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ON CONSTRUCTION OF HOLOMORPHIC CUSP FORMS
OF HALF INTEGRAL WEIGHT

TAKURO SHINTANTI*

Introduction

In [10], G.Shimura gave a method of constructing holomorphic cusp
forms of even integral weight from given forms of half integral weight.
In this paper, we try to present an inverse construction. To state our
main result, some notational preliminaries are necessary. We denote by
$ the complex upper half plane. Let z(u,v) = x,u* + 2,uv + 2,0* be an
integral binary quadratic form with positive discriminant d, = x,> — 4x,%,.
If d, = m*(m > 0) is a square, we denote by C(x) the geodesic line with
respect to the Poincaré metric on § from (x, + m)/2z;, to (x, — m)/2z,
(if x; = 0, we understand C(x) to be the geodesic line from -+ico (resp.
x,/x,) to x,/x, (resp. +1io0) for x, > 0 (resp. x,<0)). If d, is not a square
and if z,, x, and @, have no non-trivial common divisor, let ¢, + u,v/d, > 1
be the smallest half-integer solution of the Pell-equation # — w’d, =1

and set y, = (t”__z xf:f tf—f@m) € SL,(Z). We denote by C(x) any rec-

tifiable curve in § from w to y,-w, where w is any point on §. Finally
if «,,x, and 2, have the greatest common divisor £ > 1, we put C(x) =
C(x/t).

Now, let f(z) be a holomorphic cusp form on the upper half plane
which satisfies

S(r-2) = y¥(d)(ez + D™ f(2)

for any y = <g 2) e I'(N), where y is a character modulo N and I'(N)

= {[g’ 2] € SL,(Z)|c = 0 (mod. N)}. Two integral binary quadratic
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forms z' and #* are said to be I'y(N)-equivalent if x'(u,v) = *((u,v)y)
for a suitable y e I'(N).
For simplicity we assume N to be odd and put

0(f,2) = }; x(x,) exp (2%de>
0.1)
x .[o( )f(w)(m1 — 2w + ww)*Mdw ,

where the summation is taken over all I'\(N)-equivalence classes of inte-
gral binary quadratic forms x(u,v) = z,u* + 2,uv + x2,0* with positive
discriminant d, = x} — 4x,2, and with z, and «, both divisible by N and
with a, prime to N. Then our Theorem 2 asserts that 4(f,2) is a
holomorphic cusp form of weight & + 1/2 which satisfies

0(f7-2) = ¥ (@Di(y, 2)**'0(f, 2)
for any r = (Z 2) € I'y(4N), where j(7,2) is an automorphic factor given
by (1.9b) of [10] and y’ is a character modulo 4N given by y'(d) =
x(d)(—1/ d)"(%). Moreover, the mapping f — 6(z, f) commutes with the

action of Hecke operators. It should also be mentioned that the inte-
gral representation (0.1) gives geometric interpretation of the Fourier
coefficients of cusp forms of half-integral weight (ef. the question (B) in
p. 478 of [10], and the discussion of §3).

The series which appear in the right hand side of (0.1) is a kind
of theta series. Theta series of similar nature were previously studied
in Siegel [12], Maass [7],[8], Weil [13] and in Shalika-Tanaka [9].

This paper consists of three sections. In the first section, which is
of expository nature, we derive certain transformation formulas for
theta series by means of Weil theory [13]. We prove our main theorem
in the second section and discuss a few numerical examples in the last
section. The author wishes to express his hearty thanks to Professor
G. Shimura, for his valuable suggestions and warm encouragement.

Notations

1. We denote, as usual, by Z,Q,R and C the ring of rational inte-
gers, the rational number field, the real number field, and the complex
number field. Also we put T = {zeC||z| =1}. For ze¢ C, we put e[z]
= exp2ry/ — 1z and define 4z = 22 so that —(x/2) < arg 22 < z/2. Further
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we put z%? = (2%)* for every ke Z. For a non zero real number z, we
set sgnx = z/|z|. For a finite dimensional real vector space V, we de-
note by #(V) the space of rapidly decreasing functions on V. For a
symmetric matrix @ of size n we put Q(x) = ‘zQx (x € R).

2. In this paper ‘“quadratic residue symbol” (%) has the same

meaning as in [10].

§ 1. Theta series

1. In the following three paragraphs, we summarize some results
of Weil [13], in a form convenient for later applications. Let V be an
n-dimensional real vector space and let V* be the vector space dual to
V. Denote by B a bilinear form on (V x V*) X (V X V*) given by B(2,, 2,)
= (v, v for z, = (v,v¥) and 2z, = (v,,v¥). Let A(V) be a Lie group
with underlying manifold V x V* X T whose law of composition is given
by

2, )7, t) = (z + 2/, tt’e[B(z, 2")D)
2,2V X V* t,tel).

We fix a Euclidean measure dxz on V and denote by da* the Euclidean
measure which is dual to dx. Namely, the Fourier transform f*(z*) >

I f*@®el(x, 2*)]dx* gives an isometric mapping from L*(V*,dx*) onto
V*

L V,dx). We denote by U a unitary representation of A(V) on L* V)
given by {U(z, t) f}(x) = tel(z, v)]f(x +v) (x e V, 2=, v¥) e VX V¥, teT).
Then U is irreducible and #(V), the space of rapidly decreasing func-
tions on V, is a dense invariant subspace of L*V). A linear transfor-
mation of V x V* is said to be symplectic if it leaves the alternating
form A(z,z,) = B(z,2,) — B(z,,2,) invariant. We denote by Sp (V x V#)
the group of symplectic linear transformations of V X V*. We write,
for ¢ e Sp (V,V*) and for z = (v,v¥) eV X V*,

2o = (v, v*)(a’ 3) = (va + v*c,vb + v*d)
c

where a,b,c and d are linear mappings from V to V, from V to V*,
from V* to V and from V* to V* respectively. In the following we

often identify ¢ with the matrix (Cc" Z) For ceSp(V X V*) and
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zeV X V¥, set
F (2) = exp nv/ —1B(z0, 20) /exp n4/ —1B(z,?) .

It is easy to see that

{F,(z + ?') = F,)F ,(?))elB(zo, 2'a) — B(z,2)] ,

1.1) F,(2) = F.(z0)F,(2) .

These equalities show that the group Sp(V x V*) acts on A(V) as a group
of automorphisms via the mapping:

w— w° = (2o, tF,(2)) (w = (z,t) e A(V)) .

Set U'(w) = Uw*) (e Sp (V X V*¥), we A(V)), then U’ is an irreducible
unitary representation of A(V) which is equivalent to U. Namely, there
exists a unitary operator 7(¢) on L*(V) which satisfies

1.2) Uw*) = r(e)Uw)r(o) for every we A(V) .

The operator 7(¢) is unique up to a multiplication by a complex number
of modulus 1. Furthermore, the mapping ¢ — 7(¢) gives rise to a pro-
jective unitary representation of Sp(V X V*) on L%V). In other words,
for each pair (o, 7) (o, 7 € Sp (V X V*)), there exists a constant c¢(s, ) which
satisfies

(1.3) r(a7) =. c(o, t)r(o)r(c) .

This projective unitary representation is called the Weil representation
of Sp(V x V*). If the left lower entry of the matrix form of ¢ is either
non-singular or zero, we may normalize 7(¢) as follows:

|| . F ((v, v®) f(va + v*c)dv* (¢ is non-singular),

(L4) r@)f®) = )
laf e[g(w,vb)]f(va) =0,

for ¢ = (‘; Z), where we set d(x*c) = |¢| d*z* and d(ze) = |a| dz.

2. Let L be a lattice in V and L* be the lattice dual to L in V*,
Take a sublattice M* of L* and let M be the dual lattice of M* in V.
For any character y of L X M*, we denote by the same letter y the
character of a subgroup L X M* X T of A(V) given by

https://doi.org/10.1017/5S0027763000016706 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016706

HOLOMORPHIC CUSP FORMS OF HALF INTEGRAL WEIGHT 87

2z 0) =tk  (zeL X M*).
There exists a (v, v}) e V X V* which satisfies
(1.5) 1 %) = el(, p*) — A, v)] (Y@, p*) el X M*) .

The mapping y — (v,,v}) establishes an isomorphism between the char-
acter group of L x M* and the additive group V/M x V*/L*. For each
peM/L, we denote by x(¢) the character of L X L* which corresponds
to (v, + p,v}) of V/L X V/L*. Any extension of y to a character of
L x L* coincides with () for a suitable peM/L. We denote by
T(L X M*) a unitary representation of A(V) induced from the character
x of L X M* X T. The representation space 6, (L X M*) of T (L X M¥*) is
the Hilbert space of measurable functions on V x V* which satisfy the
following conditions (1.6)

e[B(2, 2)10(2 + 2) = x(DI(2) (Y2eL X M*,ze V X V¥,

(1.6)
o] =j 16z, ) deda* < oo .
V/LXV*/M*

The representation T,(L X M*) is given by
a.7 T (L, M*)((w, ©))6(2) = telB(z, w)l6(z + w) .

It is easy to see that the space 0,,,(L x L*) is, for each yuc M/L, a closed
invariant subspace of 6,(L X M*). Moreover, we have the following
orthogonal direct sum decomposition of 6,(L x M*).

OL X M*) = @ 6,,(L x L .
sEM/L

For abbreviation, we write
0,=0,LXM*, O, =0,,LXxL* and T,=T/(L X M*).

We will show that the unitary representation (7,0,,,) of A(V) is equiv-
alent to (U, L*(V)) (Yue M/L). For that purpose, set, for an fe F(V),

01(14)(f)(x, x*) = Jm’a—l

1.8
1.8 Xée[(l+y+vx,x*)+(l,v;")]f(x+l+p+vz),

where vol (V*/M*) = j dx*.

v/ M
We note that 6,.,,(f) depends upon the choice of a representative for
w,+ weV/LinV. If we replace (v, + p) by (v, + p + D' e L), 6,,,(f)
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is multiplied by e[—(,v})]. In the following we choose representatives
for (v, + p) (we M/L) and fix them once and for all. Then it is easy to
see that 6,.,(f) is a smooth function in 6,,, and that

0,{U@S} = T(90,()  (YgeATV)),
16D = 171 = [ 1@ da

e

1.9

Conversely, for a smooth function 4 in 0,,,, set
(1.10)  f,(x) = +/vol (V"‘/M"‘)'1 0x — p — v, x¥)el— (¢ + v, *)]dz* .
V*/M*

Then it is easy to see that f, is a rapidly decreasing function on V and
that 6,,,(f,) = 6. Hence, 6,,, gives a norm preserving linear mapping
from #(V) onto the space of smooth functions in 6,,, which commutes
with the action of A(V).

Furthermore, the inverse of 6,., is given by (1.10). Therefore, 6,
is extended to a linear isometric mapping from L,(V) onto 6,., which
establishes the equivalence of two unitary representations (U, L%(V)) and
(Tr,,0,,). Since (U,L*V)) is irreducible and (7,,0,) is a direct sum of
(T,,0,,) (ne M/L), any bounded linear mapping of LAV) into O, is a
linear combinations of 6,,, (xe M/L) if it commutes with the action of
A(V). Put

1.11) 6(f, x(1)) = 0,,,()(0,0) .

3. Denote by Sp (L x M*) the subgroup of Sp (V X V*) consisting
of linear transformations which leave the lattice L X M* invariant. For
a character y of L X M* and for a ¢ Sp (L X M*), we set

(D) = x(Ae™H)F ,-.(2) (YieL x M*) .
Then y° is again a character of L X M* and yx°* = (y°)".

ProPOSITION 1.1. (Generalized Poisson summation formula).

(i) Let r(o) (6eSp (L X M*)) be a unitary operator in LAV) which
satisfies (1.2). There exist constants Ci(y,v) (u,ve M/L) which satisfy
0(r(@)f, (1)) = 2ensr C¥p, V)OS, X)) (Vf € L(V)).

(ii) Denote by C* the matriz of size [M;L] whose (u,v)-entry
(p,ve M/L) is C*(u,v). Then C* is a unitary matriz and C* = c(o,7)-
C*C*’, where c(o,7) 18 a complex number of modulus 1 given in (1.3).
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(iii) Set ¢ = (g 3) and assume ¢ s non-singular and r(c) is nor-

malized by the formula (1.4). Then the constant Ci(y,v) is given by

vol (V*/M*) |c['* C¥(y, v)
= 5 e+ ¢ (4 pac) — A+ e
LE L/ M¥*c*
+ 30/, 'e7d) + (1, o)

(where ¢ = p+ v, and v =y + v,.).

Proof. (i) Denote by M, (ceSp(L X M*) an isometric linear
mapping from 6, onto 6,, given by (M,0)(2) = 8(zc™)F,-.(2) (ze V X V¥).
By (1.7), it is easy to see that

M,T,(w) = T,.(w)M, Ywe A(V),eeSp (L X M%) .
Hence, it follows from (1.2) and (1.9) that
M,0,,,r©@)Uw) = T,.(w)M,0,,,7r@) (weAV),peM/L).

Thus, M,0,.,r(e) is a norm preserving linear mapping from L,(V) into
0,, which commutes with the action of A(V). Therefore, for suitable
complex numbers C#*(u,v) (v e M /L),

{M6,yr(@) f}(, v*) = :;};.‘/L Ci(pty v)6,00) () (@, %)

(1.12)
(feL V), V@, x¥) eV X V¥).

Evaluating both sides of the above equality for (x, 2*) = (0,0), we obtain
the first part of our proposition.

(ii) The linear mappings M,, r(s), 0,,, and 6,.,, are all norm pre-
serving. Furthermore, 6,,/ (resp. 6,0,,/) and 6,,/ (resp. 6,0,)) are
mutually orthogonal if p, # g, (resp. v, # v,). Hence, the matrix C* =
(c*(p,v)) is unitary. The equality (1.12), together with relations r(s7) =
¢(o, 7)r(e)r(z) and M,, = M .M,, implies that C% = c(g, t)C*C*".

a* —b*

—c* ot ), where a*, b* etc. are

(iii) Since ¢ is symplectic, ¢7! = (

adjoint linear mappings of a,b etc.
It follows easily from Lemma 11 of Chap. 1 of Igusa [5], that »(e)r(c™?)
=1 if ¢ is non-singular. Put v’ =v + v,,-». Then, by (1.10), we have

https://doi.org/10.1017/5S0027763000016706 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016706

90 TAKURO SHINTANI

vol (V* | M*)C%-.(u, v){r(a) S} + v")
= f F (x,x*) > el(l + ¢/, 2b + x*d) + (I, v}) — 7, 2%)]
V*/M* leEL
X flxa + x*c + 1 + p)dx* .
If ¢ is non-singular, it follows from (1.1),
F(z,2%)e[(l + ¢/, 20 + z*d) — (7, 2%)]
=F (x+v,2*% + (—=v"a + 1+ e HF 7, (—v"a + 1+ e .

Hence, the above integral is equal to

> F70", (=v"a + 1+ p)eNell, vfl

lEL/M*e

X j F,(x + v, 291z + v")a + z*c)dz* .
V*

By (1.4), we see
C:_i(g,v) = vol (V*/M*)~! ICI”’ZZG%* F70", (—v"a + 1+ p)eDell, vl
= Vol (V*/M*) e[ > *:e[—%(z + 1, U+ (d¥e*)
+ (@ + p,v"e* ) — 07, v"c* a®)]el(d, v)] .

Remark 1.1. Identify V with R* and set f(z) = exprv/—1a('z,
where ¢ is a complex symmetric matrix with positive definite imaginary
part. Then the equality (1.12) is a classical transformation formula for
theta functions.

4., In the following, we set V = R*. Take a non-degenerate sym-
metric nxXn matrix Q and identify V with its dual by setting (z,%) =
‘yQr. We put de =dx, --- dx,. Then the dual measure dz* is given
by da* = |det Q| dx. We denote by 7(-,Q) the Weil representation of
Sp (V x V*) on L¥V), to emphasize its dependence on Q. Identify the
group SL(2, R) with a subgroup of Sp (V X V*) by setting

(2, ¥)o = (xa + yc,zb + yd) (x, yeV,o = (a Z) e SL(2, R)) .
C

By (1.4), we have the following expression for (o, Q)(a = (ﬁ 3)6

SLE, R)).
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|c|—n/2 ,\/m J‘Ve[a(xy x) — Z(Z;y) + d(’_l/, y)]f(y)dy

(0, Q) f (@) = (c+0),
[a|™? e[%(x, x)]f(ax) (c=0).
The group GL(n,R) acts on L*V), as a group of unitary operators if
one puts
1.13) (T)@) = v[det T f(T"'%) .
It is easy to see that
114 7@, 'T'QT™H-T = Tr(e, Q) (Yo e SL(2,R), T ¢ GL(n, R)) .

We are going to determine the constant c¢(e,7) introduced in (1.3) for
o,7 € SL(2, R).
Denote by $ the complex upper half plane $ = {ze C;Imz>0}. For a

g = (‘Z 2) e SL(2,R) and ze 9, we write

(1.15) J(@,2) =cz+d and o¢-z2=(az + b)(cz + d)7'.

We define a function «(¢) on SL(2, R) as follows:

Vi c>0,
(1.16) e(g) = {{d-send/2 c=20,
Vit c<0.

Take a positive definite symmetric matrix B which satisfies
RQ7'R=Q.
For z=u +iwec®, set
Q, = uQ + wR .

Let P,(x) be a homogeneous polynomial of degree v which has the fol-
lowing expression:

1 for v =0
P(x) = {(r,x), (re C*,Qr = Rr); for v=1
Z C,.(?", x)v’ (cr € Cy re Cn’ Qr = R”', (7', /r) = 0) B for v > 2 .

(if rank (@ — R) = 1, we assume v < 1).
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LEMMA 1.2. Assume Q has p positive and q negative eigenvalues
+g=mn,0>0). Set
F.(x) = e[}Q.(x)]P,(x) .
Then

7(s, QF ()
= e(0)?"WJ(,2)" " | (o, )72 I (g, 2)"F,.,(%)

for every o€ SL(2, R).

Proof. There exists a T ¢ GL(n, R) which satisfies ‘TQT = (1” -1 )
q

and ‘TRT =1,. By (1.14), it is sufficient to prove the lemma under the
additional assumption that

Q=<1P —1)’ R=1,.

Set ¢ = (g’ 2) If ¢ = 0, the lemma is immediate. If ¢ # 0, we have,

by a straightforward computation,

(o, Q)F (%)
=le|""* ¥v = tu — id/c "N + iu + id/c ‘J(s,2)"F,. () .

Now lemma follows from a simple observation.
By Lemma 1.2, we have

c(o, 1) = {e(ar) [e(a)e(2)}P " %ei(o, ©)2°7 , where we put
(o, 7) = VJ(ot,9) [ VI (o, t)V I (z, 1) .

For a ¢¢ SL(2, R), set
@.17) (e, Q) = (0)? (0, Q) .

Let &, be a Lie group with the underlying manifold SL(2,R) X T and
with the law of composition given by

.17 {

(o, D)(0’, t) = (00, tt'cy(a, 0") .

Then a subgroup {(s, £1);0e SL(2,R)} of &, is isomorphic to the two-
fold covering group of SL(2, R) (see p. 444 of [10]). For a ¢ = (¢,1) ¢ &,
set ,"0(6" Q) = tp—qTD(O.’ Q)-
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The following lemma is now immediate to see.

LEMMA 1.8. (i) The mapping: & — 16, Q) gives a unitary repre-
sentation of &, on LAV). The space (V) is a dense invariant subspace.

(i) For any fe L(V), the mapping & — 1,5, Q)f is a smooth map-
ping from &, into FL(R).

5. The mapping ¢ — (¢,1) gives a locally isomorphic imbedding of
SL(2,R) into &,. So, for any element % of the universal enveloping
algebra of the Lie algebra of SL(2,R), r,(u, Q) has an obvious meaning
as a differential operator on V. In particular set

Co = 1(C,Q), where C =2XY +2YX + H?,

(1.18) X = (g (1)) , Y = ((1) g) and H = (1 _1) .

Then C, commutes with 74(¢, Q) for any 6¢®,.
. __( cosf sind
For #¢ R, we write k, = (—sina oS 6)'
Set & = {(ky,¢);0 e R,e = +1}. Then & is a compact abelian subgroup
of &. For an integer m, we put

X'm((k(n €) = (\/e_—”)_mem .
Then y, is a character of ® Take an fe (V) which satisfies
1.19) 1ok, QS = xn()f (Vee &) .

If it does not vanish identically, m has the same parity as p — ¢.?
For the proof of the next lemma, see §4 of chap. 1 of [2].

LEMMA 1.4. For a z=u+ e, set

o= (7).
Then

72 QCof = {4”2(36_7; + 83; ) _ Zimv%}ro(o,, Qf .

Denote by G the connected component of the identity element of the
group O(Q) of real linear transformations which leave the quadratic form

(1) For the definition of p and q, see Lemma 1.2.
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@ invariant. Then (1.13) gives a unitary representation of G on LXV)
which commutes with 7(¢, Q) for any 6 ¢ ®,. Take a T e GL(n, R) which
satisfies ‘TQT = (11’ 1 ) and set

q

Kporp<i<jigmn),

X;; = T(ey; — ;)T 1<i<yg
A<k <I<W?.

Y =T(ex + e)T™!
Then X,;; and Y, form a base of the Lie algebra of G. Set

(1.20) Ly = -7 XL, 4+ > Y.

.
1<i<j<p or p<i<j<n 1<k<p<l<n

Then L, is the Casimir operator on G. The representation (1.13) of G
maps Ly to a second order differential operator on R® which we denote
by the same symbol L,.

LEMMA 1.5. For any Fe #(V),

CoF = (Lg + n(n — 4)JHF .

Proof. By (1.14), we may assume that Q = (11’ 1 ) In this
q

case, it is a simple calculation to show that

rH,QF = 370, 4 p o
=1 0w, 2

X, QF = zv —1(z, 0)F

and
Y, QF = /=1do (5 2 - 3 Typ
’ i1 90X} jp+1 005
Thus
» n F
CoF = —(z, x)(Z — > )F + 3
=1 j=p+1 0% i=1
oF
— 1 .
+ (n ( ) l<1,<.7S7l Vil axiaxj

On the other hand,

(2) We denote by e;; the n X n matrix whose (k)-entry is 0:0:;.
(8) For the definition of H, X and of Y, see (1.18).
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3 3 \2 0 2 \?
e o, o, T ‘oz - “om,
»o oo 9 ) oF
= —(Z, 2 - A2 F 2 Tilb

0 + i xzazF

axi =1 ‘ axf

+m—n§m

Hence, Cy = Ly + n(n — 4)/4.

6. In the remaining part of this section, we assume @ to be a
rational symmetric matrix with p > 0 positive and ¢ = n — p negative
eigenvalues. Take a lattice L in V and denote by L* the lattice dual
to L in V:L*={zxeV;(@,y) = 2Qye Z";VyeL}. We always assume
that L* D L. We denote by v(L) the volume of the fundamental paral-
lelotop of L in V':

v(L):I d .

R™/L
For an fe (V) and he L*/L, set 0(f, k) = > e JU + R).

PROPOSITION 1.6. Let o = (ch g) e SL(2, Z) satisfy the following con-

dition (1.21).
(1.21) ab(z, ) = cd(y,y) =0 (mod2) (Yz,yeL).
Then the following assertions (i) and (ii) hold.
(1) 0o, QF ) = Suess o, KOS, B) (YF € S(V)), where
c(h, k),
e D] =0

V[det Q- Ww(L)|¢|*2 3] e[a(h + b+ 1) — 2k, b+ 1) + d(E, k)]

r€L/eL 2¢

(c+0)

(ii) Further assume that ¢ ts even, cL* C L,cd #+ 0 and c(x,z) =0
(mod. 2) for every xeL*. Let {A,---,2,} be a Z-base of L and set
D = det (%, 25)). Then
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ﬁ—-(p—q)sgn(cd)c(h, k),

Bh,dke[%b—(h, h)]s;”(sgn cz')n<_2d£)"(_f_d> @<o0,

el Lon](2Y(B) >0

where ¢, =1 or ¢ according as d =1 or d = 3 (mod. 4).

Proof. (i) We note that the group SL(2, Z) is mapped into a sub-
group of Sp (L X L) by our embedding of SL(2,R) into Sp(V X V*).
Thus, the first half of our proposition is an immediate consequence of
Proposition 1.1.

(ii) Let e, be the index of L in L*. Denote by C, the matrix of
size e, whose (h,k) entry is c(h, k), (h,ke L*/L). If ¢,0’ and oo’ all
satisfy the condition (1.21), it follows from the second half of Proposi-
tion 1.1 that

c,, = ¢(e,d)C,C, .

Now set ¢ = (:2 %) and o = (1 _1). Then ¢’,0 and ¢ =d'o all

satisfy the condition (1.21). By (1.17), we have
C(G" (l)) — ﬂ(p—q)sgn(cd)

Hence

C(h, k),, — ﬁ(p—q)sgn(cd) ldet Ql_l v(L)_z {d]’"’z

—bh + 1, b+ 1) — 20, b + 1) + el l)]e[—(l, k)l .

|
reIjdL 1ETFL —2d

Since ¢L* C L, the mapping [+~ dl induces an automorphism of L*/L.
Taking into account the assumption that c¢(xz, x) e 2Z (Yx ¢ L*), we have,

—bh +r,h+ 1) =20,k +7) +cl,) ],
zeL*/Le[ —2d ]e[ ¢ 0]
_Joth+7r,h+7) . _ b(h 4+ 7, h + 1)

On tne other hand, the Poisson summation formula implies that
|det Q7' v(L)~%¢, = 1. Furthermore,
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e[b(h + 7, h + r)] . e[b(adh + r,adh + r)]
réL/dL 2d r&ET/dL 2d
_ e[ ab(h, h) ] 5 e[ b(r, 7‘)] '
2 reLjaL 2d

Thus, we have,

C.l, 1) = 8,0/ T L, )|
_ b(r, r)]
d|-n [M :
X l | TGLZ/(:iL € 2d

Now the argument used in the proof of Proposition 2.1 of [10] is ap-
plicable with a slight modification to show that

e7"(sgn (c)e')ﬂ(%lf)"(—D—) @<o0,

—d
|d|- Te;/ﬂ&[b(;&”] = 53(_6?0)"(%> d>0).

Remark 1.2. Proposition 1.1 appears in many literatures. Here, we
refer only to Hilfssatz 1 of [12] and Proposition 2.1 of [10].

7. The group G is, as in 5, the connected component of the identity
of the real orthogonal group of Q. Let I' be the subgroup of G formed
by all elements which leave the lattice L invariant and leave L*/L point-
wise fixed. Then, as a function on G,8(g-f, h)® (fe L(V),9eG,he L*/L)
is left [-invariant and slowly increasing on I'\G®. Take a rapidly
decreasing function ¢ on I'\G and put

o(f,0; h) = j 01, 0y

where dg is a Haar measure on G. Now assume that f satisfies (1.19)
and set

(1.22) 6z, f,9; h) = v™"™*0(r(a,, Q).f, @5 h)
for z=u+ we.®
(4) For the definition of g-f, see (1.13).
(5) For the definitions of slowly increasing functions and rapidly decreasing func-

tions on I'\G see [3].
(6) The notation o, is introduced in Lemma 1.4.
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If no confusion is likely, we write simply

Oz, h) =062, f,D; h) .
PROSITION 1.7. Assume f satisfies (1.19).
(i) If y = (g 2) e SL(2, Z) satisfies the condition (1.21), then

)\/—?:(p—q)sgncx/e](r, Z)_m@(r' z, h,) = ke;/l, C(h, k)r@(z’ k) (C + O) *

(i) Assume that @ satisfies the differential equation Lo® = 20 on
G.® Then

2 2
(1 + ) =2l + 13, Joe

= 1= m(% —1) +n(2 ~1)}6c 1) .

Proof. (i) It follows easily from (1.17) that
T(T’ Q)’I"(O‘z, Q) = 7'(0'(,.2), Q)T(ktn Q) ’

(1.23)

where e = J(r,2)/|J(r,2)| and k, = (_cgisn"a Sin g) Since f satisfies
(1.19),
(e, QF = Vi NI DG 2] " F
(see (1.17)). So, by Proposition 1.6, we have
VITTENIG D6 ) = 2 ok, )66, ) .

(ii) By Lemma 1.4, we have

(26 2) mimo( 2 1 2 ))oter,01
{4v (aw + v 2emv ou + v }@(z,f,@, 2

_ _m .
- m(l ” )@(z, h) + 6z, Cof, @3 1) .

Applying Lemma 1.3, Lemma 1.5 and integration by part, we have
(1.23).
Remark 1.3. For Proposition 1.7, we refer to [7],[8],[9] and [12].

(7) Differential operator Lg is given by (1.20).
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§ 2. Construction of modular forms of half integral weight from given forms
of even integral weight.

1. Let @ be a 3 X 3 rational symmetric matrix which has 2 positive
and one negative eigen-values. We assume that the rational quadratic
form associated with @ is a zero form. In other words, the equation
(,2) = ‘Qxr = 0 has a non-zero solution in @°. Then there exists a
T e GL(3,Q) which satisfies (Tx,Tx) = ‘@'TQTx = M(x: — 4x,x,), where
M 1is a positive rational number.

Without loss of generality, we may put

2.1 (x,y) = 'YQx = M2y, — 22,Y; — 223Y,) (z,ye RY) .

We identify R® with the vector space of real binary quadratic forms in
indeterminates X and Y via the mapping

- 2X,Y) = . X* + 2,XY + x,Y?.

We denote by d, the discriminant of 2(X,Y). Namely, d, = x — 4x,2..
Let p be a representation of SL(2,R) on R® given by

{0(9)-2)(X, Y) = 2(aX + ¢¥,bX + dY)(g — (3 2)) .

Then we have

a? 2ac c?
2.2) o(9)-x = (v, x,, xa)(ab ad + be cd) .
b? 2bd d?

It is well-known that p- gives an isomorphic mapping from SL(2,R)/ +1
onto the connected component of the neutral element of the orthogonal
group of Q.

2. Let I' be a congruence subgroup of SL(2,Z) and let & be a
character of I'. In this paper we always assume that —1e " and that
the kernel of ¢ is also a congruence subgroup of SL(2, Z). A holomorphic
function ¢ on the upper half-plane § is said to be a holomorphic cusp
form of weight 2k (k is a positive integer) and of character ¢ with re-
spect to I' if ¢ satisfies the following two conditions (2.3) and (2.4).

2.3 o(r-2) = EPIGr, 2%%p(z)  (Yyel)  (see (1.15)).
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2.4) ¢ vanishes at each cusp of I".

We denote by S,.(I", &) the space of all such cusp forms. For a ¢ € S, (I, &),
set

(2.5) D(9) = J(9, D) *p(g-1) (9 e SL(Z,R)) .

Then @(g) is a function on SL(2, R)/ + 1 which satisfies @(ygk,) = &(y)e****d(g)
for ye I" and for

b =(cosﬂ sinﬁ) @cR
! —gind cosé )

Since p imbeds SL(Z2,R)/+1 into the orthogonal group of @, we can

regard @ as a function on the connected component of the identity of

the orthogonal group of . We have

Lo® = 3p(C)D = k(k — 1)@

(definitions of L, and C are given in (1.20) and (1.18)). Let L be a lattice
in Q® on which the bilinear form (x,y) given by (2.1) is integral valued.
Denote by L* the lattice dual to L with respect to this bilinear form.
The group I" operates on R® through the representation p. Assume that
I leaves the lattice L invariant. Then I' induces a permutation on L*/L.
We further assume that there exists a function » on L*/L which satis-
fies

2.6) vp(p) ) = E7'w(®)  (YweL*/L,Yyel).

We fix a Haar measure dg on SL(2, R) by setting dg = dux,dx,dzx,/|z,) for

g= (”1 xZ). We also write G = SL(2, R).
X, X,

Take an f e #(R®) which satisfies (1.19) for m = 2k + 1 and put

v@VIO(2, f, ¢, Ly v)
@.7
= [ 3 v@., @16 006
I'\G zeL*
where z =u + e 9 and o, is as Lemma 1.4. If no confusion is likely,
we write

@(z’f’ ?s L, V) = @(2, SD) .
It follows from Proposition 1.7 that
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{402(3_2 + 6_2) — 202k + 1)v(i + i-—a—>}@(z, 0)=0.
o*u oV’ ou ov

So, it would be natural to expect that ©(z,¢) is a holomorphic function
of z on §. In the next paragraph we will compute the coefficients of
Fourier expansion of 6(z,¢) with respect to  and show that 1t is actu-
ally a holomorphic function of z.

3. To state our next proposition, we are going to associate an ori-
ented curve C(x, ") on the upper half-plane to a rational binary quadratic
form x with positive discriminant. Take a g e SL(2, R) which satisfies
{0(9)-2}X,Y) = V/d, XY (d, = 2} — 4x,z;). Denote by I', the isotropy sub-
group of = in I'. Then if I', #+ +1, it is known that I',/+1 is an
infinite cyclic group. If I', = +1, we denote by C(x,I") the geodesic
(with respect to the Poincaré metric) from o, = g to w, = g*.0.
We note that w, and w, are two roots of the equation z(1, —X) =0 in
X. If I';/+1 is infinitely cyclic, we take a generator 7, of I',/+1 so
that gy,g7' is a diagonal matrix whose left upper entry is positive and
smaller than 1. In this case we denote by C(xz,I) any rectifiable curve
in § from z to 7,-z (z is an arbitrary point in §). Two points of Q°
(= the space of rational binary quadratic forms) are said to be I'-equiv-
alent if one is transformed into another by a suitable element of I'.

PROPOSITION 2.1. The notation being as above, we have

6(z, f, 0, L,v) = c(f) 2 v(@)elz(z, ) /2] L(x N p()2(1, —2)*'dz ,

where the summation is taken over all I'-equivalence classes in L* with
positive discriminant and x(1, —z) and c(f) is given by the following
formula.

(1, —2) = x, — X2 + X7

(n=2rexpMD) | @@ i - i’lff%-
234z 125= X
Proof. The function v®**1/Q(z, f, ¢, L,v) is given by the integral in
the right hand side of (2.7). Since ¢ is a cusp from, it is easy to see
that the integral is absolutely convergent even if each term of the sum-
mation in the integrand is replaced by its absolute value. Hence, we
can change the order of summation and integration freely. Denote by
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{z} the complete set of representatives of I-equivalence classes in L*.
For each xz, ', (resp. G,) is the isotropy subgroup of z in I' (resp. &).
We choose invariant measures dy, and dypl on G, and on G,\G respec-
tively which satisfy

2.8 jg F(g)dg =f ) j F(hg)dyis(h)

z

for any integrable function F' on G. Then we have
vEEIDNO(2, @) = {; »(x)L . {r(e., @S} (9™) - )0(9)dg
= 2@ [ ron Q1166 -2)

{z}

<([ . DAL )dpi o) -

It follows from (2.6) that & is trivial on I', if v(z) # 0. The proof of
Proposition 2.1 has now been reduced to the proof of the following sub-
lemma.

SUBLEMMA. Assume that & is trivial on I', (x e L*).
(i) If (x,x) =*2Qx = Md, < 0, then

@9) [ 000dnam =0
(i) If (x,x) > 0, then

p— @R+ Jr . {ro(osr QS Ho(g™) - x) - D(g)dg

(2.10)

=« f)e[-g—(x, x)] I o, P, =2

(z,

Proof of Sublemma. (i) Assume (x,x) < 0, then [, is a finite group
and G, is conjugate to SO(2) in G. Denote by w the order of the finite
group [',. Then the left side of (2.9) is equal to w™'J(g,?) ¥ (z), where
we put z = ¢g.7 and

V() = L J(h, 2) " %p(h- 2)dpi(h) .

Now it is easy too see that ¥(z) is a holomorphic function on £ which
satisfies U'(hz) = J(h, 2)*¥(z) for any he G,. It is well-known that such
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a function vanishes identically (we are assuming that k is a positive
integer). Next, assume (x,2) =0,z % 0. There exists a 7yeSL(2, 2)
which satisfies p(7)-2 = (5,0,0) (se Q@ — {0}). For any uecR, set n(w)
= (1 71‘) € G. Then, we have 717G, = {xn(w;ueR} and [,y ' =
{xn(mN); me Z} for a suitable positive number N > 0. Thus the left
side of (2.9) is equal to, up to a positive constant factor,

[ 7G-narg, 0 ntwyg-diu

= J(rg, i) L JG 2 + w) el (2 + W)du

where we put z = yg-1.

We note that y'.co is a cusp of I" and I', is the subgroup of I" which
leaves y~'-co fixed. Since ¢ is a cusp form, the above integral is zero.
Finally assume x=0. In thiscase G, =G and I', =I. Let & be a
fundamental domain in the upper half plane  with respect to the ac-
tion of I'. Then a fundamental domain in G with respect to the left ac-
tion of I" is given by

) ﬁ“u)( cosd sin 0) ) }
{( Jv-1 /\—sind cosé jp=ut+weF,0<0<xf-
Thus, the left side of (2.9) is, up to a positive constant factor, equal to

I v %p(u + w)dudv r ety = 0 .
F 0

The proof of the first half of the sublemma is now complete.
(ii) Assume (x,x) > 0. Setd, = 22 — 4x,x; (=M"'(x, x)). There exists

a g,¢G which satisfies o(g)-@ = vd,(0,1,0). Set S,:g;l(t t_l)gl

(t > 0). Then the group G, is given by {£8;;¢>0}. If I',# x1, I,
is generated by =+S,, for a suitable {,<1. We may assume that the
invariant measure dy on G, is given by

2.11) (S = Clt‘? :

We are going to show that d(S, -w) = —2+vd,z(1, —S,-w)dt/t for any
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we$, where z(X,Y) is a binary quadratic form given by 2(X,Y) =
2. X* + 2,XY + x, Y% First, we note the following equality.

(2.12) 21, —2) = J(9,2)(o(9)- )1, —g-2) (Y9eG,ze9).

Since g,-(S;-w) = t¥(g,-w), J(g,, S; - w)2d(S,-w) = 2t(g,-w)dt. Replacing z
by S,;-w and g by g, in (2.12), we have z(1, —S,-w) = J(g,, S, W)V d,
(=018 w) = —J(gy, Se-wyVd,t(g,-w). Thus, d(S,-w) = —2vd,'x(1,
—S;-w)dt/t.

In (2.12), replace = by po(S;-9)™*-z,9 by S,-9 and-z by %, then we have

(e(9)7'2)A, —1) = J(S.9, 9 w1, —S,g9-9) .

Hence,

j D(hg)dp(h) = f J(Sudy ) (8,9 -0)-2L
I'2\Gz I t

= —2 @ {p(G at, —0)*
f (L, =S, w) (S, WS, )

where w = g-7 and [ = (0, ) or (t,,1) according as I, = +1 or not.
We note that the integral

- j 2(1, — S, w)* (S, - w)d(S, -w)
=f (1, —2)p(2)dz
C(z,T)
is independent of w.

Set fz(x) - {7'0(0'2, Q)f}(x)~

To prove (2.10) it remains to show that
(2.13) 2‘14@0“”‘“’“} y J(o(g™) - 2){p(g) - 2}, —2)~*dp’(g)
Gz\G
= (e[ Z@, )],
2
where dy? is the invariant measure on G,\G which satisfies (2.8) for
dyt, given by (2.11).

As a function of z = u + iv, the left side of (2.13) is equal to e[(x, x)u/2]
-F(v) for a suitable smooth function F' of v, since
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fi@) = vwe[g(x, x)]f(ﬂx) .

By a straightforward computation one can see that
Lgy-x(, —9)7 % = k(k — D@, —9)°%,

where L, is a differential operator on R® given by (1.20). As f satisfies
(1.19), for m = 2k + 1, it follows from Lemma 1.3 and Lemma 1.4 that
aZ

{4«;2(%. ¥ aa—;) — 202k + 1)1;(6% +i aav )}F(v)e[%(x, x)] ~0.

Hence F(v) is a linear combination of e[v(x, x)i/2] and
e[_;—v(x, x)]re[—it(x, B)]t-errordy
1

However, the left side of (2.138) is bounded as v— 4. Thus, we obtain
F)elu(z, x)/2] = celz(z, 2)/2], where ¢ is a constant independent of z.
On the other hand, it is easy to see that the left side of (2.13) is equal
to

z—%@""“e[z‘g‘@] T W0 @) (e, — ) (G)

where %z, = (0,1, 0).
Hence,

¢ =2""exprM L “ S (@D ) (DL, —i)*dr(g)

= 27'exp M I , F@) (@, — ix, — ;)" do,dw,

]
Thus the proof of the second part of Proposition 2.1 is now complete.
ERemark 2.1. Set
@) = (x, — 2w, — z5)* exp — {M=x} + 5 + 2x)} .

It follows from Lemma 1.2 that f satisfies (1.19) for m = 2k + 1.
Moreover, it is easy to see that

() = 27" exp (=) exp {—=M(@a? + o + 29} 0000

r3-4z178~1 |x3|
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T

T oM

Hence, there exists an f e &(R®) which satisfies (1.19) and ¢(f) 0. In
the following we write, for ¢ e S,(I, &),

@(Z, (] L, "’) = c(f)“@(z, f: [25) L, D)
@14 = D@ [ g, —wdwe[ L@, 3] ,
z C(z,T') 2
where the summation is taken over all I'-equivalence classes of I with
positive discriminant.

4, For a positive integer N, put

I'N) = {[‘Z Z] c SLZ(Z)lc =0 (mod. N)}
ran={[s JJer@iZo_  ed )

Further, put

2.15)a 0) = > elnl ,

N=—c0

2.15b iy, 2) = 0(r-2)/6(2) for yeI'f(4) .
It is known (see (1.10) of [10]) that

2.16) g([‘; Z]z) = e;’(%)(cz + .
A holomorphic function + on the upper half plane is said to be a
holomorphic cusp form of weight (2k + 1)/2 and of level N (,where N
is a positive integer divisible by 4,) if it satisfies the following condi-
tions (2.17);, and (2.17),.

(2.17), Y(r-2) = 5@, 2 9(2) YreI'(N)),
@.17), At each cusp of I'(N),¥(z) vanishes.

As in 2 let I" be a congruence subgroup of SL(2,Z) and & be a char-
acter of I" whose kernel is also a congruence subgroup. Let L be a
lattice in Q°® and L* be the lattice dual to L with respect to the bilinear
form (2.1). We assume that L* D L, —1e¢I and that L is invariant

https://doi.org/10.1017/50027763000016706 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016706

HOLOMORPHIC CUSP FORMS OF HALF INTEGRAL WEIGHT 107

under the action of I. Take a function v on L*/L which satisfies (2.6).
Take a Z-base {4, 4,, 4} of L and set D = det ((4;, 2)).

THEOREM 1. Notations being as above, if € S;(l, &), the function
0z, ¢) = 6(z, ¢, L,v) given by (2.14) is a holomorphic cusp form of weight
2k + 1)/2 and of level N, if N is divisible by 8D.

Proof. Take an f e F(R®) which satisfies (1.19) for m = 2k + 1 and
¢(f) = 1. Then we have 0(z,¢) = O, f, ¢, L,v) (see 2.7). Denote by I,
the kernel of the character & of I'. By the assumption, I, is a con-
gruence subgroup of SL,(Z). There is a congruence subgroup I, of I,
which leaves each point of L*/L fixed. Let ¢, be the index of ', in I'.
We have,

e0(z, 0) = x*émy(x*)@(z, [, @, x*)

(cf. (1.22)), where we put

vERVIO(2, f, D, x*) = o §sz(p(g‘l)(x + x%)(9)dg (f: =10, Q).

Take a y = (g’ 3) e I'(8D). It is easy to see that y satisfies the condi-

tion (1.21), (¢/2)L* < L and dz* = z* modulo L. Hence, by Proposition 1.6,

VI, )% 0(r -2, f, 0, 2%) = C O, f, D, %),

where
e[%(x*, x*)] c=0),
C = (i)-sgnc«;[ﬂz”_(x*, x*)]e,;3(i sgn 0)3(%0)3<_Ld> (¢ +0,d<0),
e[%(x*, x*)]eg(;;?)<.g_) (¢ 0,d>0).

Now it is easy to check that C, = (¢/d)e;! for ye I'(8D). To prove that
O(z,¢) vanishes at each cusp of I'(8D), it is sufficient to show that
J(y, 2)~®¥*PO(y -2, ¢) vanishes at +ioo for every ye SL,(Z). This follows
eagily from Proposition 1.7 and Proposition 2.1.

5. Let N be a positive integer and y be a character modulo N. For

;= (‘g fl) e I'(N), set x() = x(d). Then  is a character of I'y(N). Set
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SN, 1) = Sp(Ty(N), ). (The definition of S,.(I'y(N),y) is given in 2).
For a rational prime p, the Hecke operator T%.(p,y) is a linear trans-
formation on S,.(N,y) given by

{T2.(p, Ye}(2)

(2.18), = p* Wy (D)p(p2) + p—lg 50(

2+ k
)
(see (3.5.7) of [11]).

For an N divisible by 4, we denote by &,;.,(V, ) the space of holomorphiec
cusp forms +» of weight ¥ + { and level N which satisfy

V(y-2) = 1(NiGr, 2)* 1 (2) (MreI'(N)) .

For a rational prime p, the Hecke operator Tj,,,(»?) is a linear trans-
formation on &,;,,(N,y) given as follows: If

V@) = 3 anelnel € G (N, )

(2.18), (T% 1 (0D} = Z baelnz] ,

where b(n) = a(p’n) + x(p)(——1—>k(~11’~>p""a(n) + x(P)P*'a(n/p?), (see
D /4

Theorem 1.7 of [10]).

Let &% be the lattice of integral binary quadratic forms and %’ be the
sublattice of # consisting of all forms with even second coefficients. For
a positive integer N, we set

(2/N)(wy, — 22,y — 223y,)  for N odd,
(@, Y

1
<W>(aczy2 — 22,9, — 22,Y,) for N even .

Put

L. — NZ for N odd,
M ve for N even .

Then L%, the lattice dual to Ly with respect to the bilinear form (, )y
is given by

LE 17’ (N odd),
r {$ (N even) .

Let y be a character modulo N. Denote by v% the function on ¥ given
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as follows:
For N odd,
x(x,) if N|z, and N|z,,
vi(x) = .
0 otherwise .
For N even,
x(,) if 2N |z, and N|z,,
vi(®) = .
0 otherwise .

For N odd, we extend v% to a function on L¥ by setting it to be zero
outside #. It is easy to see that v% is a function on L%/L, which
satisfies

vilo(p) @) = x*(i(x)  for any ye I'(N) .
For a ¢ e S,u(N, ), set
0,(z, 9) = O(2, ¢, Ly, vy)
= S i@)e| £ (@ )y pw)e(l, —w)*dw ,

C(w,T'o(N))

(2.19)

where the summation is taken over all I'(N)-equivalence classes of inte-
gral binary quadratic forms with positive discriminant (the definition
of C(x, ' (N)) is given at the beginning of paragraph 3 of this section).
Denote by y’ a character modulo 4N given by

for =352

Now we state the main theorem in this paper.

THEOREM 2. If
e Su(N, ), then 0,z,¢)e€ Sy, (4N,y) .
Moreover, if p i1s an odd prime, then
0,(2, T30, X)9) = T51,,(0,(2, 9))
(this equality holds even for p = 2, if N is even).

The first part of the theorem is an easy consequence of Theorem 1
Proposition 1.6 and Proposition 1.7. We will devote the remaining part
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of this section to the proof of the second part of the theorem.

6. To prove the second half of Theorem 2, we prepare a few lemmata
on lattices in quadratic fields. Let K = Q(+/d) be the real quadratic field
with discriminant d. Put w = (d + +/d)/2. Then 1 and o form a Z-base
of the maximal order © of K. A rank 2 Z-module in K is called a
lattice if it contains a Q-base of K. For a lattice % in k, denote by
OA) the order of A:OW) ={keK; kU C A}. There exists a unique
positive integer ¢ such that O®A) = O, = Z 4+ cwZ. We call ¢ the con-
ductor of 2. For each finite rational prime p, put

K,=K®,0,, A, =AR, Z, .

Then %, is a Z,-lattice in K, and %A, = O, for almost all p. Conversely,
if a Z,-lattice ¥, in K, is given for each p and if A, = O, for almost
all p, there exists a unique lattice % in K such that (%), = %, for all p.
Set KX = {ke ], Ky; k,c Oy for almost all p}.

For a lattice A in K and a ke KX, denote by kU the lattice given by
the equalities (k%), = k,%,(¥D).

Thus, KX operates on the set of lattices in K. For a positive integer
¢, denote by Z(c) the set of lattices in K with conductor ¢. It is known
(see Proposition 5.4.2. of [11]) that

(2.20) Z() = K59, ={k-O,; ke K}} .

We call two lattices in K equivalent if one is transformed into the other
by a multiplication of a suitable element in K with positive norm. Let
A be a lattice in K. Take a Z-base {w, w;} of A which satisfies ww; —
w0, > 0 (' means the conjugation with respect to Q). Denote by « the
positive generator of the Z-ideal (w,wf, w,w; + 0w, w,w}) in Q and put

AX,Y) = a (0 X + 0, )X + oiY) .

Then A(X,Y) is a primitive integral binary quadratic form (an integral
binary quadratic form is said to be primitive if its coefficients have no
non-trivial common divisor).

The SL(2, Z)-equivalence class of (X, Y) is uniquely determined by the
equivalence class of . Now the following lemma is known (see Satz
154 of [4]).

LEMMA 2.2. The mapping A — A (X,Y) establishes a one to one
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correspondence between the set of equivalence classes of lattices with
conductor ¢ in K and the set of SL(2, Z)-equivalence classes of primitive
integral binary quadratic forms with discriminant dc?.

LEMMA 2.3. Let U be a lattice in K with conductor ¢ and let p be

a rational prime. Among p + 1 sublattices of N with index p, there

are p — (i) (resp. p) with conductor cp and 1 + (£> (resp. 1) with
4 /4

conductor ¢ (resp. c/p) if ¢ is prime to (resp. divisible by) p.

Proof. By (2.20), it is sufficient to prove the lemma under the as-
sumption that ¥ = O,. In this case, the sublattices AP (0 <1< p) of A
with index p are given by

A = 2Zp + Zew, AP =1 4+ ciw)Z + pcwZ 1<ty .
We have
2[(i>(X, Y) = (ain + ﬁiXY + TiYZ)/(ai’ 191:’ Ti) ’
where
a, =9, By=opcd, 7,=cdd~—1)/4;0, =1+ icd + *c*d(d — 1)/4,
B = ped + picdd(d — 1)/2 and 7y, = p’c*d(d — 1)/4 aAgigyp.
If ¢ is divisible by p, it is easy to see that
(0(0, ﬁo’ To) = pz and (as, ‘81:’ Tz) =1 for 1 <1< D .

If ¢ is not divisible by p, we see, by a straightforward computation,
that among p + 1 integers (&, f:7) (0 <i<p), there are exactly

p — (i) which are equal to one and 1 + (i) which are equal to p.
D p

The lemma now follows from the previous lemma.

Put Of ={xeK; 20, = O, 2z’ > 0}. It is known that O/+1 is
an infinite cyclic group. The next lemma is well-known in the classical
theory of binary quadratic forms (see e.g. [1]).

LEMMA 2.4. Let g4 =t + ucv'd > 1 be a generator of OF/+1. Let
2(X,Y) = 2,X? + 2,XY + 2,Y? be a primitive integral binary quadratic
form with discriminant dc¢* and set
@.21) Yo = (t — XU 2x,u ) )

-2zt + xu
Then the mapping : +ef, — +77, establishes an isomorphism between O
and the isotropy subgroup of x in SL,Z).
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It is known that the number of equivalence classes of lattices with
conductor ¢ in K is finite. Let U, ..., %" be a complete set of repre-
sentatives of these classes. For a rational prime p, let i, i, ..., AL be
the p + 1 sublattices of 2* with index p. By Lemma 2.3, the conductors
of (p + 1k lattices {Ai;1 < i< h, 07 < p} are either ¢p or ¢/(c, p).

LEMMA 2.5. (i) For an arbitrarily given lattice with conductor
¢p, there are precisely, [OF, O] number of lattices among h(p + 1)
lattices {U:;1 <1< h,0< < p} which are equivalent to the given one.
(ii) Assume c¢ is prime to p. For an arbitrarily given lattice with

conductor ¢ there are exactly 1 + (i) number of lattices among {U%}
D

which are equivalent to the given one.
(iii) Assume c is divisible by p. For an arbitrarily given lattice with

conductor ¢/p, there are exactly p /[0y, OF1 <resp. {p — <%)} / (D%, sDQ‘])

number of lattices among {Ui} which are equivalent to the given one
if ¢ is divisible (resp. mot divisible) by p*.

Proof. Set K* ={keK; kk’ > 0}. We have

#@= U k%  (disjoint union),

keK+/o) t=1
where Z(c) is the set of lattices with conductor ¢. Hence, if ¢ is prime

to p, it follows from Lemma 2.3 that

2.22) U GUew = 2@ + {1+ (4)}20©.

kek+/o) =1 ;
Namely, each lattice with conductor c¢p (resp. ¢) appears exactly once
(resp. 1 + (%) times) among {k-%'; ke K*/O%1<i<h,0< 7 < p}.
Let &, ..., 2" be a complete set of representatiaes of lattices with

conductor ¢p. Then

(c
Zlep) = U U)k-,?“) (disjoint union) .

X i=0
lceK+/0cp

Thus, lemma is now obvious for ¢ prime to p. If ¢ is divisible by p,
it follows from Lemma 2.3 that the left hand side of (2.22) is equal to
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L(ep) + pZ(c/p) or Z(cp) + {p — <i>}$(c/p) according as c¢ is divisible
p
by p? or not. Hence the lemma is checked in a similar manner.
For a positive integer N, we denote by L(N) the subset of primi-
tive integral binary quadratic forms given as follows:

{33; N'x2,N|x3; (xv Ly xs) = 1} (N Odd) N

(2'23) L(N) = {{.’L‘; ZNIxz’ les; (xly L3y xs) = 1} (N even) *

It is obvious that L(N) is invariant under the action of I')(N).

LEMMA 2.6. Two SL(2, Z)-equivalent points tn L(N) are I'y(N)-equiv-
alent. For N odd (resp. even), each primitive integral binary quadratic
form with discriminant divisible by N (resp. 4N) is SL(2, Z)-equivalent
to a form in L(N).

Proof. The first half of the lemma follows easily from (2.2). To
prove the second half, we may assume that N = p™ (m > 1) is a power
of a prime number p. We will prove the lemma for »p = 2. For odd p,
the proof is similar but simpler. Let z = 2,X® 4 2,XY + 2,Y? be a
primitive integral quadratic form with discriminant divisible by 2™+
Transforming « by a suitable element of SL(2, Z) if necessary, we may
assume that z, is odd and «, is a multiple of 4. Then z, is even. Thus,
for m =1, the lemma is valid. Next we assume (making use of the
induction with respect to m) that m > 2 and there exists a form
2 (X,Y) = 2/ X? + 2, XY + x;Y? which is SL(2, Z)-equivalent to x and has
a second coefficient x; divisible by 2™ and has a third coefficient
divisible by 2™
For a suitable integer ¢, x; + 2™.cx; is divisible by 2™+, Then

p([l ])x’ is in L@2™) .
2m-1¢ 1
The next lemma is an easy consequence of Lemma 2.4 and the definition
of C(x,I"'(N)) given at the beginning of paragraph 3 of this section.

LEMMA 2.7. Take an integral binary quadratic form x e L(N).

(i) If the discriminant of x is not a square, C(x,(N)) is a rec-
tifiable curve in © from w to y,-w, where w is any point of 9, and r,
18 given by (2.21).

(ii) If the discriminaont of x is the square of a positive number
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m, C(x, I'(N)) is the geodesic line from (x, + m)/2x, to (x, — m)/2x, (if
xz; = 0, we understand that C(x, [(N)) is the geodesic line from +ico
(resp. x,/x;) to x,/x, (resp. +1too) for x, > 0 (resp. z, < 0)).

(dii) If 1 is a positive integer prime to N, C(lx, I'((N)) = C(z, I'\(N))
for any x e L(N).

For a ¢pe S, (N,%) and a positive integer n, set
(2.24) ay(m, ) = 3 vi(x) J‘C( . o(@)al, —2)*'dz ,
z,N)

where v%(x) = y(x,), C(x, N) = C(x, I'(N)) and the summation is taken over
all I'(N)-equivalence classes of forms in L(N) with discriminant Nn
(resp. 4Nn) for N odd (resp. even). For N odd (resp. even) denote by
d, the discriminant of the number field Q(+/nN) (resp. Q(v4nN)) and put
N = d,c? (resp. 4nN = d,c?). Then ¢, is a positive integer or a positive
half-integer. In the latter case (which can occur only for N odd),
ay(n, ) = 0 for every ¢e S,,(N,y). Now we assume that c, is an inte-
ger.

LEMMA 2.8. Notations being as above, one has
ay(n, T30, YHe)
axop’, ) + p*(1 + <%>)x(p)an(n,¢) if o) =1,

T axmp?, ) + pz"‘z(p — (%‘))x(pz)aﬁ(n/pz, o i @Whe) =D,
ay(np®, @) + P x(pay(n /P’ @) if (0% ¢) =0,
where we put ay(n/p*, ¢) =0 for n not divisible by p*.

Proof. Assume d, >1 and put K = Q(vd,). Let a',2% ---,2" be a
complete set of representatives of I'y(IV)-equivalence classes of forms in
L(N) with discriminant d,c:. Set

(X, Y) = ¢iX? 4+ 2iXY + xiY? a<igsh.

Set i =72 A << h) (see (2.21)). Then we have, by Lemma 2.7 and
(2.24),

ax(m, T3, 1)¢)
I riow
= &) J . T @21, —2)*dz .
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Put of = (#¢ + ¢,v/d,)/2 and o= x: and denote by 2’ the lattice in K
generated by of and o It is easy to see that UY(X,Y) = 24X,Y)
A<ig<h). It follows from Lemma 2.2 and Lemma 2.6 that {2, 2, - . .2}
forms a complete set of representatives of equivalence classes of lattices
with conductor ¢, in K.

Put
=o([? ])-et ot =o[* fo])x a<i<m,

xi,o
-1 1 . 1 *\ -1 .
Tio = (p 1>Ti P 1) and 7;; = ( 1]0>n-( g ) a<i<pn.

Further, set e, =[O}, O%] and e, =[O}, OF]. We note that vi(a>%) =
x(@i(x?) and vi(x®?) = vi(x") 1 < 7 < p). It follows from (2.18), that

v () In.w T, Pp(R)xi(1, —2)*de
= ¢! i ”}v(xi,j) J'th-w SD(z)xi,j(l’ —2)k1dz
j=0 w
Set

A = pwiZ + wiZ and U = (0} + JoDZ + piZ (A <J<D).

Then AH0, Ao, ... AP are mutually distinet sublattices of 2* with index

p. Put y»I(X,Y) = A4¥(X,Y). Then z*/ = y*J or py"J or p*y*J accord-

ing as the conductor of %7 is ¢p or ¢ or ¢/p. It is easy to check that

73 s yyu or rf,, or ru%, according as the conductor of A is c¢p or ¢

or ¢/p. Lemma 2.8 is now an easy consequence of Lemma 2.5, Lemma

2.7 and Lemma 2.2. If d, = 1, the proof is similar and much simpler.
Set O(z, ) = > 105, t(n)e[nz] and

O(z, T3.(p, Y)o) = 7; b(n)elnz]

O, ) is given by (2.19)).

LEMMA 2.9. Let d, be the discriminant of Q(+/Nn). Set Nn=d,c:
(resp. ANn = d,c2) for N odd (resp. evew). If ¢, is not an integer,
a(n) = bm) =0. If ¢, is an integer,

b(n) = a(np?) + pk"x(p)(%)a(n) + P y(pHa(n/p?) ,
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where we understand that a(n/p?) = 0 if n/p* is not an integer.

Proof. 1If follows from (2.19) and (2.24) that
a(n) = 35 xm)ymEay(n/m?, )
and b(n) = 3 y(mym* tay(n/m?, T3(p, ¥D¢) ,

where the summation is taken over all positive divisors of ¢, which are
prime to N. If ¢, is not an integer, it is clear that a(n) = b(n) = 0.
Asgsume that ¢, is an integer. If p is a factor of N, we have, by Lemma,
2.8,

b(n) = 3 y(m)ym* ‘ay(np?/m?, ¢) = a(np’) .

Next we assume that p is prime to both N and ¢,. Then Lemma 2.6
implies

b(n) = 33 xmym{ay(np* /m, 9) + (1 + (%))x@)a]v(n/mz, )

micn
= a(’) + pk—‘x(p)(%’—’)am) :
Finally assume that p is prime to N but is a factor of ¢,. Set ¢, =
cp', where ¢, is prime to p. We have
b(n) = 3 x(m D )(p'm')e " ay(n/m" p*, TH(v, ) ,

where the summation is taken over all positive divisors m’ of ¢, and
over all non-negative integers ¢ not exceeding I.
Now Lemma 2.8 shows that

ay(n/m"p*, T3(0, 1))
ay(np’[m"p*, o) + p*x(@)ay(n/m p**?, o) 0<i<l-2),

_ aN(,npz/mlzpzi, ¢) + pﬂc—zx(pz)(p _ (%))alv(n/m'zp”“, go) (’L =1 1) ,
ay(np®/m"*p*, ¢) + p"“<1 + (%))x(p)ozy(n/m’zp”, ®) @=1.
Thus, b(n) = a(np?) + p* 'y(pa(n/p?.
Lemma 2.9 has been proved.

The second half of Theorem 2 now follows immediately from Lemma
2.7 and the definition of T3, ,.(p9.
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§ 3 Numerical examples
In this section, we present three numerical examples of Theorem 2.

1. Set #=6,N =1,y =1. In this case, the space S,(1,y’) is one
dimensional and spanned by the function

3.1) A(z) = elz] 1‘1 A — elnzl)* = i c(m)elnz] .
Set 0(z,4) = 0(2,1,1,4) = > .5, brelnz]. (see (2.19)). Then, we have
3.2) b, = zj AR (@, — 23, + w22)dz

T C(z,I'o(1))

where the summation is taken over all SL(2, Z)-equivalence classes of
integral binary quadratic forms with disecriminant n. We note that any
integral binary quadratic form with diseriminant one is SL(2, Z)-equiv-
alent to the form XY. Hence, it follows from Lemma 2.7 that

b, = —jw A@)(—ity’d(it) = —D(6) ,

where D(s) = 2n)~*1'(s) Dy c(m)ns.

Since D(s) does not vanish on the real line, b, #0. By Theorem 2
O(z,4) € ©5(4,1). Since 0(2) = [[7.. A — ¢)A + ¢~ (¢ = elz]), 8(z) has
not a zero on the upper half plane. Hence, ¥(z) = 0(z,4)/0(z) is a
holomorphic function on the upper half plane which satisfies y(y-2) =
(cz + d)’y(2) for every ye I'W(4). Now, I'y(4) has three inequivalent cusps,
1c0,0 and . It follows from the transformation formula for 4(z) that
it is finite and does not vanish at 700 and 0, and that it has a zero
of order 1/4 at } with respect to a uniformizing parameter t =
e[(—z + 1)/(—2z + 1)]. Furthermore, O(z, 4) vanishes at all the cusps of
I'y(4) and the order of zero at 1/2 with respect to ¢ is not smaller than
1/4. Thus, ¥(z) is a holomorphic integral form of weight 6 with respect
to I'y(4) which vanishes at ic0 and at 0. It is known that the space of
such forms is spanned by

V@D = q[] A — ¢ = g —12¢° + ---
and by

B = 51 m(—Dmgntm= = —q 4 320" + -+ .

m,my=
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Hence 6(z,4) is expressed as a linear combination of 8(z)v/ 4(22) = 2 +
2¢* 4+ --- and of 6(()E(R) = —q + 30¢* + ---. Since b, = —D(6) and
b, = 0 (see (3.2)), we have

D(6)

3.3 Oz, 4) = e

(E(2) — 157/ 4(22))0(2) .

Combining (3.2) and (3.3) we obtain series of identities which may be
of some interest. For example, let d be a discriminant of a real quad-
ratic field with class number 1 and let ¢ >1 be the fundamental unit of
Q(Wd). Set t + uyd =¢ or & according as the norm of ¢ is 1 or —1.
Assume d is divisible by 4 and set

(B(z) — 15V/A@2)}0(2) = i Bud” .
Then

3.4) f P A(z)(i - zz)5dz — —fape) or —Lop)
2=t/2u 4 16 32

according as the norm of ¢ is —1 or 1. In fact, under our assump-
tions, a complete set of representatives of I'(1)-equivalence classes of
integral binary quadratic forms with discriminant d is given by
{£{(d/HX? — Y} or {(d/HX* — Y*} according as the norm of ¢ is 1 or
—1. Furthermore, for #(X, Y) = (d/4)X* — Y?, the integral path C(zx, I",(1))
in (8.2) is any rectifiable curve from w to (tw + (d/2)w)/Quw + t), where
w is any point on the upper half plane. Letting w — 4400 in (3.2) and
making use of (3.8), we obtain (3.4) (Cf. Manin [14]).

2. In the following two examples, we are interested in the case
where £k =1 and y is a quadratic character modulo N (y* =1). Take a
0eSy([W(N),y). For N odd, we have, by (2.19),

G5 0,0 =3 x(mx,)e[mzz (22 — 4x,x3)]j o()dz ,

N Gz, To(2)
where the summation is taken over all positive integers m and over all
I'y(N)-equivalence classes of primitive integral binary quadratic forms
2(X,Y) = 2,X? + 2,XY + 2,Y? with positive discriminant and with z, and
x, divisible by N.
For N even,
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36 60 =3 x(mxoe[%i(xz - 4x1x3)]j o()dz ,

C(z,To(N))

where the summation is taken over all positive integers m and over all
I'(N)-equivalence classes of primitive integral binary quadratic forms
with positive discriminant and with «, divisible by 2N and with x, divis-
ible by N.

In both cases, it follows from Theorem 2 that

3.7 6,(2,¢) € &AN,y) , where y(d) = X(d)(%l)(%).

Assume that the discriminant of z (xe L(N)) is not a square. Then
C(x, ['(N)) is a rectifiable curve from z to y,-z (z € §), where 7, is given
by (2.21).

Denote by X(N) the Riemann surface I'(N)\$ U (ico) U Q.

The image of C(z,I'((N)) by the natural projection of  into X(V) is a

cycle on X(N) which we denote by 7,. The integral J p(2)dz is

C(z,To(N))
the period of the holomorphic differential form ¢(z)dz on X(N) along the
cycle 7,. Hence, it is expressed by a linear combination of fundamental
periods of ¢(z)dz on X(N) with coefficients in Z. A description of
H,(X(N), Z) after Manin [6], which we will recall in the next paragraph,
enables us to compute these coefficients in finite steps.

3. The set of inequivalent cusps of I'y(IV) is, by definition, the set
of I'y(N)-orbits in Q U ic0. Denote by II(N) the set which consists of
pairs of the form [6; @ mod. (6, No~%)], here § runs through all positive
divisors of N and the second coordinate of the pair runs through all
invertible classes of residues modulo the greatest common divisor of &
and No-'. If (5, Né!) =1, we sometimes put simply 1 in place of the
second coordinate. For r = (u/vd)e Q, where J|N, u, ve Z, (u,vd) =
(v, N6~ =1, set ¢(r) = [d; uv mod (5, N6~%)]. Further set c(ico) = [N; 1].
Then the mapping c¢ establishes one to one correspondence between the
set of inequivalent cusps of I'y(N) and the set II(N). We identify these
two sets. For each pair (r,7,) of two elements of Q U tco, we denote
by {r,, 7.}y the image, by the natural projection from & U Q U ico into
X(N), of the geodesic from », to 7,. Let é = ¢mod. N,d = dmod. N be
two residue classes mod. N which are represented by relatively prime
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integers ¢ and d. We call two such pairs equivalent if one goes to the
other by multiplication of an invertible residue class modulo N. The
set of these classes é:d is PY(Z/(N)), the projective line over Z/(N).
For ¢ :c?eP‘(Z/(N)), set

3.9) £@: d) = {% %}N ,

where a, b, ¢, d are integers with the conditions ad — bec =1,¢é = ¢mod. N
and d = dmod. N. Then £ is a well-defined map from PY(Z/(N)) into
the set of chains on X(&). Further, set

o d) = [3; La, mod. @, Nor)|
(8.10) ' P
— [52; ~50“, mod. (52,N5;‘)] ,
2

where §, = (¢, N), §, = (d, N) (the right hand side is understood to be an
element of free abelian group generated by elements of II(N)).

LEMMA 3.1. (See Theorem 2.7 of Manin [6]). a) Construct the
maximal torsion-free abelian group q (N) generated by the symbols
(@: d), one for each ¢: d e P((Z/(N)) with the relations (¢:d) + (—d: &) = 0,
@:d) + (@ —d):6) + (—d:(¢ — d)) =0. Further let H(N) designate the
subgroup in it which is the kernel of the boundary homomorphism
(8.10). Then the map &, given by (3.9), induces an isomorphism &: H(N)

5 H(X(N), 2).

b) For a g = (‘g Z) e I'(N), let
b 11 1
.__=p —|-_. _ “e
d 7T o+ o+ + e

e Z, 0y, -+, D, Dositive integers) be the expansion of b/d into finite
continued fractions. Set d_,=0,dy=1 and d;, = p,dy_, + dy_, k=1,
-eo,m). Then 3t (—1¢'dy:d,_) e HN) is mapped, by & into the
integral 1-homology of H(X(N), Z) represented by the cycle {0, g-0}y.

EXAMPLES OF LEMMA 3. (i) For N =11, the following relations
betweeen elements of H (11) hold.
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=1:1=0, 1:0=—-0:1), 2:1=—-6:1)=—-5:1)=9:1,
=—-T:0), 81=-GD=C:10)-@3:1).
Thus, H(11) is a free abelian group generated by (1:0),(Z:1) and@: 1).
By (3.10),0(1:0) = [1;1] — [11;1],02: 1) = a8: 1) = 0. Hence, H(11) is
a free abelian group generated by 2:1 and by 3:1. It follows that
£2:1) ={0,4},, and £B:1) = {0,4},, form a base of H,(X(11),2).

(i) For N = 14, relations between elements of H(14) are as fol-

lows:
1:1=18:1=0, 0:1=-(1:0),
2:1=-1:9)=-(03:9=12:1, 3:1=-0:1),
1:1=-3:2, 5:i=—-dl:D=A:D)-¢&:D,
6:1=-09:2=@A:DHD-3:DH, T:DH=-1d:7,
8:1=-6:2)=@d:DHD-@3:D,
10:1=-d11:2=2:1)-@3: D),
7:2=-2:H=T1)—@:)+@3:0).

Hence, H(14) is generated by 0:1,2:1,3:1,4:1 and by 7:1. Further-
more, 3(0: 1) = [14;1] — [1,1],82: 1) =[2;1]1 — [1;1],8@: 1) = 0,9(4: 1)
=1[2;11 —[1;11,8(T:1) =[7;1] — [1;1]. Thus, H(14) is a free abelian
group generated by 3:1 and by (2:1) — (4:1). It follows that £éB:1) =
1,3 and £@: D) — &@: 1) = {1, 3} — {1, 1}, form a base of H,(X(14), 2).

4. In the following tables the line
N (N =11 or 14)

(%1, %3, %3) t+uvd Do + [P1, 501l

+(Y1,Y2,Y3) ” qo + [q1,+++,4i]

means that +(x,X* + 2,XY + #,Y?) and +@X® + 1,XY + 9,Y?) form a
complete set of representatives of binary quadratic forms in L(N)® with
discriminant d = Nu (resp. d = 4nN) for N = 11 (resp. 14); that ¢; which
was introduced in Lemma 2.4 is t + u+/d; that 2z,u)/(t + x,u) (resp.
Qyw)/(t + y,w) is equal to

1 1 1 1 1
Do+ — e = (resp @+ — - —)
T+ e+ 4 e "%+ 4+ a

(9) For the definition of L(N), see (2.23).
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TABLE I
N=11
n
3 +(1,11,22) 23 + 433 [8,2,1,2]
4 +(@1,0,—11) 10 4- 3vIT [3,3]
7 +(1,11,11) O + VT2 [10]
8 +(1,0. —22) 197 + 21v88 [4,1,2,4,3]
TABLE II
N=14
n
1 +(1,0,—14) 15 + 2v'56 [3,1,3]
2 +(1,0,—28) 127 + 127112 [5,3,2,3]
+(1,0,—42) 13 4+ V168 [6,2]
3{ +(3,0,—14) ” 2,61
+(1,0,—170) 251 + 30v70 8,2,1,2,1,2]
5{ +(8,28,42) " [7,2,5,8]
+(1,0,—84) 55 4+ 3+/336 [9,6]
6{ +(5,56,140) " [7,2,3,4]
7 +(1,0,—98) 99 + 5v392 [9,1,9]
(| +@,0,—140) 71 + 3v560 [11,1,5]
10{ +(18,—168,532) " -1+ [1,4,1,1,4.2,1,2]
Tl £@,0,—154) 21295 + 858616 nz,2,2.3,1,2,1,3,2,2]
11{ +(3,28,14) % [8,1,4,12,4,1,7,2]

4. LEMMA 3.2. Let y’' be a choracter modulo 4N which satisfies
y*=1 and let v., be the number of inequivalent cusps of I'4N). Take
a e &AN, ) and set & = 3.5 aqe[nz]. Assumea,=a,= - =@, =0
for an integer n, and assume 4n, is larger than 8 3, No((8, N /8))/6(5, N /5) —
v + 1, where ¢ is the Euler function and the summation is taken over
all positive odd divisors of N. Then  vanishes identically.
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Proof. A set of representatives for all the inequivalent cusps of
I'(4N) is given by {u/d; 0 < d|4N, (u,6) =1, u modulo (3,4Ns"")}. For
each u/d, take integers u’, 8’ which satisfy ué’ — #'6 = 1. A uniformizing
parameter for I'(AN)\H U 0 U Q at u/d is given by

t= 2t (M> , Where e =4N/d(5,4No™Y) .

The function 6'%(z) is a regular holomorphic form of weight 6 with respect
to I'(4N). It has no zeros on . The cusp #/é is not a zero of 4 'if
8 is either odd or divisible by 4. If 6 is even but is not divisible by 4,
6#*(z) has a zero of order 3e at u/d, with respect to the parameter ¢.
Hence, a meromorphic function *(z)/6*%(z) on X(4N) is regular except
at cusps u/é with § even but not divisible by 4. At u/25, (6, odd, d,|N),
¥%2)/6%(z) has a pole of order at most 8¢ — 1 = 3N/§, (6,, No;%) — 1.
Since *(z) vanishes at all cusps and has a zero of order at least 4n, at
1/4N, we have

dng + v, —1<3 X3 {N/6(8y N3 D}p(8e, N7

50 0dd, 50| NV

if ¢ dose not vanish identically. The lemma is now proved.
5. Set N=11, y() = ({01-) In this case, S,(I(11),1) is one-

dimensional and is spanned by ¢(z) = *v4(2)4(11z), where 4(z) is given
by (3,1). Further 0,2, ¢) c©,(44,1). Let © be the maximal order of
Q(v/—11). For each ze D, let v(x) be 0 or p = (-1 + +/—=8)/2 or p* or
1 according as x is congruent modulo 2 to 0 or (1 + +/—11)/2 or
(=14 +—11)/2 or 1. Set

J@® =27 37 v(melzN(2)] (N(xz) is the norm of xz)

xreo

= —@F -+ + P -+ - — B+ .-
=g — @A —g®)  (q=elzl).
n=1

Then f(z) e S,(44,y”), where y” is a character given by y”(d) = (_744)

Further, set
6A12)f(2) = q — ¢ — ¢° + ¢ + 29" — 29" + ¢ — 29" + 2¢®
(3.11) —® 4+ 200+ @7 — g — ¥+ -
=2, @sq" .

n=1
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We have 6(112) f(2) € ©,(44,1). Hence, by Theorem 1.7 of [10],

G4, 1) 5 (| THENE) = T aund” = 20° — 20* — 20" --- .
Set 7, = {0, %}, and 7, = {0,3},, (for notations, see 3). We have seen, in
(i) of examples of Lemma 3, that y, and 7, form a base of H,(X(11), Z).
Put o, =I e(2)dz and o, :j ¢(z)dz. Then, o, and @, are linearly in-
dependent Tc;ver R. :

PROPOSITION 3.3.

3.12) 0,(z,¢) = (0, — 2wz)1§1a,me[nz] ,

where Y ., 0elnz] is given by (3.11).

Proof. Set 0,(z,9) = D s brelnz]. Making use of (3.5), Lemma 3.1
and Table I, we have after straightforward computations b, = b, = 0,
by = 2(w;, — 2wy), b, = 22w, — @), by = by = b, = by = 0. Hence, 0,(z,¢) —
(0, — 2w,) D01 nelnz] has a zero at ioco of order at least eight. Since
both sides of (3.12) belong to ©,(44,1), it follows from Lemma 3.2 that
both sides of (8.12) coincide.

Remark 3.1. We have,

z/11 —_—
bp= 3 (20_) j " o)z = VIID:)
zmod. 11\11/ Jiw

where

Do) = CoT® I (S )(%) (o) = S eat”) -

6. Set N =14, y(x) = (%) (we understand that y is a character

modulo 14). In this case S,(I",(14),1) is one-dimensional and is spanned

by
o(2) = *VA(2)A(22)4(T2)4(14z)
(8.13) = qnlj 1 - ¢ — ¢ — g™ — ¢*)

=q—-q¢ —=2¢--. (¢ = elz]) .
By 3.7, 0,(z,9) € ©,(56,y"), where y’ is a character modulo 56 given by
7)
"(d)y =(=). Set
x'(d) ( 7
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J@) = %( ‘T—‘e‘za {elz(2* + 149")] — e[222” + Ty")]}

=q¢—C+¢ - - —¢+¢"+¢°+¢°+2¢"---.

Then f(2) € Si(56,y”), where y” is a character modulo 56 given by y”(d)
= (:_5_6_)_ Put
d

0(12) f(z) = ZZII 0"
=q—0¢+¢ - +¢—3¢+2¢"---.
Then 6(7z) f(z) € ©5(56,y’). Furthermore

(3.14) %amq” =q+¢—q¢ —qd —¢—-3¢+2¢" + .-

is also a member of &;(56,y). Set y;={1,3}s and y, = {1, 3} — {1,
(for notations see 3°). We have seen, in (ii) of examples of Lemma 3.1,

that 7, and 7, form a base of H,(X(14),Z). Put =j o(2)dz, 0, =
1

I ¢o(@)dz. Then o, and w, are linearly independent over R.

rz

ProPOSITION 3.4.
0,2, ) = 20, — wz)g}lamq” .
Proof. Set
6,(2,0) = %}1 b.q" .

Making use of (38.6), Lemma 3.1 and Table II, we have, after some com-
putations, b, = 2(w, — @), b, = 2(w, — ®,), b; = by = b, = 0, b, = 2(0, — w),
by =0 and b, = 4(w, — w,).

Since S,(I",(14),1) is one-dimensional, it follows from (2.18) and (3.13)
that T3(2, x99 = —¢ and T¥@3, D¢ = —2¢. Hence, by Theorem 2, b, =
—b, by = —b, and —2b, =0b,+ b,. Thus, we see, by (3.14) that
0,(z,0) — 2(w;, — @) D us1 4nQ™ has a zero at ioo of order at least 11.
Since 0,(z,¢0) and 2(w; — @) 4 ¢4,q™ both belong to €,(56, ), we have
0,(2,0) = 2w, — ©) D 1 ¥nq™, by Lemma 3.2.

Remark (i) If 3(—1) = +1, then the integral (3.5) and (3.6) vanish
identically. Since y(—1) = 1 for any quadratic character modulo 17,
(8.5) vanishes if N = 17.
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