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J-NONEXPANSIVE MAPPINGS IN UNIFORM SPACES
AND APPLICATIONS

VASIL G. ANGELOV

The purpose of the paper is to introduce a class of "j-nonexpansive" mappings
and to prove fixed point theorems for such mappings. They naturally arise in the
existence theory of functional differential equations. These mappings act in spaces
without specific geometric properties as, for instance, uniform convexity. Critical
examples are given.

1. INTRODUCTION

The main purpose of the present paper is to introduce a class of "j-nonexpansive
mappings" and to prove fixed point theorems for such mappings. They naturally arise
in the existence theory of functional differential equations.

It is well known that Edelstein [4] has been successful in replacing Banach's con-
dition d(Tx, Ty) < nd(x, y) (0 < K < 1) by the weaker one d(Tx, Ty) < d(x, y),
x j= y ((X, d) is a complete metric space and T: X —> X). In the case when
{X, \\-\\x) is a normed space possessing a normal structure, Browder [2], Kirk [7],
Gohde [6] have proved the existence of a fixed point under nonexpansive condition
||Ts; — Tj/Hjt ^ \\x — y\\x . There are many papers dealing with these problems (see, [8,
9]). Other authors have generalised some results to the case of locally convex and uni-
form spaces [5, 13, 12]. Unfortunately, there are no applications of the mentioned fixed
point theorems (see also [3]). That is why we shall consider a class of j-nonexpansive
mappings in the spaces without specific geometric properties as, for instnace, a uniform
convexity. Such assumptions restrict the class of functions in which we can find a so-
lution, and hence the spaces Ll and L°° do not have normal structure. With a view
to applications it is more useful to introduce supplementary conditions on T instead of
requiring that the space X possesses certain geometric properties.

Let (X, A) be a separated uniform space whose uniformity is generated by a satu-
rated family of pseudometrics A = {da(x, y) : a 6 A}, A being an index set [14]. Let
j : A —• A be a mapping of an index set into itself and jK(a) = j{jK~1{^)) stands for
the /cth iterate of j and j°(a) = a, a £ A. Let {$Q(<) : a £ A} (= $) be a family
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of contractive functions possessing properties given in [1]. We shall call a mapping
T: X —• X ^-contractive if

da(Tx, Ty) , V))

for every x, y G X and a G A. In order to weaken the contractive condition we shall
consider j-contractive

da(Tx, Ty) < dKa)(x, y)

and j-nonexpansive
da(Tx, Ty) < dj{a)(x, y)

mappings. The nonexpansive mappings (see [5, 13, 12]) mentioned earlier correspond
to the case when j is an identity mapping.

For further motivation we shall consider Myshkis's example in such a "bad" space

x(t) = x(t-l) + l, t > 0; x(t) -

Step by step we find a solution

x(t) =

1, 0 ^ < < 1

2, 1 < t < 2

n, n — 1 ̂  t < n

Obviously this solution belongs to -^^(R1)- Let us form an operator T: -Lioc(R
1)

•^ioc(R1) by the right-hand side of the above equation. Consider the space •£
with the topology of uniform convergence on the compact subsets of R1 = (—oo, oo),
that is a saturated family of seminorms in A — {||/||jf : K runs over all compact subsets
of R1}, where \\f\\K = esssup{|/(*)| : t £ K}. Then A consists of all com-
pact subsets of R1. The mapping j : A —* A is defined in the following way:
j(K) — {t — 1 : t G K}. It is easy to verify that T is a j-nonexpansive operator,
that is, ||T/-T7||JC<||/-7||i(JO.

But the above constructed solution is obviously a fixed point of the j-nonexpansive
operator T and this solution belongs to ^^.(R1) • It poses the following question: what
are the conditions for the nonlinear j-nonexpansive operator to have a fixed point in
i ~ c ? This fixed point will be a solution of the corresponding nonlinear functional
differential equation whose right-hand side generates T.
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2. FIXED POINT THEOREMS

Now we shall formulate the main results:

THEOREM 1 . Let T: X -* X be a j-nonexpansive mapping. If there exists an
element x0 G X such that:

1. the sequence {Tnxo}%LQ contains a subsequence which converges to a
point of X;

2. for every a € A lim djn,a)(x0, TXQ) = 0:
n—>oo

then T has a fixed point ( £ X.

PROOF: Let {TnKx0}^=1 be a subsequence of {Tnx0}%L0 whose limit is ( £ l .

It is easy to verify that lim Tn"+1a;o = (•
K—>0O

Assume that T( ^ £. This means there exists a0 G A such that dao(T£, () >

0. Let us choose a 6 j~1(ao) — {a £ A : j(a) = ao} and consider the sequence
{(fj(a)(Tn*+1x0, r n « x 0 ) } . Two cases are possible:

1. Finitely many members of the above sequence are different from zero.

Then lim d^a)(T
nK+1x0, TUKX0) = dao(T{, 0 = 0 — a contradiction.

2. Infinitely many members of the above sequence are different from zero.
Denote by {TnK-x0}%1 a subsequence for which d^a)(T

nK'x0, Tni"+1x0)
> 0 0» = l , 2 , . . . ) • Then

dKa)(T
n*'+1x0, Tn*-xQ) ^ djHa){T

n«-xo, T - ' ^ x o ) ^ < ^ . + i ( a ) ( 3 1 * o I *o).

But the subsequence d.nK,+ijra\(Txo, xo) tends to zero as 8 —> oo.
Therefore 0 ^ dao(T(, {) - di(Q)(T^, () < 0. The obtained contradiction
implies T{ = £, which proves the theorem.

D
THEOREM 2 . If, in addition, we assume that:

3. for every x, y G X and a £ A, lim djnia\(x, y) = 0
n—>oo

tiien t ie fixed point of T is unique and ( = lim Tnxo .
n—oo

PROOF: Indeed, let us assume that x ^ y and Tx = x, Ty = y. Then for every
a 6 A we have

da(x, y) = da(Tx, Ty) < dj{a)(x, y) < . . . < djn{a)(x, y) —» 0
n—»oo

which implies uniqueness of the fixed point.

Finally, we have

da(T
nx0, 0 = da(T

nx0, Tn() < djHa)(x0, 0 — 0
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which proves Theorem 2. D

Let us note that condition 1 of Theorem 1 can be satisfied in the applications only
when T is a compact operator. That is why we shall formulate a fixed point theorem
without compactness condition. Therefore condition 2 must be stronger.

THEOREM 3 . Let T: X —* X be a j-nonexpansive mapping and suppose there
oo

exists xo G X such that ^2 ^"(ojl^Oi Txo) is convergent. Then T has a fixed point
n=o }

£ G X and lim Tnx0 = f.
n—»oo

PROOF: AS usual we form a sequence {Tnxo}%L0 and we shall show that it is a

Cauchy one. Indeed, for every a G A we have

m - l

aayl xo, -I xo) ^ / j dayl xo, 1 xo)

m - l

<t=0

which completes the proof. U

THEOREM 4 . If, in addition, we assume that for every x, y € X and a €

A, lim djnra-\(x, y) = 0. then the fixed point of T is unique.
n—»<x> J v '

The proof is analogous to the one of Theorem 2.

3. APPLICATIONS

Here we shall present examples of j-nonexpansive operators arising in the theory
of some classes of functional equations. At first, we shall consider an integral equation
of Abel-Liouville's type with delays. Similar equations without delays have been in-
vestigated by Reinermann and Stallbohm [11]. They obtained the existence of a local
solution by means of Edelstein's fixed point theorem in metric spaces. We shall show
the existence of a global solution using Theorem 1, since the right-hand side of the
mentioned equation generates a j-nonexpansive operator.

Let us consider an initial value problem:

x(t) = 9{t) + f ^ j \ t - sy-'Fit, s, x(ai(s)), ..., x(am(s)))ds, t > 0

x(t) - <p{t), t ^ 0

where the unknown function x(t) takes values in some Banach space B with a norm
| | | | B , while g(i), F(t, s, «i , . . . , um) and <p{t) are prescribed functions, T(/x) is Euler's
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Gamma-function, 0 < fi ^ 1. We shall suppose that g(t) = 0 because in an opposite
case we can put x{t) = x(t) — g(t). Therefore we shall investigate the following initial
value problem:

(2) *(<) = =^-r / (t-s)ll-1F(t,3,x{a1(s))y...,x{am{3)))d3,t>0.

The integral is in Bochner's sense.

Let the following conditions (A) be fulfilled:

(Al) the functions af : R+ —> R+ (£ = 1, . . . , 771) are continuous, 0 ̂  ai(s) <
3 and lim jn(K) — 0 for an arbitrary compact K C R+, where j(K) =

n—>oo

0 ji(K), jt(K) = {at(s) :s£K}; j»(K) = j ^ W ) . J°(K) = K;
1=1

(A2) the function F(t, s, ui, . . . , um) : A x Bm —» B is continuous and
bounded on the bounded subsets of A x Bm and satisfies the condition:

\\F(t, s,uu...,um)- F{t, stuu..., um)\\B < Tifi + 1 ) a > ° ( 3 ) f ] \\ut - ut\\B

/=!

where A = {(<, 3) E R\ x R\ : 0 < 3 ̂  <}, wo(a) = l/^*1), a > 0.

THEOREM 5 . If condition (A) is fuifuUed, then the initial value problem (2) has

a. global continuous solution.

PROOF: AS usually, by C(R]j.;5) we shall denote the space of all continuous
functions / ( t ) : Rlj. -» B. Introduce the set X = {/ 6 C(R]j.;5) : / (0 ) = 0
and ||/i - / 2 | | B = 0(f*) as < -» 0 and t > 0} . X will be regarded as a uniform

space endowed with a saturated family of pseudometrics

dK(fi, /a) = sup{||/i - / 2 | |B«o(*) : < € K}

where K runs over all compact subsets of R+. Consequently the index set consists of

all these compact sets. In view of the choice of uo(t), every dic{fi, JT) is finite.

Define the operator T by the formula:

It can be verified as in [11] that T maps X into itself. In what follows we shall show
that T is j-nonexpansive. Choosing arbitrary / i , /2 £ X and K C R+ we have
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u>o(a)/wo(ai(s)) ^ 1 and then

11(270(0 - (270(OHB < ^ f j ^ [ (' " *)M"1«o («) f ] ||/i («/(')) - /2(a<(*))||B «fa

m

) " " 1 *«*,•< JO ( /

Multiplying by u>o(O w e c a n take a supremum on K which implies d j f (T/ i , T/2)

Further on, it is easy to see that the family of functions {{Tf)(t)} is equicontinuous
on K, when / runs over some bounded subsets of X (the proof is analogous to the
one in [11]) and then the Arzela-Ascoli theorem implies that condition 1 of Theorem 1
is satisfied.

In order to verify condition 2 we choose an element /o € X where /o(O = 0. Then
in view of lim jn(K) = 0 we obtain lim djn/joffo, Tfo) = 0.

n—»oo n—»oo v '

Thus we prove the existence of a solution of the initial value problem (2) belonging

to the set X.

Now we shall formulate theorems which include critical examples from Introduction

and from [10]. We shall consider an initial value problem for the functional equation:

x(t) = F(t, *(A!(0), • • •, *(Am(0)), t > 0
(3)

x{t) = <p(t), t < 0.

ASSUMPTIONS (B).

(Bl) The deviations A*(0: Ri. —» R1 are continuous and lim meas jn{K) =
Tl—*OO

0, where j(K) = \J jt(K), jt{K) = {A/(0 : < € K}, A/(0) ^ 0
1=1

{1 = 1,...,m).

(B2) The function F: R\ x Bm -* B is continuous and

\\F{t, «1, . . . , Um) - F(t, « , , . . . , Um)\\B < n(t, | |Vl - tt, Us . • • • . ll*»m " «m||B)
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where fl is a comparison function, that is, fi(f, vi, . . . , vm): R+ x R™ —>
Rjj. is non-decreasing in vi and fi(t, v, . . . , v) ̂  v . Besides,

(B3) The initial function <p(t) : Ri. —» B is continuous and

¥>(0) = F(0, v(Ai(0)) , . . . , ¥>(Am(0))) = 0.

THEOREM 6 . Let the assumptions (B) hold. Then the problem (3) has a contin-
uous global solution. This solution is unique.

PROOF: Consider the set X consisting of all continuous functions fit): R1 —» B
whose restrictions on (—oo, 0] are equal to <p{t). It becomes a uniform space with a
saturated family of pseudometrics dic(fi, h) = sup{||/i(<) — / 2 ( 0 I I B • * ̂  ^}• The
index set A is A = {K : K runs over all compact subsets of R 1 } .

It is easy to verify that the operator T defined by the formula

(Tf)(t) = <

maps X into itself and is j-nonexpansive. Indeed

||B ^ n(«, djl{K)(f, 7) , . . . , djmW{fu /,))

and then dK(Tf, Tj) < di(K)(flt / 2 ) .
An element f0 G X where /0(<) = y>(<) for t ^ 0 and / = 0 for t > 0

has the property dJn+i(K)(/o. Tfo)/djr>(K)(fo, Tfo)n -* q(K) < 1 and therefore
oo

52 < ĵn(JC)(/o» ^"/o) < oo; that is, problem (3) has a solution in X in view of The-
n=0

orem 3. Uniqueness of this solution follows from the condition lim meas jn(K) = 0
n—*oo

(see Theorem 4) which completes the proof. D

ASSUMPTIONS (C).

(Cl) Functions A*(i): R .̂ - tR 1 (I = 1, 2, . . . , TO) are measurable and possess
the property: an inverse image by A/(t) of any set with measure equal
to zero is measurable. Besides

(Cl.l) lim measjn(K) = 0 or (C1.2) there is n0 such that for n ^ n0
n—»oo

jn(K) c RL.
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(C2) The function F: R\x Bm -> B satisfies the Caratheodory condition and
the inequality

\\F(t, « ! , . . . , « „ ) - F{t, « i , . . . , «OT)||B < 0(<, ||«! - Bi | |B , . . . , | |«m - Um\\B).

Further F(-, Uj, . . . , um) is locally essentially bounded for fixed

, 0, . . . , 0)| |B : t 6 j(K)}

t , O , . . . , 0 ) | | B : < G j

(C3) The initial function <p(t): RL —> B is locally essentially bounded.

THEOREM 7 . Under the assumptions (C) the problem (3) has a unique locally
essentially bounded solution.

The proof is analogous to the one of Theorem 6.

Finally we shall make a short discussion on some important examples (see [10]):

f tx(pt) + h(t), t > 0
x(t) = { where fc(0) = 0 and 0 < /? < 1.

0, t = 0,

The result cited in [10] implies the existence of a solution provided |£/3| < 1. When

I — 1, then it must be assumed that 0 < /? < 1. Theorem 6 implies the existence

of a solution in general, because for every compact K C R!j_ lim meas jn{K) =

lim /3n meas K = 0.
n—»oo

In the Myshkis example (in the Introduction of the present paper) 0 = 1 and the
condition |£/?| < 1 fails; that is, results from [10] are not applicable. But the retardation
A(t) = t — 1 has the property: there is an no such that for every n > no, jn(K) C Rl
for arbitrary K C R+. Then Theorem 7 guarantees the existence of a X~c-solution.
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