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Eigenvalues of −∆p − ∆q Under Neumann
Boundary Condition
Dedicated to Professor Ioan A. Rus on the occasion of his eightieth birthday

Mihai Mihăilescu and GheorgheMoroşanu

Abstract. _e eigenvalue problem −∆pu − ∆qu = λ∣u∣q−2u with p ∈ (1,∞), q ∈ (2,∞), p /= q sub-
ject to the corresponding homogeneousNeumann boundary condition is investigated on a bounded
open set with smooth boundary from RN with N ≥ 2. A careful analysis of this problem leads us to
a complete description of the set of eigenvalues as being a precise interval (λ1 ,+∞) plus an isolated
point λ = 0. _is comprehensive result is strongly related to our framework, which is complemen-
tary to the well-known case p = q /= 2 for which a full description of the set of eigenvalues is still
unavailable.

1 Introduction and Main Result

Our goal in this paper is to investigate the eigenvalue problem

(1.1)
⎧⎪⎪
⎨
⎪⎪⎩

Au ∶= −∆pu − ∆qu = λ∣u∣q−2u in Ω,
∂u
∂νA

= 0 on ∂Ω,

where p ∈ (1,∞), q ∈ (2,∞), p /= q, Ω ⊂ RN (N ≥ 2) is a bounded domain with
smooth boundary ∂Ω, and

∂u
∂νA

= ( ∣∇u∣p−2
+ ∣∇u∣q−2)

∂u
∂ν
,

with ν = the unit outward normal to ∂Ω. _e solutions u will be sought in the Sobolev
space W ∶= W 1,max{p,q}(Ω), so that the above PDE is satisûed in the distribution
sense, and the normal derivative ∂u

∂νA
(associated with operator A) exists in a trace

sense (see [3]). Using aGreen’s formula (see [3, Corollary 2, p. 71]) one can deûne the
eigenvalues of our problem in terms of weak solutions u ∈ W as follows: λ ∈ R is an
eigenvalue of problem (1.1) if there exists uλ ∈W ∖ {0} such that

(1.2) ∫
Ω
(∣∇uλ ∣

p−2
+ ∣∇uλ ∣

q−2
)∇uλ∇v dx = λ∫

Ω
∣uλ ∣

q−2uλv dx , ∀ v ∈W .

Conversely, if λ is an eigenvalue, then any eigenfunction u ∈W ∖ {0} corresponding
to it satisûes problem (1.1) in the distribution sense. _is follows by the same Green’s
formula.
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Eigenvalues of −∆p − ∆q Under Neumann Boundary Condition 607

In the particular case q = 2, the set of eigenvalues for problem (1.1) was completely
described in [7] (for p > 2) and [4] (for p ∈ (1, 2)). Our goal here is to show that
a complete description of the eigenvalue set is also possible for any q > 2 and p ∈

(1,∞) ∖ {q}. _is general case requires separate analysis, and some diõculties that
occur within the new framework have to be overcome.

Note that the case q = p /= 2 has been very much discussed in the literature, but
a complete description of the corresponding eigenvalue set is still unavailable (it is
only known that, as a consequence of the Ljusternik–Schnirelman theory, there exists
a sequence of nonnegative eigenvalues of the corresponding operator; see, e.g., [6]).

Now, choosing v = uλ in (1.2), we infer that no negative λ can be an eigenvalue of
problem (1.1). It is also obvious that λ = 0 is an eigenvalue of this problem (the cor-
responding eigenfunctions being the nontrivial constants). So we need to investigate
the case λ > 0.

Note that if λ > 0 is an eigenvalue of (1.1), then testingwith v = 1 in (1.2)we deduce
that

∫
Ω
∣uλ ∣

q−2uλ dx = 0.

_us, the eigenfunctions corresponding to positive eigenvalues of problem (1.1) be-
long to the nonempty, symmetric, closed cone

C ∶= {v ∈W ∶ ∫
Ω
∣v∣q−2v dx = 0} .

Remark It is easy to see that C ∖ {0} /= ∅. Indeed, one can simply choose u =

u1 − u2, where u1 , u2 are nonnegative test functions having supports in two disjoint
balls included in Ω such that ∫Ω uq−1

1 dx = ∫Ω uq−1
2 dx. More speciûcally, let x1 , x2 ∈ Ω

be two diòerent interior points of Ω. _en there exists an є > 0 small enough such
that the balls Bє(x1), Bє(x2) are included in Ω and Bє(x1) ∩ Bє(x2) = ∅. Consider
the functions u i , i = 1, 2,

u i(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

e1/(∣x−x i ∣
2
−є2) , x ∈ Bє(x i),

0, x ∈ Ω ∖ Bє(x i).

_ese are test functions (see, e.g., [2, p. 108]), and thus they belong to the Sobolev
spaceW . Obviously, u∶Ω → R deûned by

u(x) = u1(x) − u2(x), ∀ x ∈ Ω,

belongs to C ∖ {0}. Of course, tu also belongs to C ∖ {0} for all t ∈ R ∖ {0}.

_emain result of this paper is the following theorem.

_eorem 1.1 Assume p ∈ (1,∞), q ∈ (2,∞) and p /= q. _en the eigenvalue set of
problem (1.1) is precisely {0} ∪ (λ1 ,+∞), where

(1.3) λ1 ∶= inf
v∈C∖{0}

∫Ω ∣∇v∣q dx
∫Ω ∣v∣q dx

.
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2 Proof of Theorem 1.1

As pointed out before, problem (1.1) cannot have negative eigenvalues, while λ = 0 is
an eigenvalue of this problem. In what follows we investigate the case λ > 0.
For the rest of the proof,we start by introducing some notation and recalling some

well-known results. For each r > 1, deûne

Cr ∶= {v ∈W 1,r
(Ω) ∶ ∫

Ω
∣v∣r−2v dx = 0} .

Note that C = Cq only if q > p; otherwise (i.e., if q < p), C is a proper subset of Cq .
Consider the eigenvalue problem

(2.1)
⎧⎪⎪
⎨
⎪⎪⎩

−∆ru = λ∣u∣r−2u in Ω,
∣∇u∣r−2 ∂u

∂ν = 0 on ∂Ω,

where r > 1. Deûne

λN
1 (r) ∶= inf

v∈Cr∖{0}

∫Ω ∣∇v∣r dx
∫Ω ∣v∣r dx

.

We know from [5,_eorem 6.2.29] that if r ≥ 2, then λ = λN
1 (r) is the lowest positive

eigenvalue of problem (2.1). In particular, we deduce that λ1 = λN
1 (q) > 0 if q > 2,

1 < p < q and λ1 ≥ λN
1 (q) > 0 if 2 < q < p.

Further, deûne

ν1 ∶= inf
v∈C∖{0}

1
q ∫Ω ∣∇v∣q dx + 1

p ∫Ω ∣∇v∣p dx
1
q ∫Ω ∣v∣q dx

.

It is easy to check that

(2.2) λ1 = ν1 .

Indeed, note that for each u ∈ C ∖ {0} and each t > 0, we have

ν1 ≤

1
p ∫Ω ∣∇(tu)∣p dx + 1

q ∫Ω ∣∇(tu)∣q dx
1
q ∫Ω ∣tu∣q dx

=
qtp−q

p
∫Ω ∣∇u∣p dx
∫Ω ∣u∣q dx

+
∫Ω ∣∇u∣q dx
∫Ω ∣u∣q dx

.

_us, letting t → 0 if p > q and t → ∞ if p < q, and then passing to inûmum in the
right-hand side, we get ν1 ≤ λ1 . On the other hand, for all u ∈ C ∖ {0}, we have

1
p ∫Ω ∣∇u∣p dx + 1

q ∫Ω ∣∇u∣q dx
1
q ∫Ω ∣u∣q dx

≥
∫Ω ∣∇u∣q dx
∫Ω ∣u∣q dx

≥ λ1 ,

which implies ν1 ≥ λ1 . Consequently, (2.2) holds true.

2.1 The Nonexistence Part

We have the following two claims.

Claim 1 _ere is no eigenvalue of problem (1.1) in (0, λ1).

https://doi.org/10.4153/CMB-2016-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-025-2


Eigenvalues of −∆p − ∆q Under Neumann Boundary Condition 609

Assume by contradiction that there exists a λ ∈ (0, λ1) that is an eigenvalue of (1.1),
with uλ ∈ C ∖ {0} the corresponding eigenfunction. Using (1.3) and the deûnition
relation (1.2) with v = uλ , we derive

0 < (λ1 − λ)∫
Ω
∣uλ ∣

q dx ≤ ∫
Ω
∣∇uλ ∣

q dx − λ∫
Ω
∣uλ ∣

q dx

≤ ∫
Ω
∣∇uλ ∣

p dx + ∫
Ω
∣∇uλ ∣

q dx − λ∫
Ω
∣uλ ∣

q dx = 0.

_is contradiction shows that Claim 1 holds true.

Claim 2 λ = λ1 is not an eigenvalue of problem (1.1).

Assume the contrary, i.e., there exists uλ1 ∈ C ∖ {0} such that (1.2) holds true with
λ = λ1. Letting v = uλ1 in (1.2), we get

∫
Ω
∣∇uλ1 ∣

p dx + ∫
Ω
∣∇uλ1 ∣

q dx = λ1 ∫
Ω
∣uλ1 ∣

q dx .

From this equality and the deûnition of λ1, one gets

∫
Ω
∣∇uλ1 ∣

p dx + λ1 ∫
Ω
∣uλ1 ∣

q dx ≤ ∫
Ω
∣∇uλ1 ∣

p dx +∫
Ω
∣∇uλ1 ∣

q dx = λ1 ∫
Ω
∣uλ1 ∣

q dx ,

which yields

∫
Ω
∣∇uλ1 ∣

p dx = 0Ô⇒ ∇uλ1 = 0 a.e. in Ω.

By Weyl’s regularity lemma, uλ1 ∈ C∞(Ω), so uλ1 is a constant function. _is com-
bined with the fact that uλ1 ∈ C implies uλ1 = 0, contradiction. So Claim 2 holds
true.

2.2 The Existence Part

Let us ûrst recall the following theorem (Lagrange multiplier rule) (see, e.g., [10,
_m. 3.3.3, p. 179] or [8,_m. 2.2.10, p. 76]),whichwill play a key role in our analysis.

Lemma 2.1 Let X and Y be real Banach spaces and let f ∶D → R, h∶D → Y be C1

functions on the open set D ⊂ X. If y is a local solution of theminimization problem

(P) min f (x), h(x) = 0,

and h′(y) is a surjective operator, then there exists y∗ ∈ Y⋆ such that

(2.3) f ′(y) + y∗ ○ h′(y) = 0,

where Y⋆ stands for the dual of Y .

Our purpose in this subsection is to prove the following claim.

Claim 3 Every λ ∈ (λ1 ,∞) is an eigenvalue of problem (1.1).

In order to prove Claim 3, let us ûx a λ > λ1 and deûne Iλ ∶W → R by

Iλ(u) ∶=
1
q ∫Ω

∣∇u∣q dx + 1
p ∫Ω

∣∇u∣p dx − λ
q ∫Ω

∣u∣q dx .
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Standard arguments can be used to deduce that Iλ ∈ C1(W ∖ {0},R) (actually, Iλ ∈
C1(W ,R) if 2 < q < p) with the derivative given by

⟨I
′
λ(u), ϕ⟩ = ∫

Ω
∣∇u∣q−2

∇u∇ϕ dx + ∫
Ω
∣∇u∣p−2

∇u∇ϕ dx − λ∫
Ω
∣u∣q−2uϕ dx ,

for all u ∈ W ∖ {0} (actually, all u ∈ W if 2 < q < p) and all ϕ ∈ W . _us, we note
that λ is an eigenvalue of problem (1.1) if and only if Iλ possesses a nontrivial critical
point. Further, we split the discussion into two cases: 1 < p < q, q > 2, and 2 < q < p,
respectively.

2.2.1 The Case 1 < p < q, q > 2

In this case, C = Cq ,W =W 1,q(Ω) and λ1 = λN
1 (q).

A careful analysis shows that Iλ is not coercive onW , and consequently,we cannot
use the Direct Method in the Calculus of Variations in order to determine critical
points of Iλ . Our idea (inspired by [1, Section 2.3.3])will be to consider the restriction
of Iλ to the Nehari-typemanifold deûned by

Nλ ∶= {u ∈ Cq ∖ {0} ∶ ⟨I
′
λ(u), u⟩ = 0}

= {u ∈ Cq ∖ {0} ∶ ∫
Ω
∣∇u∣q dx + ∫

Ω
∣∇u∣p dx = λ∫

Ω
uq dx} .

In fact, this is a natural idea since any possible eigenfunction corresponding to λ is
necessarily an element of Nλ . Note that for all v ∈ Nλ , functional Iλ(v) has the fol-
lowing expression

Iλ(v) =
1
q ∫Ω

∣∇v∣q dx + 1
p ∫Ω

∣∇v∣p dx − λ
q ∫Ω

∣v∣q dx

= −
1
q ∫Ω

∣∇v∣p dx + 1
p ∫Ω

∣∇v∣p dx = q − p
pq ∫Ω

∣∇v∣p dx .

Consequently, denoting
mλ ∶= inf

w∈Nλ
Iλ(w),

we have mλ ≥ 0.
In what follows the proof of Claim 3 is done in several steps.

Step 1. Nλ /= ∅. Indeed, since λ > λN
1 (q), it follows by the deûnition of λN

1 (q) that
there exists vλ ∈ Cq ∖ {0} for which

∫
Ω
∣∇vλ ∣

q dx < λ∫
Ω
∣vλ ∣

q dx .

_en there exists t > 0 such that tvλ ∈ Nλ , i.e.,

tq ∫
Ω
∣∇vλ ∣

q dx + tp ∫
Ω
∣∇vλ ∣

p dx = λtq ∫
Ω
∣vλ ∣

q dx .

_is is obvious when

t = (
λ ∫Ω ∣vλ ∣

q dx − ∫Ω ∣∇vλ ∣
q dx

∫Ω ∣∇vλ ∣
p dx

)
1/(p−q)

.

Note that we have also used the fact that Cq is a cone. If w ∈ Cq , then tw ∈ Cq for all
t > 0.
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Step 2. Everyminimizing sequence for Iλ onNλ is bounded in W 1,q(Ω). Let {un} be a
minimizing sequence in Nλ , i.e.,

(2.4) 0 < λ∫
Ω
∣un ∣

q dx − ∫
Ω
∣∇un ∣

q dx = ∫
Ω
∣∇un ∣

p dx → pq
q − p

mλ , as n →∞.

Assume by contradiction that {un} is unbounded inW 1,q(Ω), so a subsequence of it,
again denoted {un}, converges in the normofW 1,q(Ω) to∞. _en by (2.4) it follows
that ∫Ω ∣un ∣

q dx → ∞ and ∫Ω ∣∇un ∣
q dx → ∞ as well. Set vn ∶= un

∥un∥Lq(Ω)
. Since

∫Ω ∣∇un ∣
q dx < λ ∫Ω ∣un ∣

q dx, we deduce that ∫Ω ∣∇vn ∣
q dx < λ for all n. _us, {vn}

is bounded in W 1,q(Ω). It follows that there exists v0 ∈ W 1,q(Ω) such that vn ⇀ v0
inW 1,q(Ω) (hence inW 1,p(Ω) aswell) and vn → v0 in Lq(Ω). In particular, this last
convergence implies that v0 ∈ Cq (cf. Lebesgue’s Dominated Convergence_eorem).
Dividing (2.4) by ∥un∥

p
Lq(Ω) we get

∫
Ω
∣∇vn ∣

p dx → 0 as n →∞.

Next, since vn ⇀ v0 in W 1,p(Ω), we infer that

∫
Ω
∣∇v0∣p dx ≤ lim inf

n→∞ ∫Ω
∣∇vn ∣

p dx = 0,

and consequently v0 is a constant function. In fact, from v0 ∈ Cq we see that v0 = 0. It
follows that vn → 0 in Lq(Ω), which contradicts the fact that ∥vn∥Lq(Ω) = 1 for all n.
Consequently, {un} must be bounded in W 1,q(Ω).

Step 3. mλ ∶= infw∈Nλ Iλ(w) > 0. Assume by contradiction that mλ = 0. Let {un} ⊂

Nλ be aminimizing sequence, i.e.,

(2.5) 0 < λ∫
Ω
∣un ∣

q dx − ∫
Ω
∣∇un ∣

q dx = ∫
Ω
∣∇un ∣

p dx → 0, as n →∞.

By Step 2we know that {un} ⊂ Cq is bounded inW 1,q(Ω). It follows that there exists
u0 ∈W 1,q(Ω) such that (on a subsequence, again denoted {un}) one has un ⇀ u0 in
W 1,q(Ω) (hence in W 1,p(Ω)) and un → u0 in Lq(Ω). _erefore, u0 ∈ Cq and

∫
Ω
∣∇u0∣

p dx ≤ lim inf
n→∞ ∫Ω

∣∇un ∣
p dx = 0,

and consequently u0 = 0. _us, we have proved that un ⇀ 0 in W 1,q(Ω).
Now set vn ∶= un/∥un∥Lq(Ω). Since ∫Ω ∣∇un ∣

q dx < λ ∫Ω ∣un ∣
q dx, we have

∫Ω ∣∇vn ∣
q dx < λ for all n. _us, {vn} ⊂ Cq is bounded in W 1,q(Ω). It follows

that there exists v0 ∈ Cq such that vn ⇀ v0 in W 1,q(Ω) and vn → v0 in Lq(Ω).
Dividing (2.5) by ∥un∥

p
Lq(Ω), we get

∫
Ω
∣∇vn ∣

p dx = ∥un∥
q−p
Lq(Ω)[ λ − ∫Ω

∣∇vn ∣
q dx] → 0 as n →∞.

Next, since vn ⇀ v0 in W 1,p(Ω), we infer that

∫
Ω
∣∇v0∣p dx ≤ lim inf

n→∞ ∫Ω
∣∇vn ∣

p dx = 0,

and consequently v0 is a constant function. In fact, v0 = 0, since v0 ∈ Cq . _us, vn → 0
in Lq(Ω), which contradicts the fact that ∥vn∥Lq(Ω) = 1 for all n.

https://doi.org/10.4153/CMB-2016-025-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-025-2


612 M. Mihăilescu and G. Moroşanu

Consequently, mλ is positive, as asserted.

Step 4. _ere exists u ∈ Nλ such that Iλ(u) = mλ . Let {uk} ⊂ Nλ be a minimizing
sequence, i.e., Iλ(uk)→ mλ as k →∞.
By Step 2 {uk} is bounded in W 1,q(Ω). _us, there exists u ∈ Cq such that uk

converges weakly in W 1,q(Ω) and strongly in Lq(Ω) to u.
By the above pieces of information we deduce that

(2.6) Iλ(u) ≤ lim inf
k→∞

Iλ(uk) = mλ .

Since uk ∈ Nλ for all k, we have

(2.7) ∫
Ω
∣∇uk ∣

q dx + ∫
Ω
∣∇uk ∣

p dx = λ∫
Ω
∣uk ∣

q dx , ∀k.

If u = 0, then it follows by (2.7) that uk converges strongly to 0 in W 1,q(Ω) (and
consequently in W 1,p(Ω)). _us,

0 < λ∫
Ω
∣uk ∣

q dx − ∫
Ω
∣∇uk ∣

q dx = ∫
Ω
∣∇uk ∣

p dx → 0, as k →∞.

Next, arguing as in the proof of Step 3, we are led to a contradiction. Consequently,
u ∈ Cq ∖ {0}.

Now, letting k →∞ in (2.7), we deduce

∫
Ω
∣∇u∣q dx + ∫

Ω
∣∇u∣p dx ≤ λ∫

Ω
∣u∣q dx .

If we have equality here, then u ∈ Nλ , and everything is done. Assume the contrary,
i.e.,

(2.8) ∫
Ω
∣∇u∣q dx + ∫

Ω
∣∇u∣p dx < λ∫

Ω
∣u∣q dx .

Let t > 0 be such that tu ∈ Nλ , i.e.,

t = (
λ ∫Ω ∣u∣q dx − ∫Ω ∣∇u∣q dx

∫Ω ∣∇u∣p dx
)

1/(p−q)
.

From (2.8) and our condition p < q, one can infer that t ∈ (0, 1). Finally, since tu ∈ Nλ
with t ∈ (0, 1) we have

0 < mλ ≤ Iλ(tu) =
tp

p ∫Ω
∣∇u∣p dx + tq

q ∫Ω
∣∇u∣q dx − λ tq

q ∫Ω
∣u∣q dx

=
tp

p ∫Ω
∣∇u∣p dx − tp

q ∫Ω
∣∇u∣p dx

≤ tp lim inf
k→∞

Iλ(uk) = tpmλ < mλ ,

which is impossible. Hence, relation (2.8) cannot be valid, and consequently wemust
have u ∈ Nλ , and thus Iλ(u) = mλ (see (2.6)).
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Step 5. _e proof of the theorem is concluded. Let u ∈ Nλ ∖{0} be theminimizer found
in Step 4. In fact u is a solution of the minimization problem minw∈W∖{0} Iλ(w),
under restrictions

h1(w) ∶= ∫
Ω
∣∇w∣

q dx + ∫
Ω
∣∇w∣

p dx − λ∫
Ω
∣w∣

q dx = 0,(2.9)

h2(w) ∶= ∫
Ω
∣w∣

q−2w dx = 0.(2.10)

Now Lemma 2.1 (Lagrangemultiplier rule) comes into play. We choose X = W , Y =

R2, D = W ∖ {0}, f = Iλ , h = (h1 , h2). Obviously, the dual Y∗ can be identiûed
with R2. All the conditions from the statement of Lemma 2.1 are met, including the
surjectivity condition on h′(u), whichmeans that for any pair (ζ1 , ζ2) ∈ R2, there is a
w ∈ W such that ⟨h′1(u),w⟩ = ζ1, ⟨h′2(u),w⟩ = ζ2. Indeed, choosing w = au + b with
a, b ∈ R in these equations, we obtain a linear algebraic system in a and b:

aq∫
Ω
∣∇u∣q dx + ap∫

Ω
∣∇u∣p dx − λaq∫

Ω
∣u∣q dx = ζ1 ,

b(q − 1)∫
Ω
∣u∣q−2 dx = ζ2 ,

which yields

a(p − q)∫
Ω
∣∇u∣p dx = ζ1 , b(q − 1)∫

Ω
∣u∣q−2 dx = ζ2 .

_us, a and b can be uniquely determined, hence h′(u) is surjective, as asserted.
Consequently, Lemma 2.1 is applicable to our minimization problem. Speciûcally,
there exist some constants c, d ∈ R such that (see equation (2.3)):

[∫
Ω
∣∇u∣q−2

∇u∇ϕ dx + ∫
Ω
∣∇u∣p−2

∇u∇ϕ dx − λ∫
Ω
∣u∣q−2uϕ dx]

+ c[q∫
Ω
∣∇u∣q−2

∇u∇ϕ dx + p∫
Ω
∣∇u∣p−2

∇u∇ϕ dx − qλ∫
Ω
∣u∣q−2uϕ dx]

+ d(q − 1)∫
Ω
∣u∣q−2ϕ dx = 0, for all ϕ ∈W 1,q

(Ω).

Testing with ϕ = 1 above, we deduce

−qλ∫
Ω
∣u∣q−2u dx − cqλ∫

Ω
∣u∣q−2u dx + d(q − 1)∫

Ω
∣u∣q−2 dx = 0,

which, in view of (2.10), yields d = 0.
Next, testing with ϕ = u above and using (2.9), we deduce

c(p − q)∫
Ω
∣∇u∣p dx = 0,

which implies c = 0. _erefore, for all ϕ ∈W 1,q(Ω),

∫
Ω
∣∇u∣q−2

∇u∇ϕ dx + ∫
Ω
∣∇u∣p−2

∇u∇ϕ dx − λ∫
Ω
∣u∣q−2uϕ dx = 0,

i.e., λ is an eigenvalue of problem (1.1).
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2.2.2 The Case 2 < q < p

Obviously, in this case,W =W 1,p(Ω) and C ⊂ Cq .
Fortunately, under our assumption (2 < q < p) Iλ is a coercive functional as shown

next. We will conclude the proof of Claim 3 in three steps.

Step 1. Iλ is coercive, i.e.,

lim
∥u∥W1,p(Ω)→∞, u∈C

(
1
p ∫Ω

∣∇u∣p dx + 1
q ∫Ω

∣∇u∣q dx − λ
q ∫Ω

∣u∣q dx) =∞.

Deûne α, β, γ∶C → R by

α(u) ∶= ∫
Ω
∣∇u∣p dx , β(u) ∶= ∫

Ω
∣∇u∣q dx , γ(u) ∶= ∫

Ω
∣u∣q dx ,

so that

Iλ(u) =
1
p
α(u) + 1

q
β(u) − λ

q
γ(u).

In order to go further, note that since q ∈ (2, p), the standard norm onW 1,p(Ω), i.e.,

∥u∥W 1,p(Ω) = ∥∇u∥Lp(Ω) + ∥u∥Lp(Ω) ,

is equivalent to the following norm (see [2, Remark 15, p. 286]):

∣∥u∥∣W 1,p(Ω) = ∥∇u∥Lp(Ω) + ∥u∥Lq(Ω) .

_us, ∥u∥W 1,p(Ω) →∞ if and only if ∣∥u∥∣W 1,p(Ω) →∞.
On the other hand, by the deûnition of λ1 we have

λ1γ(u) ≤ β(u), ∀ u ∈ C .

_en, since the estimates
1
p
α(u) + 1

q
β(u) ≥ 1

p
(α(u) + β(u)) ≥

1
p
min{1, λ1}[α(u) + γ(u)] ,

hold true, we deduce that

(2.11) lim
∥u∥W1,p(Ω)→∞, u∈C

1
p
α(u) + 1

q
β(u) =∞.

Further,Hölder’s inequality yields

β(u) ≤ ∣Ω∣
(p−q)/pα(u)q/p , ∀ u ∈W 1,p

(Ω).

Combining this estimate with relation (2.11), we get

lim
∥u∥W1,p(Ω)=∞, u∈C

α(u)→∞.

Using again Hölder’s inequality, we have

Iλ(u) ≥
1
p
α(u) + 1

q
β(u) − λ

λ1
∣Ω∣
(p−q)/pα(u)q/p .

Since q ∈ (2, p), we infer that the term in the right-hand side of the above inequality
blows up as ∥u∥W 1,p(Ω) →∞. _e conclusion of this step is now clear.
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Step 2. Functional Iλ has a global minimum point over C, say θλ ∈ C, such that
Iλ(θλ) < 0.

Indeed, by Step 1 we know that Iλ is coercive. On the other hand, C is a weakly
closed subset of the Banach spaceW , and for any u ∈ C and any sequence (um) in C
such that um convergesweakly to u inW ,we have Iλ(u) ≤ lim infm→∞ Iλ(um). _en
we can apply [9, _eorem 1.2] in order to obtain the existence of a global minimum
point of Iλ , say θλ ∈ C, i.e., Iλ(θλ) = minC Iλ . Using the fact that λ1 = ν1 (see relation
(2.2)), we deduce that for any λ > λ1 there exists wλ ∈ C such that Iλ(wλ) < 0, so
Iλ(θλ) ≤ Iλ(wλ) < 0. In particular, this shows that θλ /= 0.

Step 3. We conclude the proof of_eorem 1.1.
Let θλ ∈ C be theminimizer found in Step 2, i.e., Iλ(θλ) = minw∈C Iλ(w). _us, θλ

is actually a solution of theminimization problem minw∈W Iλ(w), under restriction

h(w) ∶= ∫
Ω
∣w∣

q−2w dx = 0.

Lemma 2.1 is again applicable, with X = W , Y = R, D = W , f = Iλ , h∶W → R as
deûned above, and y ∶= θλ . It is easily seen that all the conditions of Lemma 2.1 are
fulûlled, including the fact that h′(θλ) is surjective. _erefore, there exists a constant
a ∈ R such that (cf. (2.3))

[∫
Ω
∣∇θλ ∣

p−2
∇θλ∇ϕ dx + ∫

Ω
∣∇θλ ∣

q−2
∇θλ∇ϕ dx − λ∫

Ω
∣θλ ∣

q−2θλϕ dx]+

a(q − 1)∫
Ω
∣θλ ∣

q−2ϕ dx = 0, ∀ϕ ∈W 1,p
(Ω).

Testing with ϕ = 1 above, we deduce

a(q − 1)∫
Ω
∣θλ ∣

q−2 dx = 0,

which yields a = 0. _us, for all ϕ ∈W 1,p(Ω),

∫
Ω
∣∇θλ ∣

p−2
∇θλ∇ϕ dx + ∫

Ω
∣∇θλ ∣

q−2
∇θλ∇ϕ dx − λ∫

Ω
∣θλ ∣

q−2θλϕ dx = 0,

i.e., λ is an eigenvalue of problem (1.1).

Final comments
(a) In view of [7,_eorem 1.1] and [4,_eorem 1], our present result (_eorem 1.1)

extends to themore general case p ∈ (1,∞), q ∈ [2,∞), p /= q with the same conclu-
sion.

(b) If 1 < p < q and q ≥ 2, then λ1 deûned by (1.3) is the ûrst positive eigenvalue
of −∆q with Neumann boundary condition, i.e., λ1 = λN

1 (q). On the other hand, if
2 ≤ q < p, then C is a proper subset of Cq , and we have λ1 ≥ λN

1 (q). It seems that, in
fact, λ1 > λN

1 (q). _is is an open problem.
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