permutation groups into types, usually based on geometric consid-
erations. In this chapter, we will only be concerned with two of these types,
which we now define. Recall that an almost simple group is a finite group L
such that S≤ L≤ Aut(S) for some finite simple group S.

Let L be an almost simple group, S≤ L≤ Aut(S), such that L/S is cyclic of
prime order. Consider the crown-based power G := L2 = {(l1, l2) ∈ L2 : a1 ≡
a2 mod S}. Fix α ∈ Aut(S) with the property that α centralises the group L/S
(that is, lα S=lS for all l∈L). Then H := {(l, lα) : l∈L} is a subgroup of G=L2.

Exercise 9.20 With notation as above, prove that H is a maximal subgroup
of G.

Definition 9.21 We say that a primitive permutation group has special simple
diagonal type if G = L2 for some almost simple group S≤ L≤Aut(S), and Gω

has the form Gω = {(l, lα) : l ∈ L} for some α ∈ Aut(S).

For our second type, we need to recall that the socle soc(X) of a finite group
X is the product of the minimal normal subgroups of X .

Let W = J oSymt , where J ≤ Sym(∆) is a primitive permutation group on
a finite set ∆, and t > 1. Fix δ ∈ ∆, set I := Jδ , and consider the naturally
embedded subgroup It ≤ Jt ≤W . Set

H := It oSymt
∼= I oSymt ≤W , and Ω := H\W . (9.2.1)

Exercise 9.22 Prove that H is a maximal subgroup of W (i.e. W acts primitively
on Ω). (Hint: show that It ≤H is maximal as a proper Symt -invariant subgroup
of Jt .)

Definition 9.23 We will say that a primitive permutation group G≤ Sym(Ω)

has special product action type if G≤W := J oSymt , where:

(a) J is primitive of special simple diagonal type;
(b) Gω has the form Gω = G∩H, where H is as in (9.2.1) above;
(c) the projection G→ Symt has transitive image; and
(d) G contains the naturally embedded subgroup soc(J)t ≤ Jt ≤W .
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9 An Introduction to Crowns in Finite Groups 327

Note that a primitive permutation group of special simple diagonal type as
in Definition 9.21 above has two minimal normal subgroups, each isomorphic
to S. A primitive permutation group of special product action type, as in Def-
inition 9.23, also has two minimal normal subgroups, each isomorphic to St

(where S2 is the socle of J). By the O’Nan–Scott theorem, these are the only
examples of a primitive permutation group with more than one minimal nor-
mal subgroup. (See [9] for more details, and for proofs of the assertions made
in this paragraph.)

Remark If G is a finite group, then a subgroup H of the direct product Gk of k
copies of G is said to be a diagonal subgroup if H has the form

H = {(g,gα2 , . . . ,gαk) : g ∈ G}

for some automorphisms αi ∈ Aut(G). Thus, in this language a primitive per-
mutation group has simple diagonal type if there exists a finite simple group T
such that T ×T ≤ G≤ Aut(T )×Aut(T ), and a point stabiliser in G intersects
T ×T in a diagonal subgroup.

9.2.2 Back to Equivalence Classes of Chief Factors

Now, we have already seen an example of a primitive permutation group of
simple diagonal type. Namely, take G = Alt5×Alt5 to be as in Example 9.17
(so that T = Alt5), and take Ω to be the set of right cosets of the diagonal
subgroup {(t, t) : t ∈ Alt5}.

For our purposes, the important thing about this group was that it gave us
an example of a finite group G with G-equivalent chief factors which are not
G-isomorphic. We have seen already that two abelian chief factors of G are
G-isomorphic if and only if they are G-isomorphic. By a result of Jiménez-
Seral and Lafuente [7, Proposition 4.1], the non-Frattini chief factors in a finite
group which are G-equivalent but not G-isomorphic occur in a very similar way
to Example 9.17.

Proposition 9.24 Let G be a finite group, and let X1/Y1 and X2/Y2 be non-
Frattini chief factors of G. Then X1/Y1 and X2/Y2 are G-equivalent if and only
if one of the following holds:

(i) X1/Y1 and X2/Y2 are abelian and G-isomorphic; or
(ii) G has a maximal subgroup containing Y1∩Y2 such that

coreG(M) = Y1∩Y2 and G/coreG(M) is a primitive permutation group of
simple diagonal type, with minimal normal subgroups G-isomorphic to
X1/Y1 and X2/Y2.
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Proposition 9.24 gives us a useful way to determine the equivalence classes
of chief factors in a finite group. Some important examples are as follows.

Example 9.25 Let G be a finite p-group, for p prime. Then the non-Frattini
chief factors of G all occur in G/Φ(G) – an elementary abelian p-group. Thus,
all non-Frattini chief factors of G are G-isomorphic to the trivial G-group Fp.

Example 9.26 Let L be a primitive monolithic group with minimal normal
subgroup N, and let G = Lk be the crown-based power of L of length k (see
Definition 9.11). Then G = Nk diag(Lk). In particular, each element of G can
be written uniquely in the form g = (l,n2l, . . . ,nkl), for l ∈ L and ni ∈ N.

For 1≤ i≤ k, let Ai be the ith coordinate subgroup of Nk. That is,

Ai := {(1, . . . ,1, ai︸︷︷︸
ith position

,1 . . . ,1) : ai ∈ N}.

We claim that Ai is G-equivalent to A j for all i, j. Indeed, for fixed 1≤ i, j ≤ k,
define ϕ : Ai→ A j by

ϕ(1, . . . ,1, ai︸︷︷︸
ith position

,1 . . . ,1) := (1, . . . ,1, ai︸︷︷︸
jth position

,1 . . . ,1).

Also, define Φ : Ai oG→ A j oG as follows: for a generic element

x := ((1, . . . ,1, ai︸︷︷︸
ith position

,1 . . . ,1),(l,n2l, . . . ,nkl))

of the external semidirect product Ai oG, define

Φ(x) := ((1, . . . ,1, ain
−1
j︸ ︷︷ ︸

jth position

,1 . . . ,1),(l,n2l, . . . ,nkl)).

It is routine (though non-trivial) to prove that ϕ and Φ are homomorphisms,
and that the associated diagram from (9.1.2) commutes. Thus, all Ai and A j are
G-equivalent.

The following is an illustration of how one finds representatives for the
equivalence classes of non-Frattini chief factors of G in a specific example.

Example 9.27 Consider G = Sym4. Since G is soluble, two chief factors A1

and A2 are G-equivalent if and only if they are G-isomorphic. Now, a chief
series for G is

1 <V4 < Alt4 < G,

where V4 = 〈(1,2)(3,4),(1,3)(2,4)〉. Since G, G/V4
∼= Sym3 and G/Alt4 ∼=

Z2 all have trivial Frattini subgroups, each of the associated chief factors are
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non-Frattini. Furthermore, finding a set of representatives for the G-equivalence
classes of Frattini chief factors for G is easy in this case, since the chief factors
V4, Alt4 /V4 and G/Alt4 are pairwise non-isomorphic as groups, so are cer-
tainly pairwise non-isomorphic as G-groups. Thus, {V4,Alt4 /V4,Sym4 /Alt4}
is a complete set of representatives for the G-equivalence classes of chief fac-
tors in G = Sym4.

Exercise 9.28 Find a set of representatives for the non-Frattini chief factors in
the cases G = GL2(3) and G = Zp oZp−1, where p is prime and Zp−1 acts on
Zp as Aut(Zp).

9.2.3 The Set of Crowns in a Finite Group

In this subsection, we will define the set of crowns in a finite group G. As the
terminology suggests, and as the next lemma shows, crown-based powers play
an important role in this definition.

Lemma 9.29 Let G be a finite group, and let A be a non-Frattini chief factor
of G. With CG(A) as defined on page 320, define LA, the monolithic primitive
group associated to A, by

LA :=

{
Ao (G/CG(A)) if A is abelian,

G/CG(A) otherwise.

Then:

(i) There exists a normal subgroup N of G such that G/N ∼= LA.

(ii) Set RG(A) :=
⋂

N N, where the intersection runs over all N�G such that
G/N ∼= LA. Then G/RG(A)∼= (LA)k, where k is the number of non-Frattini
chief factors in any chief series for G which are G-equivalent to A.

Proof Since (i) is trivial in the case where A is non-abelian, we may assume
that A is abelian.

Let G be a counterexample to (i) of minimal order, and let Y ≤ X be normal
subgroups of G with A = X/Y . By minimality, we may assume that Y = 1, so
that A = X is a minimal normal subgroup of G.

Since A is non-Frattini, A has a complement H in G (see the discussion
after the statement of Lemma 9.10). Thus, G = A o H. It is then clear that
N :=CH(A)�G, and G/N ∼= LA. This proves (i).

We will now prove (ii). To do so, we need a few standard group theoretic
facts. In what follows, let G be a finite group and let N1 and N2 be distinct
normal subgroups of G.
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(1) The factor group G/N1∩N2 is isomorphic to a subgroup of G1×G2,
where Gi := G/Ni via the embedding θ : G/N1∩N2 ↪→ G1×G2,
(N1∩N2)g→ (N1g,N2g) for g ∈ G.

(2) Let πi : G1×G2→ Gi be the canonical projection. Then
πi(θ(G/N1∩N2)) = Gi, for i = 1,2 (we say that G/N1∩N2 projects onto
both G1 and G2). This is clear from the definition of ρ .

(3) If E and F are finite groups and X is a subgroup of E×F projecting onto
both E and F , then XE := X ∩ (E×1)�E, XF := X ∩ (1×F)�F ,
E/XE

∼= F/XF and X/XEXF is a diagonal subgroup of (E/XE)× (F/XF).
We leave the proofs of these assertions as an exercise for the reader.

We now prove (ii), only in the case k = 2 (the proof for larger k follows
the same line of argument, and is left as an exercise for the reader). So let
N1 and N2 be distinct normal subgroups of G with G/N1

∼= G/N2
∼= LA, and

RG(A) = N1 ∩N2. Note that N1,N2 > 1, since N1 and N2 are distinct and have
the same order.

We need to show that G/RG(A)∼= (LA)2. Thus, by factoring out RG(A), we
may assume that RG(A)= 1. Suppose first that A is non-abelian. Then by Propo-
sition 9.24(ii), and since RG(A) = N1∩N2 = 1, we see that G is isomorphic to a
primitive permutation group of simple diagonal type, with two minimal normal
subgroups, each G-isomorphic to A. By definition of primitive groups of simple
diagonal type, we deduce that G∼= (LA)2.

Suppose next that A is abelian. Since RG(A) = 1, Fact (1) above implies that
G embeds as a subgroup of L1×L2

∼= (LA)
2, where Li := G/Ni

∼= LA. To avoid
unnecessary additional notation, we will omit reference to the embedding given
in Fact (1) and assume, for the remainder of the proof, that G is a subgroup of
L1×L2. By Fact (3) and the definition of the embedding G ↪→ L1×L2, we may
then assume that G∩(L1×1) =N1×1; G∩(1×L2) = 1×N2; and G/(N1×N2)

is isomorphic to a diagonal subgroup of L1/N1×L2/N2.
Write Ai for the unique minimal normal subgroup of Li. We claim that Ni =

Ai for each i. To this end, note first that since Ni 6= 1, Ni contains Ai. Also, since
A is abelian and A1 and A2 are G-equivalent, Proposition 9.24 and Remark 9.1.3
imply that CG(A1) =CG(A2). On the other hand, since A1 is the unique minimal
normal subgroup of L1 and A1 is non-Frattini, we have A1 =CL1(A1). Thus, the
centraliser of A1 in G≤ L1×L2 is precisely (A1×1)× (G∩1×L2) = A1×N2.
Similarly, CG(A2) = N1×A2. Since CG(A1) =CG(A2), it follows that N1 = A1

and N2 = A2, as claimed.
Thus, we have shown that G is isomorphic to a subgroup of (LA)

2 containing
A2, and that, under this embedding, G/A2 is isomorphic to a diagonal subgroup
of (LA/A)2. We then see from the definition of (LA)2 that G∼= (LA)2.
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Lemma 9.29 is the key lemma in the theory of crowns, and allows us to
define the following:

Definition 9.30 Let G be a finite group, and let A be a non-Frattini chief factor
of G.

(a) The normal subgroup RG(A) from Lemma 9.29 is called the A-core of G.
(b) The subgroup IG(A) is defined so that IG(A)/RG(A) = soc(G/RG(A)) is

the socle of G/RG(A). We call IG(A)/RG(A) the A-crown of G.
(c) As proved in Lemma 9.29, IG(A)/RG(A)∼= Ak. We define δG(A) := k, so

that δG(A) is the number of non-Frattini chief factors G-equivalent to A in
any chief series for G.

We can now define the set of crowns in a finite group G.

Definition 9.31 Let G be a finite group. The set

{IG(A)/RG(A) : A a non-Frattini chief factor of G}

is called the set of crowns for G.

9.3 An Application of Crowns: Minimal Generator Numbers

In this section, our aim is to demonstrate one of the most useful applications
of the theory of crowns to problems in finite group theory. Namely, finding the
minimal number of elements required to generate a finite group G.

For a finite group G, define d(G) := min{|X | : X ⊆ G,〈X〉 = G} to be the
minimal size of a generating set for G. Thus, if G is cyclic, for example, then
d(G) = 1. If V is an elementary abelian group of order pn, then G may be
viewed as a vector space of dimension n over the finite prime field Fp, and then
d(G) is just the Fp-dimension of G: that is, d(G) = n.

The last example shows that the function d is well behaved when G is a
vector space: namely, d(H) ≤ d(G) when H is a subgroup (i.e. subspace) of
G. But this is not true in general. For example, take G to be the wreath prod-
uct R o S (see Definition 9.6) where R ∼= S ∼= Zp (S is viewed as S = 〈s〉, with
s = (1,2, . . . , p) ∈ Symp in this case). The base group H ∼= Rp of G is elemen-
tary abelian of order pp, and so d(H) = dimFp(H) = p. However, if we set
X := {(r,1 . . . ,1)︸ ︷︷ ︸

p

,s} ⊆G, where r is a generator for R, then it is easy to see that

G = 〈X〉. Thus, d(G) = 2, since G is not cyclic.
The above example shows that, in general, there can be no bound on d(H)

in terms of d(G) for subgroups H of a finite group G, even for finite p-groups.
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Finite p-groups are, however, quite straightforward to deal with when it
comes to finding d(G), as the next result shows.

Proposition 9.32 Let G be a finite group. Then d(G) = d(G/Φ(G)). In par-
ticular, if G is a finite p-group, for p prime, then d(G) is the dimension of the
Fp-vector space G/Φ(G).

Proof That d(G)≤ d(G/Φ(G)) follows immediately from Lemma 9.10 (since
Φ(G) is the set of “non-generators” for G). On the other hand, if X is a generat-
ing set for G, and N is any normal subgroup of G, then the set {xN : x ∈ X} is a
generating set for G. Hence d(G/N)≤ d(G). In particular, d(G/Φ(G))≤ d(G),
so d(G) = d(G/Φ(G)).

Example 9.33 Recall from Example 9.25 that a finite p-group has a unique
G-equivalence class of non-Frattini chief factors, represented by the trivial
Fp[G]-module A := Fp. Since all non-Frattini chief factors of G occur as chief
factors of G/Φ(G), and all chief factors of G/Φ(G) are non-Frattini, we de-
duce that G has precisely d(G) non-Frattini chief factors of G (all G-equivalent
to A). Since G acts trivially on A, we have LA = A (where LA is as in Lemma
9.29), and so G/RG(A) ∼= Ad(G) ∼= (Fp)

d(G). In particular, RG(A) = Φ(G) and
δG(A) = d(G) in this case.

Remark During the course of the proof of Proposition 9.32, we proved that if
G is a finite group and N is a normal subgroup of G, we have d(G/N)≤ d(G).
An often-used inductive tool (for deriving upper bounds on d(G)) is the (almost
trivial) upper bound d(G)≤ d(G/N)+d(N).

As mentioned in Example 9.33, we have d(G) = d(G/RG(A)) for a finite
p-group G, where A is the (up to G-equivalence) unique non-Frattini chief fac-
tor of G (here, RG(A) = Φ(G)). The next result shows that this (perhaps sur-
prisingly) can be made more general.

Theorem 9.1 [4, Theorems 1.4 and 2.7] Let G be a finite group with
d(G) > 3. Then G has a non-Frattini chief factor A such that d(G) =

d(G/RG(A)). Moreover:

(1) if G is abelian, then d(G) = d(G/RG(A))≤ δG(A)+1;
(2) if G is non-abelian, then d(G) = d(G/RG(A))6 dlog|A|

( 90
54 δG(A)

)
+5/4e.

The proof of Theorem 9.1 is beyond the scope of this course, but we refer
the interested reader to [4, Theorems 1.4 and 2.7] for details.

Theorem 9.1 is an extremely useful tool for determining the minimal gener-
ator numbers in various classes of finite groups. We close the section by illus-
trating this with some examples.
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Example 9.34 Let G = T k be the direct product of k copies of a non-abelian
finite simple group T . As mentioned in Remark 9.3, we have d(G)≤ d(G/N)+

d(N) for any normal subgroup N of G. Hence, since every finite simple group
can be generated by two elements, we have d(G)≤ 2k.

Let us see if we can do any better using the theory of crowns. We will assume
that d(T k) > 3. Then k > 2, since d(T ) = 2 (as mentioned above). Now, note
that G is isomorphic to the crown-based power Tk (this is, in some sense, the
“trivial crown-based power associated to T ”). It follows that G has a unique
equivalence class of non-Frattini chief factors, isomorphic to T , by Example
9.26. Clearly, δG(T ) = k. Hence, Theorem 9.1 yields d(G)≤ log|T |(k)+1 – a
far tighter bound than d(G)≤ 2k.

Example 9.35 Let G be the wreath product R o S, where R = Zp is cyclic of
prime order p, and S = Alts is the alternating group of degree s > 5. Consider
the following subgroups of the base group Rs of G:

A1 := {(x,x, . . . ,x) : x ∈ R} and A2 := {(x1,x2, . . . ,xs) : xi ∈ R,
s

∏
i=1

xi = 1}.

The subgroups A1 and A2 are clearly normal in G. Since |A1|= p, A1 is a min-
imal normal subgroup of G. Note that A1 ≤ A2 if p | s, and A1 6≤ A2 otherwise.
Since A2 has order ps−1, we deduce that A1A2 =A2 has index p in Rs if p | s, and
A1A2 = Rs otherwise. It is not difficult to prove (see [8, Proposition 5.4.1]) that
Alts acts irreducibly on the Fp[Alts]-module A1A2/A1, and hence that A1A2/A1

is a chief factor of G. Thus, since G/Rs ∼= Alts is simple, we deduce that

1 < A1 < A1A2 ≤ Rs < G

is a chief series for G. Since |A1A2/A1| = ps−2 if p | s, and |A1A2/A1| = ps−1

otherwise, we have that G has two chief factors G-isomorphic to the triv-
ial Fp[G]-module Fp if p | s, and one chief factor G-isomorphic to Fp other-
wise. Hence, δG(Fp)≤ 2. Furthermore, we clearly have δG(A1A2/A1) = 1, and
δG(Alts) = 1. In fact, it is not difficult to prove that if p | s, then A1 ≤Φ(G), so
δG(A) = 1 for all non-Frattini chief factors A of G. Hence, Theorem 9.1 yields
d(G)≤ 2. Thus, d(G) = 2, since G is not cyclic.

Recommended Further Reading

A more detailed account of crowns in finite groups in given in [2, Chapter 1],
which we can certainly recommend for further reading.

The theory of crowns also naturally arises in the study of the first cohomol-
ogy group of a finite group: see [1] for more details.
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