RINGS SATISFYING CERTAIN CONDITIONS EITHER ON SUBSEMIGROUPS OR ON ENDOMORPHISMS

A. CHERUBINI and A. VARISCO

(Received 23 May 1984; revised 11 October 1984)
Communicated by R. Lidl

Abstract

We characterize rings whose multiplicative subsemigroups containing 0 and the additive inverse of each element are subrings. In addition we consider commutative rings for which every non-constant multiplicative endormorphism that preserves additive inverses is a ring endomorphism, and we show that they belong to one of three easily-described classes of rings.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 M 25; secondary 16 A 48.

1. Introduction

In this paper we study associative rings R possessing one of the following properties.
(α) Every (multiplicative) subsemigroup S of R such that $0 \in S$, and such that $a \in S$ if and only if $-a \in S$ (for every $a \in R$), is a subring of R.
(β) Every non-constant semigroup endomorphism ϕ of R such that $\phi(-a)=$ $-\phi(a)$ (for every $a \in R$) is a ring endomorphism.

Throughout the paper these rings will be called α-rings and β-rings, respectively.

The results here contained (Theorems 2.1 and 3.3) extends Theorem 1 of [9] and Theorem 1 of [11], respectively, which are in turn generalizations of theorems obtained in [4] by Cresp and Sullivan. In addition we observe that a different generalization of the work in [4] and [9] was furnished by Ligh in [8].

In what follows R will denote an associative ring, the term subsemigroup (subgroup) of R will mean multiplicative subsemigroup (subgroup), and the multiplicative semigroup of R will be denoted as usual by (R, \cdot).

2. Subsemigroups

The main result of this section is the following characterization of α-rings.

Theorem 2.1. A ring R is an α-ring if and only if R belongs to one of the following types.
(i) R is a finite field of order $2^{m}=p+1$, where p is prime and m is a positive integer.
(ii) R is a finite field of order $3^{m}=2 p+1$, where p is prime and m is a positive integer.
(iii) R is a nil ring of order $\leqslant 3$.
(iv) R is the ring of order 4 whose additive group is cyclic and generated by a with $a^{2}=2 a$.

The proof of the theorem will utilize the following lemmas, where $2 R(3 R)$ denotes the set $\{2 a \mid a \in R\}(\{3 a \mid a \in R\})$. Moreover, we shall put $[y]=\left\{y^{h} \mid h\right.$ $\left.\in \mathbf{Z}^{+}\right\}$and $-[y]=\left\{-y^{h} \mid h \in \mathbf{Z}^{+}\right\}(y \in R)$.

Lemma 2.2. If an α-ring R has a non-zero idempotent e, then either $2 R=0$ or $3 R=0$, and e is the identity of R.

Proof. Since R is an α-ring, the subset $\{0, e,-e\}$ is a subring and contains $2 e$. Then, either $2 e=0$ or $3 e=0$. Let $2 e=0$. Then, for every $x \in R$, the subset $-[2 x] \cup[2 x] \cup\{0, e\}$ is a subring by Property (α), so it contains $e+2 x$. Since $e \neq 0$, it is immediate that $e+2 x=e$, whence $2 R=0$. Analogously, if $3 e=0$, then by investigating the subring $-[3 x] \cup[3 x] \cup\{0, e,-e\}$, we find that $3 R=0$. When $2 R=0$, every subsemigroup of R contains the additive inverses of its own elements; thus e is the identity of R by Lemma 2 of [9]. Now suppose $3 R=0$. Let $x \in R$, and put $a=x e-e x e$. Since $a^{2}=e a=0, a e=a$, and R is an α-ring, the subset $\{0, e,-e, a,-a\}$ is a subring and contains $a+e$. Hence it immediately follows that $a=0$, that is, $x e=e x e$. By a similar argument it is proved that $e x=e x e$, so e is a central idempotent. At this point, the subset $-[x-x e] \cup[x-$ $x e] \cup\{0, e,-e\}$ is a subring, by Property (α), and it contains $x+e-x e$. Now it is immediate that $x+e-x e=e$, that is, $x=x e$, and that e is the identity of R.

Lemma 2.3. If R is an α-ring with identity, and $2 R=0$, then R is a finite field of order $2^{m}=p+1$, where p is prime and m is a positive integer.

Proof. If $2 R=0$, every subsemigroup of R contains the additive inverses of its own elements. Therefore the statement follows from Theorem 2 of [4].

Lemma 2.4. If R is an α-ring with identity, and $3 R=0$, then R is a periodic field.

Proof. Let e be the identity of R. For every $x \in R \backslash 0$, the subset $-[x] \cup[x] \cup$ $\{0, e,-e\}$ is a subring by Property (α), so it contains $x+e$. Hence it easily follows that $x=x^{2} f(x)$ for some polynomial $f(\lambda) \in \mathbb{Z}[\lambda]$. Thus R is commutative by a well-known theorem of Herstein [6], it is periodic by a theorem of Chacron [1, Proposition 2], and (R, \cdot) is union of groups [3, Theorem 4.3]. Furthermore, the only idempotents of R are 0 and e by Lemma 2.2; thus we may immediately conclude that R is a periodic field.

Lemma 2.5. Let R be an α-field. If $3 R=0$, then R has a unique element of order 2 , and every finite subgroup of even order has order $2 p$ with p prime $\geqslant 1$.

Proof. Let e be the identity of R. Since $3 e=0$ implies $-e \neq e$, and $(-e)^{2}=e$, it follows that R contains an element of order 2. Let f be any element of R having order 2 ; since R is an α-field, the subset $H=\{0, e,-e, f,-f\}$ is a subring and, obviously, a finite field. Thus $H \backslash 0$ is a finite cyclic group, with a unique element of order 2. Hence $f=-e$. Now let G be a finite subgroup of R having even order $2 r s$ with $r>1, s>1$. Then G contains $-e$, whence $-x=-e x \in G$ for every $x \in G$. So, by Property $(\alpha), G \cup 0$ is a subfield of R. From this and from $3 G=0$, it follows that $|G \cup 0|=3^{j}$ for some positive integer j. Therefore

$$
\begin{equation*}
2 r s=3^{j}-1 \quad(j>1) \tag{1}
\end{equation*}
$$

Moreover G, being an abelian group, contains a subgroup A of order $2 r$ and a subgroup B of order $2 s$. The same argument employed above for G shows that $A \cup 0$ and $B \cup 0$ are subfields of $G \cup 0$, of orders 3^{h} and 3^{k}, respectively, $(h, k$ positive integers). Then we have

$$
\begin{equation*}
2 r=3^{h}-1, \quad 2 s=3^{k}-1, \quad(h, k>1) \tag{2}
\end{equation*}
$$

and, using relations (2) in (1), we deduce that

$$
3^{j}=2 r s+1=\frac{\left(3^{h}-1\right)\left(3^{k}-1\right)}{2}+1=\frac{3^{h+k}-3^{h}-3^{k}+3}{2}
$$

This is a contradiction, since $h, k, j>1$. So G must have order $2 p$ with p prime $\geqslant 1$.

Lemma 2.6. Let R be an α-field. If $3 R=0$, then R is a finite field of order $3^{m}=2 p+1$ with p prime, $p \geqslant 1$ and m a positive integer.

Proof. Let e be the identity of R. If $R=\{0, e,-e\}$, we have $|R|=3$ and the statement is true. Otherwise, we have $R \backslash\{0, e,-e\} \neq \varnothing$. Let $x, y \in$ $R \backslash\{0, e,-e\}$ and let $X=\langle x,-e\rangle$ and $Y=\langle y,-e\rangle$ be the subgroups generated by $x,-e$ and by $y,-e$, respectively. By Lemma $2.4, X$ and Y have finite orders, which, moreover, are even numbers, since $-e \in X \cap Y$. Consequently, $|X|=2 p$, $|Y|=2 q$ and $|X \cap Y|=2 r$ for some primes $p, q>1$ and $r \geqslant 1$, in view of Lemma 2.5. Suppose $X \neq Y$. Since $2 r$ divides both $2 p$ and $2 q$, we have either $r=1$, or $r=p=q$. In the first case $X Y$ is a subgroup of order $2 p q$, in contradiction to Lemma 2.5. In the second we have $X=X \cap Y=Y$, which is another contradiction. Thus $X=Y$, whence $R \backslash 0=X$. At this point, we may conclude that $|R|=2 p+1$. Moreover, $3 R=0$ implies that $|R|=3^{m}$ for some positive integer m, which proves the statement.

Remark 2.7. The primes of the form $2^{m}-1$ which appear in Lemma 2.3 are the well-known Mersenne primes, where m is necessarily prime. Analogously, it is easily verifiable that, if p is a prime and m a positive integer satisfying the condition $3^{m}=2 p+1$, then m must be prime. In fact, suppose $m>1$ and put $m=h q$ with q prime >1 and h positive integer. Then $2 p=$ $3^{h q}-1=\left(3^{h}-1\right)\left(3^{h(q-1)}+\cdots+3^{h}+1\right)$, whence $3^{h}-1=2$. Thus $h=1$, and $m=q$ is prime. Pairs (m, p) satisfying the above condition do actually exist; we include a small table of such pairs

m	1	3	7	13	\cdots
p	1	13	1093	797161	\cdots

Lemma 2.8. Let R be an α-ring without non-zero idempotents. Then, for every $x \in R$, either $x^{2}=0$ or $x^{2}=2 x$.

Proof. Let $|R|>1$, and let $x \in R \backslash 0$. The subset $H=-[x] \cup[x] \cup\{0\}$ is a subring by Property (α) and contains $x-x^{2}$. Since $x \neq x^{2}$, we have either $x-x^{2}=x^{h}$ or $x-x^{2}=-x^{h}$ for some positive integer h. If $h>1$, we have $x=x^{2} f(x)=x f(x) x$ for some polynomial $f(\lambda) \in \mathbb{Z}[\lambda]$, and $x f(x)$ is a non-zero idempotent, which is a contradiction. Thus, for every $x \in R$, we have either $x^{2}=0$ or $x^{2}=2 x$.

In what follows we shall denote by R^{2} the set $\{x y \mid x, y \in R\}$.

Lemma 2.9. Let R be an α-ring without non-zero idempotents. Then either $R^{2}=0$ and $|R| \leqslant 3$, or R is the ring of order 4 whose additive group is cyclic generated by an element a satisfying the relation $a^{2}=2 a$.

Proof. Let $x \in R$ with $x^{2}=0$. Then the subset $\{0, x,-x\}$ is a subring by Property (α), and it contains $2 x$. Hence it easily follows that either $2 x=0$ or $3 x=0$. Next, let $y \in R$ with $y^{2} \neq 0$. Then from Lemma 2.8 it follows that $y^{2}=2 y$ and $(-y)^{2}=-2 y$, whence $y^{2}=2 y=-2 y$, and also $y^{3}=2 y^{2}=4 y=0$. At this point we may distinguish two cases:
(1) R satisfies the identity $x^{2}=0$. Then, for every $x \in R$, we have either $2 x=0$ or $3 x=0$. Since the subsets $H=\{x \in R \mid 2 x=0\}$ and $K=\{x \in R \mid 3 x$ $=0\}$ are additive subgroups of $R=H \cup K$, we must have either $R=H$ or $R=K$. In the first case, every subsemigroup of R contains the zero and the additive inverses of its own elements. So, $R^{2}=0$ and $|R| \leqslant 2$ follows from Theorem 1 of [4]. If $R=K$, let us suppose $|R|>1$ and let $x, y \in R \backslash 0$. Then we have $0=(x+y)^{2}=x y+y x$, whence $x y x=0$. Therefore, the subset $\{0, x,-x, x y,-x y\}$ is a subring by Property (α), and it contains $x+x y$. This implies that $x y=0$. Hence, the subset $\{0, x,-x, y,-y\}$ is also a subring by Property (α), and it contains $x+y$. Now it is immediate that either $y=x$ or $y=-x$. Thus $R=\{0, x,-x\}$ and this implies that $R^{2}=0$ and $|R|=3$.
(2) R contains an element y such that $y^{2} \neq 0$. Then $4 y=0$ and, for every $w \in R$, we must have either $4 w=0$ or $3 w=0$. Repeating the argument used in (1), we see that $4 w=0$ for every $w \in R$. Now, for every $x \in R \backslash 0$ with $x^{2}=0$, we have $2 x=0$. Consequently the subset $\{0, x, 2 y\}$ is a subring by Property (α), and it contains $x+2 y$. Hence it easily follows that $x=2 y$, and that $2 y$ is the unique element of R with index of nilpotence 2 . Now, for every $z \in R$ with $z^{2} \neq 0$, we have $z^{2}=2 z=2 y$. Hence, $(y z)^{2} \neq 0$ implies that $(y x)^{2}=2 y z=z^{3}$ $=0$, which is a contradiction. So we must have $(y z)^{2}=0$, whence $y z=2 y$. In the same way we find that $z y=2 y$; thus the subset $\{0, y,-y, z,-z, 2 y\}$ is a subring by Property (α), and it contains $y+z$. At this point it is immediate that either $z=y$ or $z=-y$. So $R=\{0, y,-y, 2 y\}$ is the ring of order 4 described in the lemma.

Proof of Theorem 2.1. From the preceding lemmas we immediately deduce that every α-ring belongs to one of the types listed in the statement. The converse is immediately verifiable.

Remark 2.10. Let R be a field of order $3^{m}(m \geqslant 1)$ with identity e. Since $3 e=0$, we have $2 e \in R \backslash\{0, e\}$; thus R has a subsemigroup containing the zero which is not a subring. Next, let R be a nil ring of order 3 . Since the additive
group of R is cyclic, we have $R=\{0, a,-a\}$ and $a^{2}=0$. Hence the subset $\{0, a\}$ is a subsemigroup of R containing the zero, but it is not a subring. Finally, let R be the ring of order 4 with the additive group generated by an element a satisfying the relation $a^{2}=2 a$. It is immediate that the subset $\{0, a, 2 a\}$ is a subsemigroup of R but not a subring. That being stated, let R be a ring all of whose subsemigroups containing the zero are subrings. Obviously, R is a α-ring, and consequently it is one of the rings listed in the statement of Theorem 2.1. But from the above it follows that if $|R|>2$, then R is necessarily a field of order $2^{m}=p+1$, where p is a prime $[9$, Theorem 1].

3. Endomorphisms

The purpose of this section is to describe commutative β-rings. We recall that an ideal I of a ring R is said to be completely prime if $a, b \in R, a b \in I$ imply $a \in I$ or $b \in I . R$ is completely prime if the zero ideal is a completely prime ideal in R.

Lemma 3.1. Let R be a β-ring. If I is a proper, completely prime ideal of R, then $I=0$.

The proof is analogous to that of [7, Lemma 1].
In what follows we shall use the terminology of [10].

Lemma 3.2. Let R be a β-ring. If (R, \cdot) is a semilattice of archimedean semigroups, then either R is completely prime or R is a nil ring.

Proof. From [2, Theorem A and Theorem 1.3] it follows either that (R, \cdot) is archimedean, or that it contains a proper, completely prime semigroup ideal I. (We remark that in [2] the term "prime" stands for "completely prime".) In the first case R is obviously a nil ring. In the second case, let ϕ be the map of R into R defined by $\phi(x)=0$ for $x \in I$, and $\phi(x)=x$ for $x \in R \backslash I$. It is easily seen that ϕ is a non-constant semigroup endomorphism of R, and that $x \in I$ if and only if $-x \in I$. Hence $\phi(-x)=-\phi(x)$ and, since R is a β-ring, ϕ is a ring endomorphism whose kernel is I. Thus I is a ring ideal. Hence $I=0$ by Lemma 3.1, and so R is completely prime.

Now we are able to state the following.
Theorem 3.3. A commutative β-ring belongs to one of the following types
(i) R is a ring of order $\leqslant 3$;
(ii) R is the ring of order 4 whose additive group is cyclic generated by a with $a^{2}=2 a$;
(iii) $R=R^{2}$ is the direct sum of a ring P satisfying the identities $x^{2}=2 x=0$ and a ring Q satisfying the identities $x^{3}=3 x=0$.

Proof. Let χ be the map of R in R defined by $\chi(a)=a^{3}$ for every $a \in R$. If χ is non-constant, then, since R is a commutative β-ring, χ is a ring endomorphism. Then R satisfies the identity

$$
\begin{equation*}
(a+b)^{3}=a^{3}+b^{3} \tag{3}
\end{equation*}
$$

If χ is constant, we have $a^{3}=\chi(a)=\chi(0)=0$, and (3) continues to hold. Analogously, utilizing the map ψ defined by $\psi(a)=a^{5}(a \in R)$, we obtain the identity

$$
\begin{equation*}
(a+b)^{5}=a^{5}+b^{5} \tag{4}
\end{equation*}
$$

Now we recall that, since R is commutative, (R, \cdot) is a semilattice of archimedean semigroups [3, Theorem 4.13]; consequently R is either completely prime or a nil ring, by Lemma 3.2. In the first case, if $|R|>1$, we obtain from (3) that $3 a+3 b=0$ for every $a, b \in R \backslash 0$. Hence, when $a=b$, it follows that $6 a=0$. Utilizing these relations in (4), we find that $a^{3}-a^{2} b-a b^{2}+b^{3}=0$. Replacing a by $-a$ and summing the two relations, we obtain $2 a^{2} b-2 b^{3}=0$, whence $2 a^{2}=2 b^{2}$. Moreover, $3 a+3 b=0$ implies that $9 a^{2}=9 b^{2}$, whence $a^{2}=b^{2}$. Now if $a+b \neq 0$, then $(a+b)(a-b)=0$ implies that $a=b$. Therefore, either $R=\{0, a\}$ or $R=\{0, a,-a\}$. Now let us suppose that R is a nil ring. If $R^{2} \subset R$, let a be an element of $R \backslash R^{2}, h$ the least positive integer such that $a^{2 h}=0$, and $J=R \backslash\{a,-a\}$. Let $\phi: R \rightarrow R$ be defined by $\phi(a)=a^{h}, \phi(-a)=-a^{h}$ and $\phi(x)=0$ otherwise. Then ϕ is non-constant, and it is a ring endomorphism by Property (β). Therefore, for every $x \in J$, we have $\phi(a+x)=a^{h} \neq 0$. Hence, either $a+x=a$ or $a+x=-a$, whence either $x=0$ or $x=-2 a$. So we have $R=\{0, a,-a,-2 a\}$. At this point, either $|R| \leqslant 3$ or the elements $0, a,-a,-2 a$ are distinct; in this case the additive group of R is cyclic, and $-2 a=2 a$. Moreover, we cannot have $a^{2}=0$, since then we would have $h=1$, whence $\phi(2 a)=2 \phi(a)$ $=2 a$, and $2 a \in\{0, a,-a\}$, which is a contradiction. Thus $a^{2} \neq 0$, and it is immediate that $a^{2}=2 a$. Finally, we have to examine the case $R=R^{2}$. First, let us verify that $x^{3}=3 x^{2}=6 x=0$ for every $x \in R$. In fact, putting $b=a^{2}$ in (3) and (4), we find that $3 a^{4}+3 a^{5}=0$ and $5 a^{6}+10 a^{7}+10 a^{8}+5 a^{9}=0$, whence $3 a^{4}=5 a^{6}=0$, and consequently $a^{6}=0$. Then $(a+b)^{6}=0$ for every $a, b \in R$ and, using again $3 a^{4}=a^{6}=0$, we obtain $20 a^{3} b^{3}=0$. Moreover, from (3) it follows that $3 a^{2} b+3 a b^{2}=0$, whence $3 a^{3} b^{3}=-3 a^{4} b^{2}=0$. Therefore $a^{3} b^{3}=0$, and this, in view of the fact that $R=R^{2}$, implies that $x^{3}=0$ for every $x \in R$. Now $3 a^{2} b+3 a b^{2}=0$ implies that $3 a^{2} b^{2}=0$, whence $3 x^{2}=0$ for every $x \in R$. Finally, $3(a+b)^{2}=0$ implies that $6 a b=0$, that is, $6 x=0$ for every $x \in R$. That being stated, we let $P=\{x \in R \mid 2 x=0\}$, and we let $Q=\{x \in R \mid 3 x=0\}$.

It is immediate that P and Q are ring ideals of R, that $P \cap Q=0$ and that, for every $x \in R$, we have $x=7 x=3 x+4 x$, with $3 x \in P$ and $4 x \in Q$. Therefore R is the direct sum of P and Q. For every $x \in P$, we have $2 x^{2}=0$ and, since we have shown that $3 x^{2}=0$, we may conclude that $x^{2}=0$. So the proof is complete.

Remark 3.4. It is immediate that the rings of types (i) and (ii) described in the statement of Theorem 3.3 are β-rings. As regards the rings of type (iii), Duncan and Macdonald have shown in [5] that rings like P (called power rings in [11]) do exist. A similar argument can be used to show that rings like Q also exist. At this point, the existence of rings satisfying condition (iii) is assured. But we do not know whether they are β-rings, and it is still not known whether power rings are ε^{\prime}-rings.

Remark 3.5. From Theorem 3.3 we may easily deduce Theorem 1 of [11]. In fact, if R is a ring of order 3 , we have necessarily $R=\{0, a,-a\}$, and it is easily seen that the map ϕ defined by $\phi(0)=0$, and $\phi(a)=\phi(-a)$ is a non-constant semigroup endomorphism which does not preserve addition. The same result may be obtained when R is the ring of type (ii), with the map ϕ defined by $\phi(0)=0$, $\phi(a)=\phi(-a)=a$, and $\phi(2 a)=2 a$. Further, let us suppose that R is a commutative ring with the property $\left(\varepsilon^{\prime}\right)$ introduced in [11]. Obviously, R is a β-ring and, if $|R|>2$, it follows from the above that R is of type (iii). Now the function ϕ defined by $\phi(x)=x^{2}$ for every $x \in R$ is a ring endomorphism by property (ε^{\prime}), and it induces in R the identity $(a+b)^{2}=a^{2}+b^{2}$, whence $2 a b=0$. Since $R=R^{2}$, this implies that $2 x=0$ for every $x \in R$. Thus $Q=0$, and $R=P$ is a power ring.

Remark 3.6. In Theorem 3.3 the hypothesis of commutativity may be weakened. Following the terminology used for semigroups, we say that a ring R is medial if $a b c d=a c b d$ for every $a, b, c, d \in R$. A medial ring need not be commutative, as is shown by the ring of real square matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$. The authors have proved that Theorem 3.3 continues to hold if the word "commutative" is replaced by "medial", but the proof is here omitted.

References

[1] M. Chacron, "On a theorem of Herstein", Canad. J. Math 21 (1969), 1348-1353.
[2] A. Cherubini and A. Varisco, "On Putcha's Q-semigroups", Semigroup Forum 18 (1979), 313-317.
[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups (Amer. Math. Soc., Providence, R. I., Vol. 1, 1961).
[4] J. Cresp and R. P. Sullivan, "Semigroups in rings", J. Austral. Math. Soc. (Ser. A) 20 (1969), 172-177.
[5] J. Duncan and I. D. Macdonald, "Some factorable nil rings of characteristic two", Proc. Roy. Soc. Edinburgh Sect. A, 82 (1979), 193-199.
[6] I. N. Herstein, "The structure of a certain class of rings", Amer. J. Math. 75 (1953), 864-871.
[7] Y. Hirano and H. Tominaga, "On rings whose non-constant semigroup endormorphisms are ring endomorphisms", Math. J. Okayama Univ. 23 (1981), 13-16.
[8] S. Ligh, "On a class of semigroups admitting ring structure", Semigroup Forum 13 (1976), 37-46.
[9] S. Ligh, "A note on semigroups in rings", J. Austral. Math. Soc. (Ser. A) 24 (1977), 305-308.
[10] M. S. Putcha, "Semilattice decompositions of semigroups", Semigroup Forum 6 (1973), 12-34.
[11] R. P. Sullivan, "Semigroup endomorphisms of rings", J. Austral. Math. Soc. (Ser. A) 26 (1978), 319-322.

Dipartimento di Matematica
 Politecnico di Milano
 Piazza Leonardo da Vinci 32
 20133 Milano
 Italy

