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An Introduction to the Monge Problem

We begin this chapter by introducing two formulations of the Monge problem.
The first one is closer to the original one proposed by Monge himself, and is
based on a hardly manageable pointwise transport condition (Section 1.1). The
second one exploits concepts of modern measure theory to formulate a more
flexible transport condition and is the one adopted in the rest of the book (Sec-
tion 1.2). We then close the chapter by building some intuition on the notions of
the transport map and of the optimal transport map. This is achieved by looking
into a simple “duality-based optimality criterion” (Section 1.3) and by exploit-
ing monotonicity in the construction of transport maps, first in dimension 1
(Section 1.4) and then in higher dimensions (Section 1.5).

1.1 The Original Monge Problem

A modern-language proxy for Monge’s original formulation of his eponymous
transport problem can be introduced as follows. Given two smooth, nonnegative
functions ρ,σ : Rn → [0,∞) with the dimensions of mass per unit volume, and
assuming that the mass distributions ρ(x) dx and σ(y) dy have the same (unit)
total mass, i.e.,

∫

Rn

ρ(x) dx =
∫

Rn

σ(y) dy = 1,

we consider smooth, injective maps T : Rn → Rn that transport ρ(x) dx to
σ(y) dy, in the sense that the total infinitesimal volume of the origin mass dis-
tribution ρ(x) dx at x is required to be equal to the total infinitesimal volume
of the final mass distribution σ(y) dy at y = T (x). Since, by the change of vari-
ables formulae for smooth injective maps, we have dy |y=T (x) = | det∇T (x) | dx,
the transport constraint takes the form

| det ∇T (x) | σ(T (x)) = ρ(x), ∀x ∈ {ρ > 0}. (1.1)
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4 An Introduction to the Monge Problem

We call (1.1) the pointwise transport condition from ρ(x) dx to σ(y) dy. Tak-
ing |y − x | as the transport cost1 to move a unit mass from x to y, the original
Monge problem (from ρ(x) dx to σ(y) dy) is the minimization problem

M = inf

{∫

Rn

|T (x) − x | ρ(x) dx : T is smooth, injective and (1.1) holds

}
.

(1.2)
Since work has the dimensions of force times length, if λ denotes the amount of
force per unit mass at our disposal to implement the “instructions” of transport
maps, then λ M is the minimal amount of work needed to transport ρ(x) dx
into σ(y) dy. Since work is a form of (mechanical) energy, (1.2) is, in precise
physical terms, an “energy minimization problem.”

From a mathematical viewpoint – even from a modern mathematical view-
point that takes advantage of all sorts of compactness and closure theorems
discovered since Monge’s time – (1.2) is a very challenging minimization prob-
lem. Let us consider, for example, the problem of showing the mere existence of
a minimizer. The baseline, modern strategy to approach this kind of question,
the so-called Direct Method of the Calculus of Variations, works as follows.
Consider an abstract minimization problem, m = inf{ f (x) : x ∈ X }, defined
by a function f : X → R such that m ∈ R. By definition of infimum of a
set of real numbers, we can consider a minimizing sequence2 for m, that is, a
sequence {x j } j in X such that f (x j ) → m as j → ∞. Assuming that: (i) there
is a notion of convergence in X such that “{ f (x j )} j bounded in R implies, up
to subsequences, that x j → x ∈ X ,” and (ii) “ f (x) ≤ lim inf j f (x j ) whenever
x j → x,” we conclude that any subsequential limit x of {x j } j is a minimizer of
m, since, using in the order, x ∈ X , properties (i) and (ii), and the minimizing
sequence property, we find

m ≤ f (x) ≤ lim inf
j

f (x j ) = m.

With this method in mind, and back to the original Monge problem (1.2), we
assume that M is finite (i.e., we assume the existence of at least one transport
map with finite transport cost) and consider a minimizing sequence {Tj } j for
(1.9). Thus, {Tj } j is a sequence of smooth and injective maps with

σ(Tj (x)) | det∇Tj (x) | = ρ(x), (1.3)

for all x ∈ {ρ > 0} and j ∈ N, and such that

lim
j→∞

∫

Rn

|Tj − x | ρ = M < ∞. (1.4)

1 The transport cost |x − y | is commonly named the “linear cost,” although evidently (x, y) �→
|x − y | is not linear.

2 Notice that a subsequence of a minimizing sequence is still a minimizing sequence.
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1.2 A Modern Formulation of the Monge Problem 5

Trying to check assumption (i) of the Direct Method, we ask if (1.4) implies the
compactness of {Tj } j , say, in the sense of pointwise (a.e.) convergence. Com-
pactness criteria enforcing this kind of convergence, like the Ascoli–Arzelà
criterion, or the compactness theorem of Sobolev spaces, would require some
form of uniform control on the gradients (or on some sort of incremental ratio)
of the maps Tj . It is, however, clear that no control of that sort is contained in
(1.4). It is natural to think about pointwise convergence here, because should
the maps Tj converge pointwise to some limit T , then by Fatou’s lemma, we
would find ∫

Rn

|T − x | ρ ≤ lim
j→∞

∫

Rn

|Tj − x | ρ = M,

thus verifying assumption (ii) of the Direct Method. Finally, even if pointwise
convergence could somehow be obtained, we would still face the issue of show-
ing that the limit map T belongs to the competition class (i.e., T is smooth
and injective, and it satisfies the transport constraint (1.1)) in order to infer∫
Rn
|T − x | ρ ≥ M and close the Direct Method argument. Deducing all these

properties on T definitely requires some form of convergence of ∇Tj toward
∇T (as is evident from the problem of passing to the limit the nonlinear con-
straint (1.3)) – a task that is even more out of reach than proving the pointwise
convergence of Tj in the first place! Thus, even from a modern perspective,
establishing the mere existence of minimizers in the original Monge problem
is a formidable task.

1.2 A Modern Formulation of the Monge Problem

We now introduce the modern formulation of the Monge problem that will
be used in the rest of this book. The first difference with respect to Monge’s
original formulation is that we extend the class of distributions of mass to be
transported to the whole family P (Rn ) of probability measures on Rn . We
usually denote by μ the origin distribution of mass, and by ν the final one,
thus going back to Monge’s original formulation by setting μ = ρ dLn and
ν = σ dLn , where Ln is the Lebesgue measure on Rn . This first change
demands a second one, namely, we need to reformulate the pointwise transport
condition (1.1) in a way that makes sense even when μ and ν are not abso-
lutely continuous with respect to Ln . This is done by resorting to the notion
of push-forward (or direct image) of a measure through a map, which we now
recall (see also Appendix A.4).

We say that T transports μ if there exists a Borel set F ⊂ Rn such that

T : F → Rn is a Borel map,

and μ is concentrated on F (i.e., μ(Rn \ F) = 0).
(1.5)
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6 An Introduction to the Monge Problem

Whenever T : F → Rn transports μ, we can define a Borel measure T#μ (the
push-forward of μ through T) by setting, for every Borel set E ⊂ Rn ,

(T#μ)(E) = μ(T−1(E)),

where T−1(E) =
{
x ∈ F : T (x) ∈ E

}
.

(1.6)

Notice that, according to this definition (T#μ)(Rn ) = μ(F); therefore, the
requirement that μ is concentrated on F in (1.5) is necessary to ensure that
T#μ ∈ P (Rn ) if μ ∈ P (Rn ). Finally, we say that T is a transport map from μ

to ν if

T#μ = ν.

Clearly, the transport condition (1.6) does not require T to be differentiable,
nor injective; moreover, it boils down to the pointwise transport condition (1.1)
whenever the latter makes sense, as illustrated in the following proposition.

Proposition 1.1 Let μ = ρ dLn and ν = σ dLn belong to P (Rn ), μ be
concentrated on a Borel set F, and T : F → Rn be an injective Lipschitz map.
Then, T#μ = ν if and only if

σ(T (x)) | det∇T (x) | = ρ(x), for Ln-a.e. x ∈ F . (1.7)

Proof By the injectivity and Lipschitz continuity of T , the area formula,
∫

T (F )
ϕ(y) σ(y) dy =

∫

F

ϕ(T (x)) | det∇T (x) | σ(T (x)) dx, (1.8)

holds for every Borel function ϕ : T (F) → [0,∞] (see Appendix A.10). Since
T is injective, for every Borel set G ⊂ F, we have G = T−1(T (G)). Therefore,
by definition of T#μ and by (1.8) with ϕ = 1T (G) , we find

(T#μ)(T (G)) = μ
(
T−1(T (G))

)
=

∫

G

ρ,

ν(T (G)) =
∫

T (G)
σ(y) dy =

∫

G

| det∇T (x) | σ(T (x)) dx.

By arbitrariness of G ⊂ F, we find that T#μ = ν if and only if (1.7) holds. �

Based on these considerations, given μ, ν ∈ P (Rn ), we formally introduce
the Monge problem from μ to ν by letting

M1(μ, ν) = inf

{∫

Rn

|T (x) − x | dμ(x) : T#μ = ν

}
. (1.9)

Problem (1.9) is, in principle, more tractable than (1.2). Transport maps are
no longer required to be smooth and injective, as reflected in the new transport
condition (1.6). It is still unclear, however, if, given two arbitrary μ, ν ∈ P (Rn ),
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1.3 Optimality via Duality and Transport Rays 7

there always exists at least one transport map from μ to ν, and if such trans-
port map can be found with finite transport cost; whenever this is not the case,
we have M1(μ, ν) = +∞, and the Monge problem is ill posed. A more fun-
damental issue is that, even in a situation where we know from the onset that
M1(μ, ν) < ∞, it is still very much unclear how to verify assumption (i) in
the Direct Method: what notion of subsequential convergence (for minimizing
sequences {Tj } j ) is needed for passing the transport condition (Tj )#μ = ν to
a limit map T? This difficulty will eventually be solved by working with the
Kantorovich formulation of the transport condition, which requires extending
competition classes for transport problems from the family of transport maps
to that of transport plans. From this viewpoint, the modern formulation of the
Monge problem, as much as the original one, is still somehow untractable by a
direct approach.

We can, of course, formulate the Monge problem with respect to a general3

transport cost c : Rn × Rn → R. Interpreting c(x, y) as the cost needed to
transport a unit mass from x to y (notice that c does not need to be symmetric
in (x, y)!), we define the Monge problem with transport cost c by setting

Mc (μ, ν) = inf

{∫

Rn

c(x,T (x)) dμ(x) : T#μ = ν

}
. (1.10)

Our focus will be largely (but not completely) specific to the cases of the linear
cost c(x, y) = |x − y | and of the quadratic cost c(x, y) = |x − y |2. In the fol-
lowing, when talking about “the Monge problem,” we shall either assume that
the transport cost under consideration is evident from the context or otherwise
add the specification “with general cost,” “with linear cost,” or “with quadratic
cost.” From the historical viewpoint, of course, only the Monge problem with
linear cost should be called “the Monge problem.”

1.3 Optimality via Duality and Transport Rays

We now anticipate an observation that we will formally reintroduce later on4

in our study of the Kantorovich duality theory and that provides a simple and
effective criterion to check the optimality of a transport map in the Monge prob-
lem. The remark is that, if f : Rn → R is a Lipschitz function with Lip( f ) ≤ 1
(briefly, a 1-Lipschitz function), and if T is a transport map from μ to ν, then
∫

Rn

f dν −
∫

Rn

f dμ =
∫

Rn

[ f (T (x)) − f (x)] dμ(x) ≤
∫

Rn

|T (x) − x | dμ(x),

3 In practice, we shall work with transport costs that are at least lower semicontinuous, thus
guaranteeing the Borel measurability of x �→ c (x, T (x)).

4 See Section 3.7.
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8 An Introduction to the Monge Problem

so that one always has

sup
Lip( f )≤1

∫

Rn

f dν −
∫

Rn

f dμ ≤ inf
T#μ=ν

∫

Rn

|T (x) − x | dμ(x). (1.11)

In particular, if for a given transport map T from μ and ν, we can find a 1-
Lipschitz function f such that

f (T (x)) − f (x) = |T (x) − x |, for μ-a.e. x ∈ Rn , (1.12)

then, integrating (1.12) with respect to dμ and exploiting T#μ = ν, we find
∫

Rn

f dν −
∫

Rn

f dμ =
∫

Rn

|T (x) − x | dμ(x),

thus deducing from (1.11) that T is a minimizer in the Monge problem M1(μ, ν)
(and, symmetrically, that f is a maximizer in the “dual” maximization prob-
lem appearing on the left-hand side of (1.11)). We illustrate this idea with the
so-called “book-shifting example.” Given N ≥ 2, let us consider the Monge
problem from μ to ν with

μ =
1[0,N ]

N
dL1, ν =

1[1,N+1]

N
dL1.

We can think of μ as a collection of N books of mass 1/N that we want to shift
to the right (not necessarily in their original order) by a unit length. The map
T (t) = t+1 for t ∈ R (corresponding to shifting each book to the right by a unit
length) is a minimizer in M1(μ, ν) since it satisfies (1.12) with f (t) = t. By
computing the transport cost of T , we see that M1(μ, ν) = 1. We easily check
that transport map S defined by S(t) = t, for t ∈ [1,N], and S(t) = t + N , for
t ∈ [0,1), which corresponds to moving only the left-most book to the right by
a length equal to N , has also a unit transport cost and thus is also optimal in
M1(μ, ν). This shows, in particular, that the Monge problem can admit multiple
minimizers.

It is interesting to notice that the connection between optimal transport maps
and 1-Lipschitz “potential functions” expressed in (1.12) was also clear to
Monge, who rather focused on the more expressive identity

∇ f (x) =
T (x) − x
|T (x) − x | . (1.13)

The relation between (1.13) and (1.12) is clarified by noticing that Lip( f ) ≤ 1
and (1.12) imply that f is affine with unit slope along the oriented segment
from x to T (x), that is,

f
(
x + t (T (x) − x)

)
= f (x) + t |T (x) − x |, ∀t ∈ [0,1], (1.14)
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1.4 Monotone Transport Maps 9

from which (1.13) follows5 if f is differentiable at x. Such oriented segments
are called transport rays, and their study plays a central in the solution to the
Monge problem (presented in Part IV). Notice that, by (1.14), the graph of
f above the union of such segments is a developable surface; this connec-
tion seems to be the reason why Monge started (independently from Euler) the
systematic study of developable surfaces.

1.4 Monotone Transport Maps

In dimension n = 1, it is particularly easy to construct optimal transport maps
by looking at monotone transport maps. Here we just informally discuss this
important idea, which will be addressed rigorously in Chapter 16.

It is quite intuitive that, in dimension 1, moving mass by monotone increas-
ing maps must be a good transport strategy (the book-shifting example from
Section 1.3 confirming that intuition). Considering the case when μ = ρ dL1

and ν = σ dL1, for an increasing map to be a transport map, we only need to
check that the “rate of mass transfer,” i.e., the derivative of the transport map,
is compatible with the transport condition (1.1), and this can be achieved quite
easily by defining T (x) through the formula

∫ x

−∞
ρ =

∫ T (x)

−∞
σ, ∀x ∈ R. (1.15)

In more geometric terms, we are prescribing that the mass stored by μ to
the left of x corresponds to the mass stored by ν to the left of T (x), i.e., we
are setting μ((−∞, x)) = ν((−∞,T (x))); see Figure 1.1. Indeed, an informal
differentiation in x of (1.15) gives

ρ(x) = T ′(x) σ(T (x)),

which (thanks to T ′ ≥ 0) is the pointwise transport condition (1.1). The
map T defined in (1.15) is called the monotone rearrangement of μ into ν

and provides a minimizer in the Monge problem. We present here a simple
argument in support of this assertion, which works under the assumption that
{T ≥ id} = {x : T (x) ≥ x} and {T < id} = {x : T (x) < x} are equal, respec-
tively, to complementary half-lines [a,∞) and (−∞,a) for some a ∈ R: indeed,
in this case, we can consider a 1-Lipschitz function f : R→ R with

f ′(x) = 1{T ≥id} (x) − 1{T<id} (x)

and see that if x ∈ {T ≥ id}, and thus (x,T (x)) ⊂ {T ≥ id} = { f ′ = 1}, we
have

5 See Proposition 18.6 for a formal discussion.
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10 An Introduction to the Monge Problem

ν = σ dL1μ = ρ dL1

T (x)x

Figure 1.1 The amount of mass stored by μ = ρ dL1 to the left of x corresponds
to the amount of mass stored by ν = σ dL1 to the left of T (x); see (1.15).

f (T (x)) − f (x) =
∫ T (x)

x

f ′ = T (x) − x = |T (x) − x | ;

while if x ∈ {T < id}, and thus (T (x), x) ⊂ {T < id} = { f ′ = −1}, we have

f (T (x)) − f (x) =
∫ T (x)

x

f ′ = x − T (x) = |T (x) − x |.

Hence (1.12) holds, and T is optimal in the Monge problem.

1.5 Knothe Maps

Monotone rearrangements can be used to define transport maps in higher
dimensions. Given μ, ν ∈ P (Rn ), with μ, ν << Ln , and an orthonormal basis
τ = {τi }ni=1 of Rn (with coordinates xi = x ·τi ), one can define the Knothe map
T from μ to ν (relative to the orthonormal basis τ) by the following proce-
dure (which, for the sake of simplicity, is discussed only informally here and in
the case n = 2; an expert reader should have little difficulty in formalizing and
extending to higher dimensions the following sketch). Writing μ = ρ dL2 and
ν = σ dL2, we define the first component of T by a monotone rearrangement
depending on the coordinate x1 only, i.e., we set T1(x) = T1(x1) with

∫ x1

−∞
ds
∫

R

ρ(s, t) dt =
∫ T 1 (x1)

−∞
ds
∫

R

σ(s, t) dt, ∀x ∈ R2. (1.16)

In this way, the total mass stored by μ inside the half-plane {z1 < x1} = {z ∈
R

2 : z1 < x1} is set to be equal to the total mass stored by ν inside the half-
plane {z1 < T1(x1)}. This choice of T1 implies that points in the vertical line
{z1 = x1} are to be mapped by T inside the vertical line {z1 = T1(x1)}. Thus,
it is just natural to do this by a monotone rearrangement of ρ(x1, t) dt into
σ(T1(x1), t) dt. Since these two measures have not the same total mass, we
first normalize them into probability measures, and then we define T2(x) =
T2(x1, x2) by setting
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1.5 Knothe Maps 11

∫ x2

−∞ ρ(x1, t) dt
∫
R
ρ(x1, t) dt

=

∫ T 2 (x1,x2)
−∞ σ(T1(x1), t) dt,
∫
R
σ(T1(x1), t) dt

∀x ∈ R2. (1.17)

Informal differentiations of (1.16) in x1 and (1.17) in x2 give
∫

R

ρ(x1, t) dt =
∂T1

∂x1
(x)
∫

R

σ(T1(x1), t) dt

ρ(x)∫
R
ρ(x1, t) dt

=
∂T2

∂x2
(x)

σ(T (x))∫
R
σ(T1(x1), t) dt

,

while, evidently, ∂T1/∂x2 = 0; therefore,

det∇T (x) =
∂T1

∂x1
(x)

∂T2

∂x2
(x) =

ρ(x)
σ(T (x))

.

Therefore (1.1) holds (notice that det∇T (x) ≥ 0), and T transports μ into ν.
The (formal) construction of Knothe maps proves the important point that

there are always transport maps between two Ln-absolutely continuous prob-
ability measures. Moreover, because of their componentwise monotonicity,
Knothe maps can be used in place of optimal transport maps in certain argu-
ments. For example, the proofs of the sharp Euclidean isoperimetric and
Sobolev inequalities presented in Chapter 9 can be rigorously carried over using
Knothe maps rather than (as done in that chapter) optimal transport maps in the
Monge problem with quadratic transport cost (known, more briefly, as Brenier
maps).

This said, when n ≥ 2, we do not expect Knothe maps to be optimal
transport maps for the linear and quadratic transport costs, as explained (only
informally) in the following remarks.

Remark 1.2 (Knothe maps, in general, fail the noncrossing condition) In
general, we do not expect Knothe maps to be optimal in the Monge problem
with linear cost. To explain this point, we informally notice that for a trans-
port map T from μ to ν to be optimal in M1, necessary condition is:6 for every
x1, x2 ∈ spt μ, it holds

|T (x1) − x1 | + |T (x2) − x2 | ≤ |T (x1) − x2 | + |T (x2) − x1 |. (1.18)

Indeed, should (1.18) fail at x1 � x2, then one should be able to define a new
transport map by sending small neighborhoods of x1 and x2, respectively, to

6 In the terminology and notation to be introduced in the next two chapters condition (1.18) can
be seen as a particular case of c-cyclical monotonicity condition (with respect to the linear cost
c (x, y) = |x − y |) applied to sptγT , γT = (id × T )#μ; see Remark 3.10.
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12 An Introduction to the Monge Problem

E1 E3

E2

z1

z2

F2F1 F3

T (x1)

x1

x2

T (x2)

Figure 1.2 In this example μ = 1E dL2 and ν = 1F dL2, where E and F are
two unit area regions, with each obtained as the union of a family of three rect-
angles, denoted respectively by {Ei }3i=1 and {Fi }3i=1. There are horizontal vectors
v1, v2, and v3 such that, if A denotes the diagonal matrix with entries (1/2, 2),
then F1 = E1 + v1, F2 = A[E2]+ v2, and F3 = E3 + v3. The Knothe map T from
μ to ν (in the coordinate system (z1, z2)) is such that T (x) = x + v1 if x ∈ E1,
T (x) = A[x] + v2 if x ∈ E2, and T (x) = x + v3 if x ∈ E3. (Notice that T is
discontinuous on the segments separating E1 from E2 and E2 from E3.) In the
figure, we have selected points x1, x2 ∈ E such that the corresponding segments
[x1, T (x1)] and [x2, T (x2)] intersect. Correspondingly, condition (1.18) does not
hold, and T is not optimal in the Monge problem with linear cost.

small neighborhoods of T (x2) and T (x1), thus lowering the total transport cost.
This said, it is easily seen that (1.18) can be violated by a Knothe map; see, for
example, Figure 1.2.

Remark 1.3 (Knothe maps (in general) are not Brenier maps) In general, we
do not expect Knothe maps to be optimal in the Monge problem with quadratic
cost. Indeed, looking at Theorem 4.2 in Chapter 4 and keeping in mind the
informal character of this remark, this would mean that ∇T = ∇2 f for a con-
vex function f : Rn → R. In particular, ∇T would be symmetric, whereas
gradients of Knothe maps are usually represented by triangular matrices with
nontrivial off-diagonal entries. Incidentally, this method for excluding optimal-
ity in the Monge problem with quadratic cost does not apply to the example of
the Knothe map depicted in Figure 1.2, since, in that case, ∇T takes only two
symmetric values,

A1 =

(
1 0
0 1

)
, A2 =

(
1/2 0
0 2

)
.
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1.5 Knothe Maps 13

However, should ∇2 f = Ai hold on Ei for i = 1,2, we could then find a,b ∈ R2

and c ∈ R such that f (z) = (|z |2/2) + a · z for z ∈ E1 and f (z) = (z1)2/4 +
(z2)2 + b · z + c for z ∈ E2. Notice, however, that there is no way to adjust
a, b, and c so that f is continuous on the vertical segment at the interface
between E1 and E2 ( f being convex on Rn , it must be continuous on E); indeed,
the (z2)2-coefficients of the two polynomials describing f on E1 and E2 are
different.
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