Eigenvalues of $-\Delta_{p}-\Delta_{q}$ Under Neumann Boundary Condition

Dedicated to Professor Ioan A. Rus on the occasion of his eightieth birthday
Mihai Mihăilescu and Gheorghe Moroşanu

Abstract. The eigenvalue problem $-\Delta_{p} u-\Delta_{q} u=\lambda|u|^{q-2} u$ with $p \in(1, \infty), q \in(2, \infty), p \neq q$ subject to the corresponding homogeneous Neumann boundary condition is investigated on a bounded open set with smooth boundary from \mathbb{R}^{N} with $N \geq 2$. A careful analysis of this problem leads us to a complete description of the set of eigenvalues as being a precise interval $\left(\lambda_{1},+\infty\right)$ plus an isolated point $\lambda=0$. This comprehensive result is strongly related to our framework, which is complementary to the well-known case $p=q \neq 2$ for which a full description of the set of eigenvalues is still unavailable.

1 Introduction and Main Result

Our goal in this paper is to investigate the eigenvalue problem

$$
\begin{cases}A u:=-\Delta_{p} u-\Delta_{q} u=\lambda|u|^{q-2} u & \tag{1.1}\\ \text { in } \Omega \\ \frac{\partial u}{\partial v_{A}}=0 & \end{cases}
$$

where $p \in(1, \infty), q \in(2, \infty), p \neq q, \Omega \subset \mathbb{R}^{N}(N \geq 2)$ is a bounded domain with smooth boundary $\partial \Omega$, and

$$
\frac{\partial u}{\partial v_{A}}=\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \frac{\partial u}{\partial v},
$$

with $v=$ the unit outward normal to $\partial \Omega$. The solutions u will be sought in the Sobolev space $W:=W^{1, \max \{p, q\}}(\Omega)$, so that the above PDE is satisfied in the distribution sense, and the normal derivative $\frac{\partial u}{\partial v_{A}}$ (associated with operator A) exists in a trace sense (see [3]). Using a Green's formula (see [3, Corollary 2, p. 71]) one can define the eigenvalues of our problem in terms of weak solutions $u \in W$ as follows: $\lambda \in \mathbb{R}$ is an eigenvalue of problem (1.1) if there exists $u_{\lambda} \in W \backslash\{0\}$ such that

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla u_{\lambda}\right|^{p-2}+\left|\nabla u_{\lambda}\right|^{q-2}\right) \nabla u_{\lambda} \nabla v d x=\lambda \int_{\Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} v d x, \quad \forall v \in W . \tag{1.2}
\end{equation*}
$$

Conversely, if λ is an eigenvalue, then any eigenfunction $u \in W \backslash\{0\}$ corresponding to it satisfies problem (1.1) in the distribution sense. This follows by the same Green's formula.

[^0]In the particular case $q=2$, the set of eigenvalues for problem (1.1) was completely described in [7] (for $p>2$) and [4] (for $p \in(1,2)$). Our goal here is to show that a complete description of the eigenvalue set is also possible for any $q>2$ and $p \in$ $(1, \infty) \backslash\{q\}$. This general case requires separate analysis, and some difficulties that occur within the new framework have to be overcome.

Note that the case $q=p \neq 2$ has been very much discussed in the literature, but a complete description of the corresponding eigenvalue set is still unavailable (it is only known that, as a consequence of the Ljusternik-Schnirelman theory, there exists a sequence of nonnegative eigenvalues of the corresponding operator; see, e.g., [6]).

Now, choosing $v=u_{\lambda}$ in (1.2), we infer that no negative λ can be an eigenvalue of problem (1.1). It is also obvious that $\lambda=0$ is an eigenvalue of this problem (the corresponding eigenfunctions being the nontrivial constants). So we need to investigate the case $\lambda>0$.

Note that if $\lambda>0$ is an eigenvalue of (1.1), then testing with $v=1$ in (1.2) we deduce that

$$
\int_{\Omega}\left|u_{\lambda}\right|^{q-2} u_{\lambda} d x=0
$$

Thus, the eigenfunctions corresponding to positive eigenvalues of problem (1.1) belong to the nonempty, symmetric, closed cone

$$
C:=\left\{v \in W: \int_{\Omega}|v|^{q-2} v d x=0\right\} .
$$

Remark It is easy to see that $C \backslash\{0\} \neq \varnothing$. Indeed, one can simply choose $u=$ $u_{1}-u_{2}$, where u_{1}, u_{2} are nonnegative test functions having supports in two disjoint balls included in Ω such that $\int_{\Omega} u_{1}^{q-1} d x=\int_{\Omega} u_{2}^{q-1} d x$. More specifically, let $x_{1}, x_{2} \in \Omega$ be two different interior points of Ω. Then there exists an $\epsilon>0$ small enough such that the balls $B_{\epsilon}\left(x_{1}\right), B_{\epsilon}\left(x_{2}\right)$ are included in Ω and $B_{\epsilon}\left(x_{1}\right) \cap B_{\epsilon}\left(x_{2}\right)=\varnothing$. Consider the functions $u_{i}, i=1,2$,

$$
u_{i}(x):= \begin{cases}e^{1 /\left(\left|x-x_{i}\right|^{2}-\epsilon^{2}\right)}, & x \in B_{\epsilon}\left(x_{i}\right), \\ 0, & x \in \Omega \backslash B_{\epsilon}\left(x_{i}\right)\end{cases}
$$

These are test functions (see, e.g., [2, p. 108]), and thus they belong to the Sobolev space W. Obviously, $u: \Omega \rightarrow \mathbb{R}$ defined by

$$
u(x)=u_{1}(x)-u_{2}(x), \quad \forall x \in \Omega
$$

belongs to $C \backslash\{0\}$. Of course, $t u$ also belongs to $C \backslash\{0\}$ for all $t \in \mathbb{R} \backslash\{0\}$.
The main result of this paper is the following theorem.
Theorem 1.1 Assume $p \in(1, \infty), q \in(2, \infty)$ and $p \neq q$. Then the eigenvalue set of problem (1.1) is precisely $\{0\} \cup\left(\lambda_{1},+\infty\right)$, where

$$
\begin{equation*}
\lambda_{1}:=\inf _{v \in C \backslash\{0\}} \frac{\int_{\Omega}|\nabla v|^{q} d x}{\int_{\Omega}|v|^{q} d x} \tag{1.3}
\end{equation*}
$$

2 Proof of Theorem 1.1

As pointed out before, problem (1.1) cannot have negative eigenvalues, while $\lambda=0$ is an eigenvalue of this problem. In what follows we investigate the case $\lambda>0$.

For the rest of the proof, we start by introducing some notation and recalling some well-known results. For each $r>1$, define

$$
C_{r}:=\left\{v \in W^{1, r}(\Omega): \int_{\Omega}|v|^{r-2} v d x=0\right\} .
$$

Note that $C=C_{q}$ only if $q>p$; otherwise (i.e., if $q<p$), C is a proper subset of C_{q}.
Consider the eigenvalue problem

$$
\begin{cases}-\Delta_{r} u=\lambda|u|^{r-2} u & \text { in } \Omega, \tag{2.1}\\ |\nabla u|^{r-2} \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega,\end{cases}
$$

where $r>1$. Define

$$
\lambda_{1}^{N}(r):=\inf _{v \in C_{r} \backslash\{0\}} \frac{\int_{\Omega}|\nabla v|^{r} d x}{\int_{\Omega}|v|^{r} d x} .
$$

We know from [5, Theorem 6.2.29] that if $r \geq 2$, then $\lambda=\lambda_{1}^{N}(r)$ is the lowest positive eigenvalue of problem (2.1). In particular, we deduce that $\lambda_{1}=\lambda_{1}^{N}(q)>0$ if $q>2$, $1<p<q$ and $\lambda_{1} \geq \lambda_{1}^{N}(q)>0$ if $2<q<p$.

Further, define

$$
v_{1}:=\inf _{v \in C \backslash\{0\}} \frac{\frac{1}{q} \int_{\Omega}|\nabla v|^{q} d x+\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x}{\frac{1}{q} \int_{\Omega}|v|^{q} d x}
$$

It is easy to check that

$$
\begin{equation*}
\lambda_{1}=v_{1} . \tag{2.2}
\end{equation*}
$$

Indeed, note that for each $u \in C \backslash\{0\}$ and each $t>0$, we have

$$
v_{1} \leq \frac{\frac{1}{p} \int_{\Omega}|\nabla(t u)|^{p} d x+\frac{1}{q} \int_{\Omega}|\nabla(t u)|^{q} d x}{\frac{1}{q} \int_{\Omega}|t u|^{q} d x}=\frac{q t^{p-q}}{p} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{q} d x}+\frac{\int_{\Omega}|\nabla u|^{q} d x}{\int_{\Omega}|u|^{q} d x} .
$$

Thus, letting $t \rightarrow 0$ if $p>q$ and $t \rightarrow \infty$ if $p<q$, and then passing to infimum in the right-hand side, we get $v_{1} \leq \lambda_{1}$. On the other hand, for all $u \in C \backslash\{0\}$, we have

$$
\frac{\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{1}{q} \int_{\Omega}|\nabla u|^{q} d x}{\frac{1}{q} \int_{\Omega}|u|^{q} d x} \geq \frac{\int_{\Omega}|\nabla u|^{q} d x}{\int_{\Omega}|u|^{q} d x} \geq \lambda_{1}
$$

which implies $v_{1} \geq \lambda_{1}$. Consequently, (2.2) holds true.

2.1 The Nonexistence Part

We have the following two claims.
Claim 1 There is no eigenvalue of problem (1.1) in $\left(0, \lambda_{1}\right)$.

Assume by contradiction that there exists a $\lambda \in\left(0, \lambda_{1}\right)$ that is an eigenvalue of (1.1), with $u_{\lambda} \in C \backslash\{0\}$ the corresponding eigenfunction. Using (1.3) and the definition relation (1.2) with $v=u_{\lambda}$, we derive

$$
\begin{aligned}
0<\left(\lambda_{1}-\lambda\right) \int_{\Omega}\left|u_{\lambda}\right|^{q} d x & \leq \int_{\Omega}\left|\nabla u_{\lambda}\right|^{q} d x-\lambda \int_{\Omega}\left|u_{\lambda}\right|^{q} d x \\
& \leq \int_{\Omega}\left|\nabla u_{\lambda}\right|^{p} d x+\int_{\Omega}\left|\nabla u_{\lambda}\right|^{q} d x-\lambda \int_{\Omega}\left|u_{\lambda}\right|^{q} d x=0
\end{aligned}
$$

This contradiction shows that Claim 1 holds true.
Claim $2 \lambda=\lambda_{1}$ is not an eigenvalue of problem (1.1).
Assume the contrary, i.e., there exists $u_{\lambda_{1}} \in C \backslash\{0\}$ such that (1.2) holds true with $\lambda=\lambda_{1}$. Letting $v=u_{\lambda_{1}}$ in (1.2), we get

$$
\int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{p} d x+\int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{q} d x=\lambda_{1} \int_{\Omega}\left|u_{\lambda_{1}}\right|^{q} d x
$$

From this equality and the definition of λ_{1}, one gets
$\int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{p} d x+\lambda_{1} \int_{\Omega}\left|u_{\lambda_{1}}\right|^{q} d x \leq \int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{p} d x+\int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{q} d x=\lambda_{1} \int_{\Omega}\left|u_{\lambda_{1}}\right|^{q} d x$,
which yields

$$
\int_{\Omega}\left|\nabla u_{\lambda_{1}}\right|^{p} d x=0 \Longrightarrow \nabla u_{\lambda_{1}}=0 \quad \text { a.e. in } \Omega .
$$

By Weyl's regularity lemma, $u_{\lambda_{1}} \in C^{\infty}(\Omega)$, so $u_{\lambda_{1}}$ is a constant function. This combined with the fact that $u_{\lambda_{1}} \in C$ implies $u_{\lambda_{1}}=0$, contradiction. So Claim 2 holds true.

2.2 The Existence Part

Let us first recall the following theorem (Lagrange multiplier rule) (see, e.g., [10, Thm. 3.3.3, p. 179] or [8, Thm. 2.2.10, p. 76]), which will play a key role in our analysis.

Lemma 2.1 Let X and Y be real Banach spaces and let $f: D \rightarrow \mathbb{R}, h: D \rightarrow Y$ be C^{1} functions on the open set $D \subset X$. If y is a local solution of the minimization problem

$$
\begin{equation*}
\min f(x), \quad h(x)=0 \tag{P}
\end{equation*}
$$

and $h^{\prime}(y)$ is a surjective operator, then there exists $y^{*} \in Y^{\star}$ such that

$$
\begin{equation*}
f^{\prime}(y)+y^{*} \circ h^{\prime}(y)=0 \tag{2.3}
\end{equation*}
$$

where Y^{\star} stands for the dual of Y.
Our purpose in this subsection is to prove the following claim.
Claim 3 Every $\lambda \in\left(\lambda_{1}, \infty\right)$ is an eigenvalue of problem (1.1).
In order to prove Claim 3 , let us fix a $\lambda>\lambda_{1}$ and define $I_{\lambda}: W \rightarrow \mathbb{R}$ by

$$
I_{\lambda}(u):=\frac{1}{q} \int_{\Omega}|\nabla u|^{q} d x+\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{\lambda}{q} \int_{\Omega}|u|^{q} d x
$$

Standard arguments can be used to deduce that $I_{\lambda} \in C^{1}(W \backslash\{0\}, \mathbb{R})$ (actually, $I_{\lambda} \in$ $C^{1}(W, \mathbb{R})$ if $\left.2<q<p\right)$ with the derivative given by

$$
\left\langle I_{\lambda}^{\prime}(u), \phi\right\rangle=\int_{\Omega}|\nabla u|^{q-2} \nabla u \nabla \phi d x+\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x-\lambda \int_{\Omega}|u|^{q-2} u \phi d x
$$

for all $u \in W \backslash\{0\}$ (actually, all $u \in W$ if $2<q<p$) and all $\phi \in W$. Thus, we note that λ is an eigenvalue of problem (1.1) if and only if I_{λ} possesses a nontrivial critical point. Further, we split the discussion into two cases: $1<p<q, q>2$, and $2<q<p$, respectively.

2.2.1 The Case $1<p<q, q>2$

In this case, $C=C_{q}, W=W^{1, q}(\Omega)$ and $\lambda_{1}=\lambda_{1}^{N}(q)$.
A careful analysis shows that I_{λ} is not coercive on W, and consequently, we cannot use the Direct Method in the Calculus of Variations in order to determine critical points of I_{λ}. Our idea (inspired by [1, Section 2.3.3]) will be to consider the restriction of I_{λ} to the Nehari-type manifold defined by

$$
\begin{aligned}
\mathcal{N}_{\lambda} & :=\left\{u \in C_{q} \backslash\{0\}:\left\langle I_{\lambda}^{\prime}(u), u\right\rangle=0\right\} \\
& =\left\{u \in C_{q} \backslash\{0\}: \int_{\Omega}|\nabla u|^{q} d x+\int_{\Omega}|\nabla u|^{p} d x=\lambda \int_{\Omega} u^{q} d x\right\}
\end{aligned}
$$

In fact, this is a natural idea since any possible eigenfunction corresponding to λ is necessarily an element of \mathcal{N}_{λ}. Note that for all $v \in \mathcal{N}_{\lambda}$, functional $I_{\lambda}(v)$ has the following expression

$$
\begin{aligned}
I_{\lambda}(v) & =\frac{1}{q} \int_{\Omega}|\nabla v|^{q} d x+\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x-\frac{\lambda}{q} \int_{\Omega}|v|^{q} d x \\
& =-\frac{1}{q} \int_{\Omega}|\nabla v|^{p} d x+\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x=\frac{q-p}{p q} \int_{\Omega}|\nabla v|^{p} d x
\end{aligned}
$$

Consequently, denoting

$$
m_{\lambda}:=\inf _{w \in \mathcal{N}_{\lambda}} I_{\lambda}(w)
$$

we have $m_{\lambda} \geq 0$.
In what follows the proof of Claim 3 is done in several steps.
Step 1. $\mathcal{N}_{\lambda} \neq \varnothing$. Indeed, since $\lambda>\lambda_{1}^{N}(q)$, it follows by the definition of $\lambda_{1}^{N}(q)$ that there exists $v_{\lambda} \in C_{q} \backslash\{0\}$ for which

$$
\int_{\Omega}\left|\nabla v_{\lambda}\right|^{q} d x<\lambda \int_{\Omega}\left|v_{\lambda}\right|^{q} d x
$$

Then there exists $t>0$ such that $t v_{\lambda} \in \mathcal{N}_{\lambda}$, i.e.,

$$
t^{q} \int_{\Omega}\left|\nabla v_{\lambda}\right|^{q} d x+t^{p} \int_{\Omega}\left|\nabla v_{\lambda}\right|^{p} d x=\lambda t^{q} \int_{\Omega}\left|v_{\lambda}\right|^{q} d x
$$

This is obvious when

$$
t=\left(\frac{\lambda \int_{\Omega}\left|v_{\lambda}\right|^{q} d x-\int_{\Omega}\left|\nabla v_{\lambda}\right|^{q} d x}{\int_{\Omega}\left|\nabla v_{\lambda}\right|^{p} d x}\right)^{1 /(p-q)}
$$

Note that we have also used the fact that C_{q} is a cone. If $w \in C_{q}$, then $t w \in C_{q}$ for all $t>0$.

Step 2. Every minimizing sequence for I_{λ} on \mathcal{N}_{λ} is bounded in $W^{1, q}(\Omega)$. Let $\left\{u_{n}\right\}$ be a minimizing sequence in \mathcal{N}_{λ}, i.e.,
(2.4) $0<\lambda \int_{\Omega}\left|u_{n}\right|^{q} d x-\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x=\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \rightarrow \frac{p q}{q-p} m_{\lambda}, \quad$ as $n \rightarrow \infty$.

Assume by contradiction that $\left\{u_{n}\right\}$ is unbounded in $W^{1, q}(\Omega)$, so a subsequence of it, again denoted $\left\{u_{n}\right\}$, converges in the norm of $W^{1, q}(\Omega)$ to ∞. Then by (2.4) it follows that $\int_{\Omega}\left|u_{n}\right|^{q} d x \rightarrow \infty$ and $\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x \rightarrow \infty$ as well. Set $v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|_{L^{q}(\Omega)}}$. Since $\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x<\lambda \int_{\Omega}\left|u_{n}\right|^{q} d x$, we deduce that $\int_{\Omega}\left|\nabla v_{n}\right|^{q} d x<\lambda$ for all n. Thus, $\left\{v_{n}\right\}$ is bounded in $W^{1, q}(\Omega)$. It follows that there exists $v_{0} \in W^{1, q}(\Omega)$ such that $v_{n} \rightarrow v_{0}$ in $W^{1, q}(\Omega)$ (hence in $W^{1, p}(\Omega)$ as well) and $v_{n} \rightarrow v_{0}$ in $L^{q}(\Omega)$. In particular, this last convergence implies that $v_{0} \in C_{q}$ (cf. Lebesgue's Dominated Convergence Theorem).

Dividing (2.4) by $\left\|u_{n}\right\|_{L^{q}(\Omega)}^{p}$ we get

$$
\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Next, since $v_{n} \rightharpoonup v_{0}$ in $W^{1, p}(\Omega)$, we infer that

$$
\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=0
$$

and consequently v_{0} is a constant function. In fact, from $v_{0} \in C_{q}$ we see that $v_{0}=0$. It follows that $v_{n} \rightarrow 0$ in $L^{q}(\Omega)$, which contradicts the fact that $\left\|v_{n}\right\|_{L^{q}(\Omega)}=1$ for all n.

Consequently, $\left\{u_{n}\right\}$ must be bounded in $W^{1, q}(\Omega)$.
Step 3. $m_{\lambda}:=\inf _{w \in \mathcal{N}_{\lambda}} I_{\lambda}(w)>0$. Assume by contradiction that $m_{\lambda}=0$. Let $\left\{u_{n}\right\} \subset$ \mathcal{N}_{λ} be a minimizing sequence, i.e.,

$$
\begin{equation*}
0<\lambda \int_{\Omega}\left|u_{n}\right|^{q} d x-\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x=\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \rightarrow 0, \quad \text { as } n \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

By Step 2 we know that $\left\{u_{n}\right\} \subset C_{q}$ is bounded in $W^{1, q}(\Omega)$. It follows that there exists $u_{0} \in W^{1, q}(\Omega)$ such that (on a subsequence, again denoted $\left\{u_{n}\right\}$) one has $u_{n} \rightharpoonup u_{0}$ in $W^{1, q}(\Omega)$ (hence in $W^{1, p}(\Omega)$) and $u_{n} \rightarrow u_{0}$ in $L^{q}(\Omega)$. Therefore, $u_{0} \in C_{q}$ and

$$
\int_{\Omega}\left|\nabla u_{0}\right|^{p} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=0
$$

and consequently $u_{0}=0$. Thus, we have proved that $u_{n} \rightarrow 0$ in $W^{1, q}(\Omega)$.
Now set $v_{n}:=u_{n} /\left\|u_{n}\right\|_{L^{q}(\Omega)}$. Since $\int_{\Omega}\left|\nabla u_{n}\right|^{q} d x<\lambda \int_{\Omega}\left|u_{n}\right|^{q} d x$, we have $\int_{\Omega}\left|\nabla v_{n}\right|^{q} d x<\lambda$ for all n. Thus, $\left\{v_{n}\right\} \subset C_{q}$ is bounded in $W^{1, q}(\Omega)$. It follows that there exists $v_{0} \in C_{q}$ such that $v_{n} \rightharpoonup v_{0}$ in $W^{1, q}(\Omega)$ and $v_{n} \rightarrow v_{0}$ in $L^{q}(\Omega)$.

Dividing (2.5) by $\left\|u_{n}\right\|_{L^{q}(\Omega)}^{p}$, we get

$$
\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=\left\|u_{n}\right\|_{L^{q}(\Omega)}^{q-p}\left[\lambda-\int_{\Omega}\left|\nabla v_{n}\right|^{q} d x\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Next, since $v_{n} \rightharpoonup v_{0}$ in $W^{1, p}(\Omega)$, we infer that

$$
\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=0
$$

and consequently v_{0} is a constant function. In fact, $v_{0}=0$, since $v_{0} \in C_{q}$. Thus, $v_{n} \rightarrow 0$ in $L^{q}(\Omega)$, which contradicts the fact that $\left\|v_{n}\right\|_{L^{q}(\Omega)}=1$ for all n.

Consequently, m_{λ} is positive, as asserted.
Step 4. There exists $u \in \mathcal{N}_{\lambda}$ such that $I_{\lambda}(u)=m_{\lambda}$. Let $\left\{u_{k}\right\} \subset \mathcal{N}_{\lambda}$ be a minimizing sequence, i.e., $I_{\lambda}\left(u_{k}\right) \rightarrow m_{\lambda}$ as $k \rightarrow \infty$.

By Step $2\left\{u_{k}\right\}$ is bounded in $W^{1, q}(\Omega)$. Thus, there exists $u \in C_{q}$ such that u_{k} converges weakly in $W^{1, q}(\Omega)$ and strongly in $L^{q}(\Omega)$ to u.

By the above pieces of information we deduce that

$$
\begin{equation*}
I_{\lambda}(u) \leq \liminf _{k \rightarrow \infty} I_{\lambda}\left(u_{k}\right)=m_{\lambda} . \tag{2.6}
\end{equation*}
$$

Since $u_{k} \in \mathcal{N}_{\lambda}$ for all k, we have

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{k}\right|^{q} d x+\int_{\Omega}\left|\nabla u_{k}\right|^{p} d x=\lambda \int_{\Omega}\left|u_{k}\right|^{q} d x, \quad \forall k \tag{2.7}
\end{equation*}
$$

If $u=0$, then it follows by (2.7) that u_{k} converges strongly to 0 in $W^{1, q}(\Omega)$ (and consequently in $W^{1, p}(\Omega)$). Thus,

$$
0<\lambda \int_{\Omega}\left|u_{k}\right|^{q} d x-\int_{\Omega}\left|\nabla u_{k}\right|^{q} d x=\int_{\Omega}\left|\nabla u_{k}\right|^{p} d x \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Next, arguing as in the proof of Step 3, we are led to a contradiction. Consequently, $u \in C_{q} \backslash\{0\}$.

Now, letting $k \rightarrow \infty$ in (2.7), we deduce

$$
\int_{\Omega}|\nabla u|^{q} d x+\int_{\Omega}|\nabla u|^{p} d x \leq \lambda \int_{\Omega}|u|^{q} d x
$$

If we have equality here, then $u \in \mathcal{N}_{\lambda}$, and everything is done. Assume the contrary, i.e.,

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{q} d x+\int_{\Omega}|\nabla u|^{p} d x<\lambda \int_{\Omega}|u|^{q} d x \tag{2.8}
\end{equation*}
$$

Let $t>0$ be such that $t u \in \mathcal{N}_{\lambda}$, i.e.,

$$
t=\left(\frac{\lambda \int_{\Omega}|u|^{q} d x-\int_{\Omega}|\nabla u|^{q} d x}{\int_{\Omega}|\nabla u|^{p} d x}\right)^{1 /(p-q)}
$$

From (2.8) and our condition $p<q$, one can infer that $t \in(0,1)$. Finally, since $t u \in \mathcal{N}_{\lambda}$ with $t \in(0,1)$ we have

$$
\begin{aligned}
0<m_{\lambda} \leq I_{\lambda}(t u) & =\frac{t^{p}}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{t^{q}}{q} \int_{\Omega}|\nabla u|^{q} d x-\lambda \frac{t^{q}}{q} \int_{\Omega}|u|^{q} d x \\
& =\frac{t^{p}}{p} \int_{\Omega}|\nabla u|^{p} d x-\frac{t^{p}}{q} \int_{\Omega}|\nabla u|^{p} d x \\
& \leq t^{p} \liminf _{k \rightarrow \infty} I_{\lambda}\left(u_{k}\right)=t^{p} m_{\lambda}<m_{\lambda}
\end{aligned}
$$

which is impossible. Hence, relation (2.8) cannot be valid, and consequently we must have $u \in \mathcal{N}_{\lambda}$, and thus $I_{\lambda}(u)=m_{\lambda}$ (see (2.6)).

Step 5. The proof of the theorem is concluded. Let $u \in \mathcal{N}_{\lambda} \backslash\{0\}$ be the minimizer found in Step 4. In fact u is a solution of the minimization problem $\min _{w \in W \backslash\{0\}} I_{\lambda}(w)$, under restrictions

$$
\begin{align*}
& h_{1}(w):=\int_{\Omega}|\nabla w|^{q} d x+\int_{\Omega}|\nabla w|^{p} d x-\lambda \int_{\Omega}|w|^{q} d x=0 \tag{2.9}\\
& h_{2}(w):=\int_{\Omega}|w|^{q-2} w d x=0 \tag{2.10}
\end{align*}
$$

Now Lemma 2.1 (Lagrange multiplier rule) comes into play. We choose $X=W, Y=$ $\mathbb{R}^{2}, D=W \backslash\{0\}, f=I_{\lambda}, h=\left(h_{1}, h_{2}\right)$. Obviously, the dual Y^{*} can be identified with \mathbb{R}^{2}. All the conditions from the statement of Lemma 2.1 are met, including the surjectivity condition on $h^{\prime}(u)$, which means that for any pair $\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{R}^{2}$, there is a $w \in W$ such that $\left\langle h_{1}^{\prime}(u), w\right\rangle=\zeta_{1},\left\langle h_{2}^{\prime}(u), w\right\rangle=\zeta_{2}$. Indeed, choosing $w=a u+b$ with $a, b \in \mathbb{R}$ in these equations, we obtain a linear algebraic system in a and b :

$$
\begin{aligned}
a q \int_{\Omega}|\nabla u|^{q} d x+a p \int_{\Omega}|\nabla u|^{p} d x-\lambda a q \int_{\Omega}|u|^{q} d x & =\zeta_{1} \\
b(q-1) \int_{\Omega}|u|^{q-2} d x & =\zeta_{2}
\end{aligned}
$$

which yields

$$
a(p-q) \int_{\Omega}|\nabla u|^{p} d x=\zeta_{1}, \quad b(q-1) \int_{\Omega}|u|^{q-2} d x=\zeta_{2}
$$

Thus, a and b can be uniquely determined, hence $h^{\prime}(u)$ is surjective, as asserted. Consequently, Lemma 2.1 is applicable to our minimization problem. Specifically, there exist some constants $c, d \in \mathbb{R}$ such that (see equation (2.3)):

$$
\begin{aligned}
& {\left[\int_{\Omega}|\nabla u|^{q-2} \nabla u \nabla \phi d x+\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x-\lambda \int_{\Omega}|u|^{q-2} u \phi d x\right]} \\
& \quad+c\left[q \int_{\Omega}|\nabla u|^{q-2} \nabla u \nabla \phi d x+p \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x-q \lambda \int_{\Omega}|u|^{q-2} u \phi d x\right] \\
& \\
& +d(q-1) \int_{\Omega}|u|^{q-2} \phi d x=0, \quad \text { for all } \phi \in W^{1, q}(\Omega)
\end{aligned}
$$

Testing with $\phi=1$ above, we deduce

$$
-q \lambda \int_{\Omega}|u|^{q-2} u d x-c q \lambda \int_{\Omega}|u|^{q-2} u d x+d(q-1) \int_{\Omega}|u|^{q-2} d x=0
$$

which, in view of (2.10), yields $d=0$.
Next, testing with $\phi=u$ above and using (2.9), we deduce

$$
c(p-q) \int_{\Omega}|\nabla u|^{p} d x=0
$$

which implies $c=0$. Therefore, for all $\phi \in W^{1, q}(\Omega)$,

$$
\int_{\Omega}|\nabla u|^{q-2} \nabla u \nabla \phi d x+\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi d x-\lambda \int_{\Omega}|u|^{q-2} u \phi d x=0
$$

i.e., λ is an eigenvalue of problem (1.1).

2.2.2 The Case $2<q<p$

Obviously, in this case, $W=W^{1, p}(\Omega)$ and $C \subset C_{q}$.
Fortunately, under our assumption $(2<q<p) I_{\lambda}$ is a coercive functional as shown next. We will conclude the proof of Claim 3 in three steps.
Step 1. I_{λ} is coercive, i.e.,

$$
\lim _{\|u\|_{W^{1}, p(\Omega)} \rightarrow \infty, u \in C}\left(\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{1}{q} \int_{\Omega}|\nabla u|^{q} d x-\frac{\lambda}{q} \int_{\Omega}|u|^{q} d x\right)=\infty .
$$

Define $\alpha, \beta, \gamma: C \rightarrow \mathbb{R}$ by

$$
\alpha(u):=\int_{\Omega}|\nabla u|^{p} d x, \quad \beta(u):=\int_{\Omega}|\nabla u|^{q} d x, \quad \gamma(u):=\int_{\Omega}|u|^{q} d x
$$

so that

$$
I_{\lambda}(u)=\frac{1}{p} \alpha(u)+\frac{1}{q} \beta(u)-\frac{\lambda}{q} \gamma(u)
$$

In order to go further, note that since $q \in(2, p)$, the standard norm on $W^{1, p}(\Omega)$, i.e.,

$$
\|u\|_{W^{1, p}(\Omega)}=\|\nabla u\|_{L^{p}(\Omega)}+\|u\|_{L^{p}(\Omega)}
$$

is equivalent to the following norm (see [2, Remark 15, p. 286]):

$$
\mid\|u\|_{W^{1, p}(\Omega)}=\|\nabla u\|_{L^{p}(\Omega)}+\|u\|_{L^{q}(\Omega)}
$$

Thus, $\|u\|_{W^{1, p}(\Omega)} \rightarrow \infty$ if and only if $\|u\|_{W^{1, p}(\Omega)} \rightarrow \infty$.
On the other hand, by the definition of λ_{1} we have

$$
\lambda_{1} \gamma(u) \leq \beta(u), \quad \forall u \in C .
$$

Then, since the estimates

$$
\frac{1}{p} \alpha(u)+\frac{1}{q} \beta(u) \geq \frac{1}{p}(\alpha(u)+\beta(u)) \geq \frac{1}{p} \min \left\{1, \lambda_{1}\right\}[\alpha(u)+\gamma(u)]
$$

hold true, we deduce that

$$
\begin{equation*}
\lim _{\|u\|_{W^{1, p}(\Omega)} \rightarrow \infty, u \in C} \frac{1}{p} \alpha(u)+\frac{1}{q} \beta(u)=\infty . \tag{2.11}
\end{equation*}
$$

Further, Hölder's inequality yields

$$
\beta(u) \leq|\Omega|^{(p-q) / p} \alpha(u)^{q / p}, \quad \forall u \in W^{1, p}(\Omega)
$$

Combining this estimate with relation (2.11), we get

$$
\lim _{\|u\|_{W^{1, p}(\Omega)}=\infty, u \in C} \alpha(u) \rightarrow \infty .
$$

Using again Hölder's inequality, we have

$$
I_{\lambda}(u) \geq \frac{1}{p} \alpha(u)+\frac{1}{q} \beta(u)-\frac{\lambda}{\lambda_{1}}|\Omega|^{(p-q) / p} \alpha(u)^{q / p}
$$

Since $q \in(2, p)$, we infer that the term in the right-hand side of the above inequality blows up as $\|u\|_{W^{1, p}(\Omega)} \rightarrow \infty$. The conclusion of this step is now clear.

Step 2. Functional I_{λ} has a global minimum point over C, say $\theta_{\lambda} \in C$, such that $I_{\lambda}\left(\theta_{\lambda}\right)<0$.

Indeed, by Step 1 we know that I_{λ} is coercive. On the other hand, C is a weakly closed subset of the Banach space W, and for any $u \in C$ and any sequence $\left(u_{m}\right)$ in C such that u_{m} converges weakly to u in W, we have $I_{\lambda}(u) \leq \liminf _{m \rightarrow \infty} I_{\lambda}\left(u_{m}\right)$. Then we can apply [9, Theorem 1.2] in order to obtain the existence of a global minimum point of I_{λ}, say $\theta_{\lambda} \in C$, i.e., $I_{\lambda}\left(\theta_{\lambda}\right)=\min _{C} I_{\lambda}$. Using the fact that $\lambda_{1}=v_{1}$ (see relation (2.2)), we deduce that for any $\lambda>\lambda_{1}$ there exists $w_{\lambda} \in C$ such that $I_{\lambda}\left(w_{\lambda}\right)<0$, so $I_{\lambda}\left(\theta_{\lambda}\right) \leq I_{\lambda}\left(w_{\lambda}\right)<0$. In particular, this shows that $\theta_{\lambda} \neq 0$.
Step 3. We conclude the proof of Theorem 1.1.
Let $\theta_{\lambda} \in C$ be the minimizer found in Step 2, i.e., $I_{\lambda}\left(\theta_{\lambda}\right)=\min _{w \in C} I_{\lambda}(w)$. Thus, θ_{λ} is actually a solution of the minimization problem $\min _{w \in W} I_{\lambda}(w)$, under restriction

$$
h(w):=\int_{\Omega}|w|^{q-2} w d x=0
$$

Lemma 2.1 is again applicable, with $X=W, Y=\mathbb{R}, D=W, f=I_{\lambda}, h: W \rightarrow \mathbb{R}$ as defined above, and $y:=\theta_{\lambda}$. It is easily seen that all the conditions of Lemma 2.1 are fulfilled, including the fact that $h^{\prime}\left(\theta_{\lambda}\right)$ is surjective. Therefore, there exists a constant $a \in \mathbb{R}$ such that (cf. (2.3))

$$
\begin{array}{r}
{\left[\int_{\Omega}\left|\nabla \theta_{\lambda}\right|^{p-2} \nabla \theta_{\lambda} \nabla \phi d x+\int_{\Omega}\left|\nabla \theta_{\lambda}\right|^{q-2} \nabla \theta_{\lambda} \nabla \phi d x-\lambda \int_{\Omega}\left|\theta_{\lambda}\right|^{q-2} \theta_{\lambda} \phi d x\right]+} \\
a(q-1) \int_{\Omega}\left|\theta_{\lambda}\right|^{q-2} \phi d x=0, \quad \forall \phi \in W^{1, p}(\Omega)
\end{array}
$$

Testing with $\phi=1$ above, we deduce

$$
a(q-1) \int_{\Omega}\left|\theta_{\lambda}\right|^{q-2} d x=0
$$

which yields $a=0$. Thus, for all $\phi \in W^{1, p}(\Omega)$,

$$
\int_{\Omega}\left|\nabla \theta_{\lambda}\right|^{p-2} \nabla \theta_{\lambda} \nabla \phi d x+\int_{\Omega}\left|\nabla \theta_{\lambda}\right|^{q-2} \nabla \theta_{\lambda} \nabla \phi d x-\lambda \int_{\Omega}\left|\theta_{\lambda}\right|^{q-2} \theta_{\lambda} \phi d x=0
$$

i.e., λ is an eigenvalue of problem (1.1).

Final comments

(a) In view of [7, Theorem 1.1] and [4, Theorem 1], our present result (Theorem 1.1) extends to the more general case $p \in(1, \infty), q \in[2, \infty), p \neq q$ with the same conclusion.
(b) If $1<p<q$ and $q \geq 2$, then λ_{1} defined by (1.3) is the first positive eigenvalue of $-\Delta_{q}$ with Neumann boundary condition, i.e., $\lambda_{1}=\lambda_{1}^{N}(q)$. On the other hand, if $2 \leq q<p$, then C is a proper subset of C_{q}, and we have $\lambda_{1} \geq \lambda_{1}^{N}(q)$. It seems that, in fact, $\lambda_{1}>\lambda_{1}^{N}(q)$. This is an open problem.

References

[1] M. Badiale and E. Serra, Semilinear elliptic equations for beginners. Existence results via the variational approach. Universitext, Springer, London, 2011.
http://dx.doi.org/10.1007/978-0-85729-227-8
[2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Universitext, Springer, New York, 2011.
[3] E. Casas and L. A. Fernández, A Green's formula for quasilinear elliptic operators. J. Math. Anal. Appl. 142(1989), no. 1, 62-73. http://dx.doi.org/10.1016/0022-247X(89)90164-9
[4] M. Fărcăşeanu, M. Mihăilescu, and D. Stancu-Dumitru, On the set of eigenvalues of some PDES with homogeneous Neumann boundary condition. Nonlinear Anal. 116(2015), 19-25. http://dx.doi.org/10.1016/j.na.2014.12.019
[5] L. Gasinski and N. S. Papageorgiou, Nonlinear analysis. Series in Mathematical Analysis and Applications, 9, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[6] A. Lê, Eigenvalue problems for p-Laplacian. Nonlinear Anal. 64(2006), no. 5, 1057-1099. http://dx.doi.org/10.1016/j.na.2005.05.056
[7] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Commun. Pure and Appl. Anal. 10(2011), 701-708. http://dx.doi.org/10.3934/cpaa.2011.10.701
[8] N. S. Papageorgiou and S. Th. Kyritsi-Yiallourou, Handbook on applied analysis. Advances in Mechanics and Mathematics, 19, Springer, New York, 2009. http://dx.doi.org/10.1007/b120946
[9] M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 34, Springer-Verlag, Berlin, 1996. http://dx.doi.org/10.1007/978-3-662-03212-1
[10] C. Zălinescu, Mathematical programming in infinite dimensional normed spaces. (Romanian), Editura Academiei, Bucharest, 1998.

Department of Mathematics, University of Craiova, 200585 Craiova, Romania
and
Research group of the project PN-II-ID-PCE-2012-4-0021, "Simion Stoilow" Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania
e-mail: mmihailes@yahoo.com
Department of Mathematics and its Applications, Central European University, 1051 Budapest, Hungary e-mail: morosanug@ceu.edu

[^0]: Received by the editors November 7, 2015.
 Published electronically June 2, 2016.
 Author M. M. was partially supported by CNCS-UEFISCDI Grant No. PN-II-ID-PCE-2012-4-0021,
 "Variable Exponent Analysis: Partial Differential Equations and Calculus of Variations".
 AMS subject classification: 35J60, 35J92, 46E30, 49R05.
 Keywords: eigenvalue problem, Sobolev space, Nehari manifold, variational methods.

