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Abstract

In this paper, we shall prove that any subset of Q, which is closed under complex conjugation, is the
exceptional set of uncountably many transcendental entire functions with rational coefficients. This
solves an old question proposed by Mahler [Lectures on Transcendental Numbers, Lecture Notes in
Mathematics, 546 (Springer, Berlin, 1976)].
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1. Introduction

A transcendental function is a function f (x) such that the only complex polynomial
P satisfying P(x, f (x)) = 0, for all x in its domain, is the null polynomial. For
instance, the trigonometric functions, the exponential function and their inverses are
transcendental functions.

Weierstrass initiated the investigation of the set of algebraic numbers where a given
transcendental entire function f takes algebraic values. Denote by Q the field of
algebraic numbers. For an entire function f , we define the exceptional set S f of f
as

S f = {α ∈ Q : f (α) ∈ Q}.

For instance, the Hermite–Lindemann theorem implies that if S ⊆ Q is finite, then the
exceptional set of exp(

∏
α∈S (z − α)) is S . The exceptional sets of the functions 2z

and ezπ+1 are Q and ∅, respectively, as shown by the Gelfond–Schneider theorem and
Baker’s theorem. Assuming Schanuel’s conjecture, we see that the exceptional sets of
22z

and 222z−1

are Z and Z>0, respectively.
The study of exceptional sets started in 1886 with a letter from Weierstrass to

Strauss. In this letter, Weierstrass conjectured the existence of a transcendental entire
function whose exceptional set is Q. This assertion was proved in 1895 by Stäckel [4],
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who established a much more general result: for each countable subset Σ ⊆ C and each
dense subset T ⊆ C, there exists a transcendental entire function f such that f (Σ) ⊆ T
(Weierstrass’ assertion is obtained by choosing Σ = T = Q).

The question of the possible sets S f has been solved in [1]: any subset of algebraic
numbers is the exceptional set of some transcendental entire function. However, no
information about the arithmetic nature of the coefficients of the Taylor series of f is
obtained in this construction.

In 1965, Mahler [2] investigated the possible exceptional sets of entire functions
having rational coefficients in their Taylor series (the set of these functions is denoted
by T∞). In particular, he proved that if S is closed relative to Q (that is, if α ∈ S ,
then any algebraic conjugate of α also lies in S ), then there is a function f ∈ T∞
such that S f = S . We remark that the function constructed by Mahler is of the form
f (z) =

∑
k≥1 akP1(z) · · ·Pk(z), where {P1(z),P2(z), . . .} is an enumeration of the minimal

polynomials (over Q) of the elements of S . In order to prove that S f = S (in particular,
that f (Q\S ) ∩Q = ∅), Mahler used the observation that P1(β) · · ·Pk(β) , 0 for all k ≥ 1
and β ∈ Q\S , in the case in which S is closed relative to Q. We refer the reader
to [3, 5] (and references therein) for more results about the arithmetic behaviour of
transcendental functions.

Based on his earlier result, in 1976, Mahler [3, page 58] suggested the following
question.

Question 1.1. Does there exist for any choice of S (closed under complex conjugation)
a series f in T∞ for which S f = S ?

The phrase in parentheses does not appear in Mahler’s original question. However,
it is necessary because the exceptional set of a function f ∈ T∞ must be closed under
complex conjugation (since f (α) = f (α)). We interpret ‘any choice’ in Mahler’s
statement to mean ‘any admissible choice’.

In this paper, we give an affirmative answer to Mahler’s Question 1.1. More
precisely, we prove the following theorem.

Theorem 1.2. Every subset of Q, closed under complex conjugation, is the exceptional
set of uncountably many transcendental functions in T∞.

In order to prove this theorem, we shall prove a stronger result about the behaviour
of some functions in K[[z]] for a given dense set K.

Theorem 1.3. Let A be a countable set and let K be a dense subset of C. For each
α ∈ A, fix a dense subset Eα ⊆ C. Then there exist uncountably many transcendental
entire functions f ∈ K[[z]] such that f (α) ∈ Eα for all α ∈ A.

We remark on some differences between our construction in Theorem 1.3 and the
one in [1]. The functions in [1] have the form f (z) =

∑
k≥0 akPk(z) and in each inductive

step the coefficient an is chosen to ensure that f (β) ∈ Eβ. Unfortunately, in that case,
it is not possible to specify the arithmetic nature of an. In our present construction,
in each inductive step, we shall apply an intermediate step (the construction of the
functions fm,1(z) below) in order to ensure that an has the desired properties.
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2. The proofs

Proof that Theorem 1.3 implies Theorem 1.2. In the statement of Theorem 1.3,
choose A = Q and K = Q∗ + iQ. Write S = {α1, α2, . . .} and Q\S = {β1, β2, . . .} (one
of them may be finite). Now, we define

Eα =

Q if α ∈ S ,
K · πn if α = βn.

By Theorem 1.3, there exist uncountably many transcendental entire functions
f (z) =

∑
k≥0 akzk ∈ K[[z]] such that f (α) ∈ Eα for all α ∈ Q. Now, define the function

ψ : C→ C by

ψ(z) =
f (z) + f (z)

2
.

Note that ψ(z) =
∑

k≥0<(ak)zk ∈ T∞ is transcendental (since <(ak) , 0 for all k ≥ 0).
Thus, it suffices to prove that S ψ = S . In fact, if α ∈ S , then α ∈ S and thus f (α)
and f (α) are algebraic numbers and so is ψ(α). In the case of α = βn, we must
distinguish two cases: when βn ∈ R, then ψ(α) = <( f (βn)) is transcendental, since
f (βn) ∈ K · πn. When βn < R, then βn = βm for some m , n. Thus, there exist nonzero
algebraic numbers γ1, γ2 such that

ψ(βn) =
γ1π

n + γ2π
m

2
,

which is transcendental, since Q is algebraically closed and π is transcendental. In
conclusion, ψ ∈ T∞ is a transcendental function with S ψ = S . �

Proof of Theorem 1.3. Let {α1, α2, α3, . . .} be an enumeration of A. (Without loss of
generality, we assume that 0 < A.)

We shall construct the function f (z) =
∑

n>0 εnPn(z), where Pn(z) ∈ Q[z] has degree
mn. The polynomials Pn and the constants εn will be chosen conveniently so that f
will satisfy the desired conditions.

Our first condition is 0 < |εn| < (L(Pn)mn!)−1 =: tn for all n ≥ 0. (Here L(P) denotes
the length of P.) Since |Pn(z)| ≤ L(Pn) max{1, |z|}mn for all z belonging to the open ball
B(0,R),

|εnPn(z)| <
1

L(Pn)mn!
L(Pn) max{1,R}mn =

max{1,R}mn

mn!
.

Thus, f is an entire function, since the series
∑∞

n=0 εnPn(z), which defines f , converges
uniformly in any of these balls.

Define f1(z) = ε0 + ε1(z − α1) for some nonzero ε0 ∈ Eα1 ∩ B(0, 1) and choose
ε1 ∈ B(0, t1) (where P1(z) = z − α1) such that a0 := ε0 − ε1α1 ∈ K

∗. Thus, f1(α1) ∈ Eα1

and the constant term of f1 lies in K∗.
Let f2,1 be the function defined as f2,1(z) = f1(z) + ε2P2(z), where P2(z) = z(z − α1).

Then f2,1(α1) = f1(α1) ∈ Eα1 . By the density of Eα2 , we can choose ε2 ∈ B(0, t2)\{0}
such that f2,1(α2) = f1(α2) + ε2α2(α2 − α1) ∈ Eα2 .
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Now, consider the function f2(z) = f2,1(z) + ε3P3(z), where P3(z) = P2(z)(z − α2).
Our goal is to choose ε3 such that the coefficient of z in f2 lies in K∗. Observe that
this coefficient is a1 := ε3α1α2 − ε2α1. Since α1α2 , 0, we can choose ε3 ∈ B(0, t3)\{0}
such that a1 ∈ K

∗. Note that f2(αi) ∈ Eαi for i ∈ {1, 2} and the first two coefficients of
f2 (a0 and a1) belong to K∗.

Suppose, by induction, that the function fn(z) =
∑n−1

k=0 akzk +
∑2n−1

k=n bkzk has been
constructed such that a0, . . . , an−1 ∈ K

∗ and fn(αi) ∈ Eαi for all 1 ≤ i ≤ n. Now, let us
construct fn+1 with the desired properties.

Define fn+1,1 by

fn+1,1(z) = fn(z) + ε2nzn(z − α1) · · · (z − αn).

Note that fn+1,1(αi) ∈ Eαi for all 1 ≤ i ≤ n. Also, the first n coefficients of fn+1,1 and
fn are equal (because of the factor zn in the right-hand side above) and they belong to
K∗. Setting P2n(z) = zn(z − α1) · · · (z − αn), we can choose ε2n ∈ B(0, t2n)\{0} such that
fn+1,1(αn+1) ∈ Eαn+1 .

The next step is to perturb the previous function to force the coefficient of zn (in this
new function) to be in K. For that, define

fn+1(z) = fn+1,1(z) + ε2n+1P2n+1(z),

where P2n+1(z) = P2n(z)(z − αn+1). Since an := bn + (−1)n+1ε2n+1α1 · · · αn+1 is the
coefficient of zn in fn+1, by the density of K, we can choose ε2n+1 ∈ B(0, t2n+1)\{0}
such that an ∈ K

∗.
In conclusion, our desired function f (z) =

∑
n≥0 εnPn(z) =

∑
n≥0 anzn ∈ K[[z]] maps α

into Eα for all α ∈ A and its coefficients belong to K∗. This function is transcendental,
since it is not a polynomial, because an , 0 for all n ≥ 0. Also, there is an ∞-ary tree
of different possibilities for f (because in each step we have infinitely many possible
choices for ε). Thus, we have constructed uncountably many possible functions. The
proof is complete. �
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