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In underwater navigation, the conventional Error State Kalman Filter (ESKF) is used for
combining navigation data where due to first order linearization of the nonlinear equations
of the dynamics and measurements, considerable error is induced in estimated error state
and covariance matrices. This paper presents an underwater integrated inertial navigation
system using the unscented filter as an improved nonlinear version of the Kalman filter
family. The designed system consists of a strap-down inertial navigation system accompanying
Doppler velocity log and depth meter. In the proposed approach, to use the nonlinear capabil-
ities of the unscented filtering approach the integrated navigation system is implemented in a
direct approach where the nonlinear total state dynamic and and measurement models are
utilised without any linearization. To our knowledge, no results have been reported in the lit-
erature on the experimental evaluation of the unscented-based integrated navigation system
for underwater vehicles. The performance of the designed system is studied using real mea-
surements. The results of the lake test show that the proposed system estimates the vehicle’s
position more accurately compared with the conventional ESKF structure.
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1. INTRODUCTION. Underwater vehicles are used for a wide range of applica-
tions, including underwater mapping, oceanographic and bathymetric surveys and
repair and inspection of subsea infrastructures in the oil and gas industries (Kinsey
et al., 2006; Leonard et al., 1998). The traditional approach for navigation of under-
water vehicles is dead reckoning (DR) (Brokloff, 1997; Kinsey and Whitcomb,
2007). In the two-dimensional DR approach, the current position is calculated
knowing the previous position and measurements of the velocity and heading
(Groves, 2008; Titterton and Weston, 2004; Hide et al., 2006). In underwater naviga-
tion, the velocity of the vehicle is measured using a Doppler Velocity Log (DVL) and
the heading measurement is provided by a compass. Because the DVL needs at least

THE JOURNAL OF NAVIGATION (2016), 69, 561–581. © The Royal Institute of Navigation 2015
doi:10.1017/S0373463315000752

https://doi.org/10.1017/S0373463315000752 Published online by Cambridge University Press

mailto:m.shabanisheijani@ec.iut.ac.ir
https://doi.org/10.1017/S0373463315000752


three beams to measure the bottom track velocity, it would malfunction under condi-
tions of large roll and pitch. Furthermore, the DVL’s ping rate is generally slow (3–7
Hz) and dependency of the DVL signal on the acoustic environment causes the DVL to
occasionally be unavailable (Farrell, 2008). The other disadvantage of the DR ap-
proach arises from the inaccuracy of the velocity data caused by internal biasing
errors, external random errors and also error in heading measurement which causes
the position error to grow with time due to the error in transformation of the velocity
from body frame to navigation frame and time integration of the velocity signal
(Jalving et al., 2003).
A Strap-down Inertial Navigation System (SINS) estimates position, velocity, and

orientation of the vehicle using the signals measured by an Inertial Measurement
Unit (IMU) and is based on the dead-reckoning principle (Pitman, 1962; Britting,
1971; Moore et al., 2008). The IMU is composed of a triad of orthogonal acceler-
ometers and gyroscopes. Due to different noise sources in accelerometers and gyro-
scopes, and the successive time integration of the acceleration, the position error
increases with time (Jekeli, 2001; Grewal et al., 2007; Atia et al., 2014). In order to
bound the error growth, the SINS is used together with other navigation aids. In an
underwater integrated navigation system, it is common to use auxiliary sensors such
as the DVL, compass, depth meter, Global Positioning System (GPS) and Acoustic
Positioning System (APS) to reduce the position error. Systems with several beacons
mounted on a surface vessel have largely been superseded by Ultra-Short Baseline
(USBL) systems. These use a single-phase array transponder on the ship that
enables direction to be measured as well as range (Kinsey et al., 2006; Stutters
et al., 2008; Paull et al., 2014).
Over the last decade, numerous papers have utilised these sensors for underwater

vehicle navigation (Yun et al., 1999; Larsen, 2000; McEwen et al., 2005; Kussat
et al., 2005; Jo and Choi, 2006; Lee et al., 2007; Miller et al., 2010; Hegrenaes and
Hallingstad, 2011; Shabani et al., 2015). Due to unavailability of GPS signals under
the water, it is not possible to correct the SINS output using GPS data (Grenon
et al., 2001; Marco and Healey, 2001). APS are alternative approaches for aiding
the SINS in underwater applications. However, since these types of system utilise
several beacons to be either installed on the sea floor or mounted to a surface
vessel, their operation range is restricted. In addition, the calibration and alignment
of the beacons are time consuming and installation and maintenance of such
systems are expensive (Stutters et al., 2008; Grenon et al., 2001). In order to
perform independent underwater navigation, the use of on board auxiliary sensors,
such as depth meter, DVL and compass are indispensable. Such sensors may be
used to correct the SINS output without the need to use sources outside the vehicle.
In the strap-down underwater integrated navigation system, the DVL plays a critical

role in bounding the SINS drift. However, over time intervals where the DVL is un-
available, the position error of the SINS increases quickly with time. Thus, due to a
nonlinear dynamic system, the type of prediction algorithm becomes increasingly im-
portant. The prevalent method for incorporating the SINS output and the auxiliary
signals is the Kalman filter (Grewal and Andrews, 2008; Brown and Hwang, 1997;
Bar-Shalom et al., 2001). In the last decade, in many cases, indirect filtering has
been utilised for correcting the drift of the SINS output in underwater integrated navi-
gation systems (Larsen, 2000; Jo and Choi, 2006; Lee et al., 2007; Miller et al., 2010;
Hegrenaes and Hallingstad, 2011; Zhao and Gao, 2004).
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In this structure, as shown in Figure 1, differences between SINS outputs and aux-
iliary measurements are used by the Error State Kalman Filter (ESKF) to estimate the
errors of position, velocity and orientation. Finally, the SINS outputs are corrected by
the estimated errors. In this structure, the corrected state is fed back into the SINS to
update it (Maybeck, 1979; Farrell and Barth, 1999). Due to strong nonlinearity of the
dynamic and measurement equations in the underwater integrated navigation system,
linearization of these equations using the first order term of the Taylor series expansion
leads to a substantial error in the estimates of error states and covariance matrix
(Arasaratnam, 2009; Van der Merwe, 2004). Therefore, first order linearization in
the ESKF causes the performance of the system to degrade, which can give rise to
errors in the estimated position. In order to mitigate the errors caused by first order
linearization employed by the ESKF, we are required to use a nonlinear filtering ap-
proach. To solve the linearization problem, the unscented filter was proposed to
more accurately estimate the mean and covariance of the system’s state (Julier and
Uhmann, 1997; 2004). In the unscented filter, it is not required to linearize the non-
linear dynamic and measurement models through Jacobian derivations. Instead, by
using the unscented transform, a set of deterministically selected sigma points is
used which completely capture the true mean and covariance of the random vector.
Then, these sigma points are propagated through the nonlinear functions. This algo-
rithm captures the mean and covariance accurately to the three-order term of the
Taylor series expansions for arbitrary nonlinear functions (Julier et al., 2000; Wan
and Van der Merwe, 2000). Arasaratnam and Haykin (2009) proposed the Cubature
Kalman Filter (CKF) where the third order spherical cubature integration rule was
used for estimating the mean and covariance of the system’s state. In their paper,
they claimed that the cubature integration method is more accurate than the unscented
filter. However, Sarkka (2013) showed that the CKF is a special case of the unscented
filter by choosing the special values of the UKF’s scaling parameters.
For more accurately estimating the mean and covariance matrix of the navigation

system’s state and also preventing divergence of the filter, we propose a strap-down
integrated navigation system using an unscented-based filtering approach for under-
water applications.
Research on the unscented-based underwater integrated navigation system is scarce.

Foss and Meland (2007) implemented the unscented filter for combining measure-
ments from different sensors for an underwater vehicle and utilised numerical simula-
tions for testing it. Yoon et al. (2003) proposed a location estimation algorithm where
the GPS and Inertial Navigation System (INS) signals were combined by the UKF. In
another study (Benzerrouk et al., 2013), an adaptive cubature INS/GNSS integrated
navigation system was presented for aerospace applications and evaluated in simula-
tions. Gao et al. (2014) also proposed a SINS-BeiDou-DVL integrated navigation
system based on a CKF for marine applications and its performance was examined
through numerical simulations.
To the best of our knowledge, this paper presents the first experimental evaluation of

an unscented filtering-based SINS for underwater vehicles. In the proposed algorithm,
a nonlinear equation for the DVL measurement model is derived. Consequently, both
the dynamic and the measurement equations for implementing the filter are nonlinear.
In order to utilise the nonlinear capabilities of the unscented algorithm, the integration
navigation system is implemented in a direct approach (Figure 2) (Maybeck, 1979;
Farrell and Barth 1999), where the total states of the system are used instead of
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error states. In this approach, unlike the indirect structure where the SINS and the pre-
diction stage of the Kalman Filter (KF) are implemented into two distinct blocks,
these two functions are merged and the correction stage of the filter operates
asynchronously.
In addition, to exploit the unscented filter in the integrated navigation system, the

roll and pitch signals computed from the accelerometer measurements are also used
as auxiliary signals. Although, from a theoretical point of view, the processing of the
same measurements in both prediction and correction stages is not completely
correct, this technique works well in practice (Georgy et al., 2011). Since GPS is not
available underwater and DVL also have dropouts, this technique can limit the drift
in the roll and pitch signals estimated from the gyroscopes, which, in turn, is the
main origin of the growth of the position error (Skog and Handel, 2009). The perform-
ance of the SINS/DVL integration system is investigated via a lake test in a surface
vessel and compared with a similar system implemented by the ESKF. In Section 4,
we show that the proposed algorithm estimates the output state more accurately
than the prevalent ESKF structure.
The structure of this paper is as follows. After the Introduction, in Section 2, the

equations related to the unscented filter are reviewed. In Section 3, the implemented
system is described and related equations are derived. In Section 4, the performance
of the designed system is evaluated using the results of the experimental tests.
Finally, conclusions are presented in Section 5.

2. UNSCENTED INTEGRATION METHOD. Due to nonlinearity of the
dynamic equations of navigation, the general form of a continuous time non-linear
state space model (Simon, 2006) may expressed as:

_x ¼ fðx, uÞ þGw, w ∼ Nð0, QcÞ ð1Þ
Where x is the total state vector of the system which is given as follows:

x ¼

pn

vn

Θ
ba
bg

2
66664

3
77775 ð2Þ

Figure 1. Indirect filtering.
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pn ¼ ½L, l, Z�T is the position vector of the vehicle in the navigation frame which
includes the latitude, longitude, and the depth of the vehicle relative to the water
surface. vn ¼ ½vN , vE , vD�T is the velocity vector resolved in the navigation frame
which is included in the north velocity, east velocity, and down velocity. Θ = [φ, θ,
ψ]T is the orientation vector of the body frame with respect to navigation frame
(North, East, and Down directions). ba ¼ ½bax, bay, baz�T is the vector of the acceler-

ometer bias and bg ¼ ½bgx, bgy, bgz�T is the vector of the gyroscope bias. The inertial
sensors’ biases are modelled as a random walk plus a random constant (Maybeck,
1979; Farrell, 2008):

_ba ¼ ηa, ηa ∼ N 0, σ2baI
� �

ð3Þ

_bg ¼ ηg, ηg ∼ N 0, σ2bg I
� �

ð4Þ

Where ηa and ηg are Gaussian white noise vectors with variances σ2baI and σ2bgI, respect-
ively. Throughout, the symbol N represents the normal distribution and I is the identity
matrix.
f is the system nonlinear function which describes the dynamic behaviour of the

system. G is the dynamic noise distribution. The control input u is given by:

u ¼ fb

ωb
ib

� �
ð5Þ

Where fb ¼ ½ fx, fy, fz�T and ωb
ib ¼ ½ p, q, r�T are the specific force and angular rate of

the IMU relative to inertial frame, resolved in the IMU frame respectively, measured
by the inertial sensors (Farrell, 2008; Groves, 2008). w, in Equation (1), is the process
noise due to uncertainty in the control inputs and is modelled in the KF as a Gaussian
white noise vector with zero mean and a Power Spectral Density (PSD)Qc, which may
be expressed as follows:

w ¼
wa

wg

ηa
ηg

2
664

3
775 ð6Þ

Where wa ¼ ½wax, way, waz�T and wg ¼ ½wgx, wgy, wgz�T are random noise components
of the accelerometers and gyroscopes in x, y and z directions of the IMU axes,

Figure 2. Direct filtering.
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respectively and Qc is a diagonal matrix as follows:

Qc ¼

ζ2aI3 03 03 03
03 ζ2gI3 03 03

03 03 ζ2baI3 03

03 03 03 ζ2bg I3

0
BBBB@

1
CCCCA ð7Þ

Where ζa, ζg, ζba and ζbg are the root power spectral density of the accelerometers’
noise, gyroscopes’ noise, accelerometers’ bias and gyroscopes’ bias, respectively. I3
and 03 are the 3 × 3 unit and zero matrices, respectively. Assuming that the noise char-
acteristics of all accelerometers and all gyroscopes in x, y and z directions of the IMU
axes are equal (Groves, 2008; Niu et al., 2007):

ζa ¼ σa
ffiffiffiffi
dt

p
, ζg ¼ σg

ffiffiffiffi
dt

p
ð8Þ

ζba ¼ σba
ffiffiffiffiffiffi
τba

p
, ζbg ¼ σbg

ffiffiffiffiffiffi
τbg

p ð9Þ
Where σa is the standard deviation of the accelerometer’s noise, σg is the standard de-
viation of the gyroscope’s noise, dt is the sampling time of inertial sensors, σba and σbg
are the standard deviations of the accelerometer and gyroscope bias, respectively and
τba and τbg are their correlation time. In this paper, the specifications of the inertial
sensors provided by manufacturers are used to determine the system noise PSDs
(Groves, 2008).
In the proposed approach, the auxiliary measurements of the system are a nonlinear

combination of the states which are corrupted with noise. This can be given in terms of
the total states of the system by the following equation:

y ¼ hðxÞ þ v, v ∼ Nð0, RÞ ð10Þ
Where y is the measurement vector of the system that is defined as follows:

y ¼
Zm

vbm
Θm

2
4

3
5 ð11Þ

Where Zm is the auxiliary signal of depth, vbm ¼ ½vx, vy, vz�T are the measurements of
the DVL in the body frame, and Θm = [φm, θm, ψm]

T are the auxiliary signals of orien-
tation. The roll and pitch measurements are computed by the accelerometer signals
and heading measurement is provided by a compass.
h, in Equation (6), is the measurement model function and v represents the measure-

ment noise which is assumed to be a zero mean, Gaussian white-noise process with
known covariance matrix R.
The discrete-time form of the Equations (1) may be expressed by:

xk ¼ fðxk�1, uk�1Þ þ qk�1, qk�1 ∼ Nð0, Qk�1Þ ð12Þ
Where xk and uk are the total state vector of the system and the control input at discrete
time k, respectively. qk is the process noise with covariance matrix Qk at time step k
(Jekeli, 2001; Farrell, 2008):

Qk�1 ≈ Gk�1Qc dtG
T
k�1 ð13Þ
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The discrete-time form of the Equations (10) may be given by the following equation:

yk ¼ hðxkÞ þ rk, rk ∼ Nð0, RkÞ ð14Þ
Where yk is the measurement vector of the system at discrete time k. rk is the measure-
ment noise vector with covariance matrix Rk at time step k. In many navigation applica-
tions, due to being independent, the individual components of the measurement noise
vector, Rk are considered as a diagonal matrix (Groves, 2008; Grewal and Andrews,
2008).
The unscented filter can be derived as an approximation of the general Gaussian

filter. In order to construct the Gaussian filter, the moment matching approximations
are used and also the filtering distribution is assumed as Gaussian (Arasaratnam,
2009; Sarkka, 2013).

p xkjykð Þ ≅ N xkjx̂k, Pkð Þ ð15Þ
Where x̂k and Pk are the mean and the covariance of the Gaussian distribution,
respectively.
The prediction stage of the Gaussian filter with additive noise is given as follows:

x̂�k ¼ E xkjy1:k�1½ �
¼ E f xk�1, uk�1ð Þ þ qk�1jy1:k�1½ � ð16Þ

Since qk−1 is zero-mean Gaussian, we get

x̂�k ¼ E f xk�1, uk�1ð Þjy1:k�1½ �

¼ ∫f xk�1, uk�1ð Þp xk�1jy1:k�1ð Þdxk�1

¼ ∫f xk�1, uk�1ð ÞN xk�1jx̂þk�1, P̂
þ
k�1

� �
dxk�1

ð17Þ

P�
k ¼ E xk � x̂�k

� �
xk � x̂�k
� �T 			y1:k�1

h i
¼ ∫ f xk�1, uk�1ð Þ � x̂�k
� �

f xk�1, uk�1ð Þ � x̂�k
� �T

N xk�1jx̂þk�1, P̂
þ
k�1

� �
dxk�1 þQk�1

ð18Þ
Where E is the expectation operator, x̂�k and P�

k are the predicted mean and covariance
of the Gaussian filter at the time step k.
Similarly to the prediction stage, the correction stage of the Gaussian filter is

expressed by:

ẑk ¼ ∫hðxkÞN xkjx̂�k , P̂
�
k

� �
dxk ð19Þ

Pyy, k ¼ ∫ hðxkÞ � ẑkð Þ hðxkÞ � ẑkð ÞTN xkjx̂�k , P̂
�
k

� �
dxk þ Rk ð20Þ

Pxy, k ¼ ∫ xk � x̂�k
� �

hðxkÞ � ẑkð ÞTN xkjx̂�k , P̂
�
k

� �
dxk ð21Þ

Kk ¼ Pxy, kP�1
yy, k ð22Þ

x̂þk ¼ x̂�k þ Kkðyk � ẑkÞ ð23Þ
Pþ
k ¼ P�

k þ KkPyy, kKT
k ð24Þ
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Where ẑk is the predicted measurement, Pyy,k is the innovation covariance, Pxy,k is the
cross-covariance matrix, Kk is the filter gain matrix and x̂þk and Pþ

k are the corrected
mean and covariance of the Gaussian filter at the time step k, respectively.
The moment matching formulation makes possible the utilisation of the numerical

approaches like the cubature integration methods for computing the multi-
dimensional integrals of the form ∫gðxÞN xjx̂, Pð Þdx, where g(x) is an arbitrary non-
linear function.
It can be shown that the computation of the aforementioned integral may be accom-

plished using the third order spherical cubature rule as follows (Arasaratnam, 2009;
Sarkka, 2013):

. Calculate the 2n cubature or sigma points by:

χðiÞ ¼
ffiffiffi
n

p
ei, i ¼ 1, . . . , n

� ffiffiffi
n

p
ei�n, i ¼ nþ 1, . . . , 2n



ð25Þ

Where n is the dimension of the state vector and ei is an n-component unit vector
in the direction of coordinate axis i. In general, χ(i) is generated as follows:

χðiÞ ¼

ffiffiffi
n

p
0
0
..
.

0

0
BBBBB@

1
CCCCCA,

0 ffiffiffi
n

p
0
..
.

0

0
BBBBB@

1
CCCCCA, . . . ,

0
0
0
..
. ffiffiffi
n

p

0
BBBBB@

1
CCCCCA,

� ffiffiffi
n

p
0
0
..
.

0

0
BBBBB@

1
CCCCCA,

0
� ffiffiffi

n
p

0
..
.

0

0
BBBBB@

1
CCCCCA, . . . ,

0
0
0
..
.

� ffiffiffi
n

p

0
BBBBB@

1
CCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð26Þ

. Compute the integral by:

∫gðxÞN xjx̂, Pð Þdx ≈
1
2n

X2n
i¼1

g x̂þ
ffiffiffiffi
P

p
χðiÞ

� �
ð27Þ

Where the square root of the matrix P(
ffiffiffiffi
P

p ¼ C) can be calculated by solving the
Cholesky decomposition equation P ¼ CCT for a symmetric, nonnegative definite
matrix (Grewal and Andrews, 2008).

3. INTEGRATED NAVIGATION SYSTEM EQUATIONS. In this section, the
system and measurement equations for the total states of navigation are derived and
the procedure of the designed system is described.

3.1. The system equations. The system nonlinear functions f described in
Equation (1) are given as follows (Farrell, 2008; Britting, 1971):

_pn ¼ Yvn ð28Þ

_vn ¼ Cn
b fb � ba
� �� 2ωn

ie þ ωn
en

� �
× vn þ gn ð29Þ

_Θ ¼ Λ�1ωb
nb ð30Þ

_ba ¼ 0 ð31Þ
_bg ¼ 0 ð32Þ
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Where

Y ¼

1
RN � Z

0 0

0
secL

RE � Z
0

0 0 1

0
BBBB@

1
CCCCA ð33Þ

fb ¼ fx, fy, fz
� �T ð34Þ

ωn
ie ¼ Ω cosL, 0,�Ω sinL½ �T ð35Þ

ωn
en ¼

vE
RE � Z

,
vN

RN � Z
, � vE tanL

RE � Z

� �T
ð36Þ

gn ¼ 0, 0, g½ �T ð37Þ

Λ ¼
1 0 � sin θ
0 cosf sinf cos θ
0 � sinf cosf cos θ

0
@

1
A ð38Þ

ωb
nb ¼ ωx, ωy, ωz

� �T¼ ωb
ib � bg

� �� Cn
b ωn

ie þ ωn
en

� � ð39Þ

RN ¼ R 1� e2
� �

1� e2 sin2 Lð Þ� �1�5 ð40Þ

RE ¼ R

1� e2 sin2 Lð Þ� �0�5 ð41Þ

The variables RN, RE, R, e and Ω represent the meridian radius of curvature, the trans-
verse radius of curvature, the length of the semi-major axis, the major eccentricity of
the ellipsoid of the Earth, and the Earth’s angular rate, respectively (Titterton and
Weston, 2004). Cn

b is the transformation matrix from body to navigation axes which
may be expressed by the following equation:

Cn
b ¼

cos θ cosψ � cosφ sinψ þ sinφ sin θ cosψ sinφ sinψ þ cos φ sin θ cosψ
cos θ sinψ cos φ cosψ þ sinφ sin θ sinψ � sinφ cosψ þ cos φ sin θ sinψ
� sin θ sinφ cos θ cosφ sin θ

0
@

1
A

ð42Þ
fb represents the specific force in body axes. ωn

ie is the angular rate of the Earth
expressed in the navigation frame. ωn

en represents the angular rate of the navigation
frame with respect to the Earth-fixed frame. gn and g are the gravity vector in the navi-
gation frame and the Earth gravity constant, respectively. ωb

nb is the angular rate of the

vehicle with respect to the navigation frame. ωb
ib ¼ ½p, q, r�T is the angular rate of the

vehicle. The gravity g is computed by the following equation (Titterton and Weston,
2004):

g ¼ g0
1� Z=R0

ð43Þ
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Where

g0 ¼ 9�780318 × 1þ 5�3024 × 10�3 sin2 L� 5�9 × 10�6 sin2 2L
� � ð44Þ

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RNRE

p
ð45Þ

3.2. The measurement equations. In this section, the measurement equations used
in this paper, including the depth, velocity, roll, pitch, and heading are derived.
The measurement equation of the depth meter and its measurement noise variance

are defined by:

Zm ¼ Z þ nz ð46Þ
Rz ¼ σ2z ð47Þ

Where νz and σ2z is the measurement noise and the measurement noise variance of the
depth meter, respectively.
The relationship between the DVL’s measurements and the states of the velocity may

be expressed by the following nonlinear equation:

vbm ¼ Cb
nv

n þ nv ð48Þ
This equation can be expressed in component form as follows:

vx ¼ C11vN þ C21vE þ C31vD þ nvx ð49Þ
vy ¼ C12vN þ C22vE þ C32vD þ nvy ð50Þ
vz ¼ C13vN þ C23vE þ C33vD þ nvz ð51Þ

WhereCij is the element in the ith row and the jth column of the transformation matrix
from body frame to navigation frame (i.e. Cb

n), [vN, vE, vD] is the north, east and down
velocity components and nv ¼ nvx , nvy , nvz

� �
is the measurement noise vector of the

DVL.
It can be shown that the covariance matrix of the DVL measurements caused by in-

strumental noise is given by (Gilcoto et al., 2009):

Rdvl ¼

σ2b1 þ σ2b2
4 sin2 β

0
σ2b1 � σ2b2

8 sin β cos β

0
σ2b3 þ σ2b4
4 sin2 β

σ2b4 � σ2b3
8 sin β cos β

σ2b1 � σ2b2
8 sin β cos β

σ2b4 � σ2b3
8 sin β cos β

σ2b1 þ σ2b2 þ σ2b3 þ σ2b4
16 cos2 β

0
BBBBBBBB@

1
CCCCCCCCA

ð52Þ

Where σ2bi is the variance of the radial velocity along the beam i (i = 1,2,3,4). It may be
assumed that the radial velocity variances are equal which yields:

if σ2b1 ¼ σ2b2 ¼ σ2b3 ¼ σ2b4 ) Rdvl ¼
σ2vx 0 0

0 σ2vy 0

0 0 σ2vz

0
B@

1
CA ð53Þ

Where σ2vx, σ
2
vy , and σ2vz are the variance of the DVL’s measurements along its body

frame.
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The measurement model of the roll and pitch may be given by:

fm ¼ fþ nf

θm ¼ θ þ nθ
ð54Þ

Where φm and θm are the auxiliary signals of the roll and pitch computed from the
accelerometer’s signals. Under circumstances where the vehicle is stationary or
moves at a constant velocity (or cruising conditions), the only acceleration acting on
the vehicle is the acceleration due to gravity (Grenon et al., 2001; Groves, 2008;
Farrell, 2008). Therefore, the roll and pitch signals may be computed by the following
equations:

θm ¼ sin�1ð fxÞ
g

ð55Þ

φm ¼ sin�1ð fyÞ
g cosðθmÞ ð56Þ

Where fx and fy are the accelerations acting on the vehicle along the forward and star-
board directions measured by the accelerometers. When the following logical condi-
tion is true, the roll and pitch measurements are used in the correction stage of the
integration filter (Farrell, 2008):

kfbk � g < Tf
� �

and kωb
ibk< Tω

� � ð57Þ

Where Tf and Tω are determined by trial and error. The symbol k � k denotes the
norm of a vector.
Although, in theory, the roll and pitch signals are correlated to each other, as stated

in Equation (56), one can assume that these signals are independent for small pitch
angles:

for small pitch angles ) cosðθmÞ ≈ 1 )
θm ¼ sin�1ð fxÞ

g

fm ≈
sin�1ð fyÞ

g

8>>><
>>>:

ð58Þ

This type of manoeuvre is performed in many marine applications, including the test
conducted for this paper. Therefore, the measurement noise matrix for the signals of
the roll and pitch is assumed to be diagonal as follows:

RΘ ¼ σ2φ 0

0 σ2θ

 !
ð59Þ

Where σ2φ and σ2θ are the variance of the signals of the roll and pitch, respectively.
These quantities are calculated in terms of the variance of the acceleration signals
according to Equation (58).
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The measurement equation of the compass and its measurement noise variance are
defined by:

ψm ¼ ψ þ nψ ð60Þ
Rψ ¼ σ2ψ ð61Þ

Where σ2ψ is the variance of the compass measurement.
3.3. Data integration.
3.3.1. The prediction stage. In the prediction stage of the unscented filter, for each

time step of inertial sensors, the total state of the system x̂� and covariance of the state
P� are predicted using Equations (12) and (13) and the unscented based integration
method given by Equations (20)–(22).
In order to execute the prediction stage, the system equations can be expressed in

component form as follows:

_L ¼ vN
RN þ Z

ð62Þ

l_¼ vE secðLÞ
RE þ Z

ð63Þ
_Z ¼ vD ð64Þ

_vN ¼ fN � vE 2Ωþ l_
� �

sinðLÞ þ vD _L ð65Þ
_vE ¼ fE � 2Ωþ l_Þ vN sin Lð Þ þ vD cos Lð Þð Þ� ð66Þ
_vD ¼ fD � vE 2Ωþ l_Þ cos Lð Þ þ vN _Lþ g

� ð67Þ
f_¼ ωy sinfþ ωx cosf

� �
tan θ þ ωx ð68Þ

θ_¼ ωy cosf� ωz sinf
� � ð69Þ

_ψ ¼ ωy sinfþ ωz cosf
� �

sec θ ð70Þ
Where

fN ¼ C11ð fxÞ þ C12ð fyÞ þ C13ð fzÞ ð71Þ
fE ¼ C21ð fxÞ þ C22ð fyÞ þ C23ð fzÞ ð72Þ
fD ¼ C31ð fxÞ þ C32ð fyÞ þ C33ð fzÞ ð73Þ

ωx ¼ pð Þ þ C11ωN þ C21ωE þ C31ωDð Þ ð74Þ
ωy ¼ qð Þ þ C12ωN þ C22ωE þ C32ωDð Þ ð75Þ
ωz ¼ rð Þ þ C13ωN þ C23ωE þ C33ωDð Þ ð76Þ

And

ωN ¼ Ω cosLþ vE
RE � Z

ð77Þ

ωE ¼ � vD
RN � Z

ð78Þ

ωD ¼ �Ω sinL� vE tanL
RE � Z

ð79Þ
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WhereCij is the element in the ith row and the jth column of the transformation matrix
that is given by Equation (35).

3.3.2. The correction stage. Since auxiliary sensors are asynchronous or sampled
at different rates, the correction stage is also executed asynchronously. Operating in
asynchronous mode means that when measurements from one or more of the auxiliary
sensors are received at time step k, the measurement parameters associated with those
sensors (yk and Rk) are formed, and then the correction equations of the unscented
filter are executed. In the event that none of the auxiliary sensors are available, the cor-
rection stage will not be executed. In this case, the filter continues to operate without
correction using the prediction stage. The total state of the navigation and its covari-
ance matrix are predicted with sampling frequency of inertial sensors according to
Equations (12) and (13) with or without the correction stage.
On receiving of a new auxiliary signal yk, the navigation state x̂þ and its associated

covariance matrix Pþ at time step k are corrected using Equations (14)–(19) and the
unscented-based integration method expressed by Equations (20)–(22).
In the best case, where all of the auxiliary sensors are available, the measurement

vector y and the matrix R are given as follows:

y ¼ Zm, vx, vy, vz, fm, θm, ψm

� �T ð80Þ

R ¼

σ2z 0 0 0 0 0 0
0 σ2vx 0 0 0 0 0

0 0 σ2vy 0 0 0 0

0 0 0 σ2vz 0 0 0

0 0 0 0 σ2f 0 0

0 0 0 0 0 σ2θ 0
0 0 0 0 0 0 σ2ψ

2
666666666664

3
777777777775

ð81Þ

The dimensions of the correction parameters are determined based on the number of
received auxiliary sensors. When one of the sensors is not received, the matrices asso-
ciated with that sensor, which was given in Section 3.2, are removed from the correc-
tion parameters. The measurement noise matrix, R, is determined by stationary
measurements of the auxiliary sensors. However, due to external factors such as envir-
onmental vibration, the effective noise levels may be changed. Therefore, in order to
obtain the optimal estimates, it is required to tune R (Groves, 2008). The flowchart
of the unscented based integrated navigation system is illustrated in Figure 3.

4. EXPERIMENTALRESULTS. In order to evaluate the performance of the pro-
posed system, a lake test was accomplished. An instrumented vessel was utilised for the
experiments as shown in Figure 4. The instruments used in the test include a fibre optic
gyro IMU assembled by Sepahan Electronic Inc. with model Sarmad2, a DVL made
by Jay Technology Inc., model IR/BQN_01 and a GPS receiver (NovAtelOEMV-1)
installed on the vessel according to Figure 5. The GPS receiver is a single-frequency
GPS receiver and its measurements were used only for position initialisation and ref-
erence purposes.
To evaluate the proposed approach, the inertial signals are incorporated with mea-

surements of the DVL, depth meter, roll and pitch angles. The position estimated by
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Figure 3. Strap-down integrated navigation system based on unscented based integration method.
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the proposed approach is compared with a position reference. In order to have an ac-
curate position reference, two similar GPS receivers were used as a simple differential
GPS. The first GPS receiver was installed at the origin point and the second one on the
vessel and the position reference was calculated by subtracting smoothed data of the
two GPS receivers. Our measurements showed that the accuracy of the calculated pos-
ition reference was lower than 2 metres. As shown in Figure 5, a stand was used for
holding the DVL under the water. The specifications of the instruments used can be
found in Table 1 (Novatel, 2010).
In this paper, a trajectory composed of both the pseudo-sinusoid manoeuvres and

the approximately straight track is used to show the performance of the designed
system. The signals measured by the instruments are logged by a computer carried
by the vessel and then post-processing of the collected data is carried out in the labora-
tory. To verify the accuracy of the proposed system, its estimated position is compared

Figure 4. Instrumented vessel for experiments.

Figure 5. Instruments mounted on the vessel.
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with that of the ESKF-based integrated navigation system (Lee et al., 2007; Miller
et al., 2010; Shabani et al., 2013).
According to Equations (8) and (9) and parameters given in Table 1, the matrixQc is

considered as follows:

Qc ¼

9�8 × 10�5
� �2I3 03 03 03

03 2�91 × 10�4
� �2I3 03 03

03 03 2�45 × 10�4
� �2I3 03

03 03 03 4�85 × 10�7
� �2I3

0
BBBBB@

1
CCCCCA
ð82Þ

The measurement covariance matrix is also considered as follows:

R ¼

0�1ð Þ2 0 0 0 0 0 0

0 0�01ð Þ2 0 0 0 0 0

0 0 0�01ð Þ2 0 0 0 0

0 0 0 0�01ð Þ2 0 0 0

0 0 0 0 0�001ð Þ2 0 0

0 0 0 0 0 0�001ð Þ2 0

0 0 0 0 0 0 0�1ð Þ2

2
666666666664

3
777777777775

ð83Þ

In Figure 6, the estimated positions in the horizontal (e.g. north and east) direction are
shown. Figure 7 also shows the absolute error curves. Absolute error is expressed as the
absolute value of the difference between the reference and estimated positions. In

Table 1. Instrument specifications.

Gyroscope
Bias Offset ±20°/hr
Bias Stability 1°/hr @ 1σ
Angular Random Walk 0·0667 °/√hr @ 1σ
Bandwidth 50 Hz
Data rate 100 Hz
Accelerometer
Bias Offset ±50 mg
In Run Bias Variation 0·25 mg @ 1σ
Output Noise 55 µg/√Hz @ 1σ
Bandwidth 50 Hz
Data rate 100 Hz
DVL
Frequency 300 kHz
Accuracy 1% ±2 mm/s @ 1σ
Maximum Altitude 300 m
Minimum Altitude 0·6 m
Maximum Velocity ±20 knots
Maximum Ping Rate 3 / second knots
GPS
Position Reference Accuracy <2 m (RMS)
Data Rate 5 Hz
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Figures 8 and 9, the curves of the estimated position absolute errors in the directions of
the east and north are depicted, respectively. These curves are defined as the absolute
value of the difference between the estimated position in the east (or north) direction
and the GPS position in that direction.
Based on these results, the positions estimated by both approaches pursue the refer-

ence position with a bounded error. However, due to utilising the more accurate inte-
gration method in the proposed navigation system, its estimation error is less than that
of the ESKF approach.

Figure 6. Estimated positions.

Figure 7. Estimation error.
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In this paper, the Root Mean Square Error (RMSE) and the relative error criteria
are used for quantitatively evaluating the performance of the system which is calcu-
lated as follows:

SEk ¼ ðRxk � ExkÞ2 þ ðRyk � EykÞ2 þ ðRzk � EzkÞ2
RMSE ¼ sqrt½meanðSEkÞ�

ð84Þ

RelativeRMSE ¼ RMSE
TravelledDistance

× 100 ð85Þ

Figure 8. Estimated position errors in the east direction.

Figure 9. Estimated position errors in the north direction.
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WhereRi and Ei are the reference and estimated position along the corresponding axis.
In this test where the vessel travelled approximately 4897 metres for nearly 42 minutes,
the RMSE values of the position estimated by the proposed system and ESKF ap-
proach are 4·3 m and 6·5 m and relative errors are 0·09% and 0·13% of the travelled
distance, respectively. The maximum position error for the proposed system is 9·3 m,
while this value for the ESKF approach is 16·1 m. The RMSE values of the estimated
position in the directions of the east and north for the proposed system are 3·26 m and
2·8 m, whereas these values for ESKF approach are 3·95 m and 5·2 m. Therefore, in
accordance with the obtained results, the unscented-based integrated navigation
system estimates the vehicle position more accurately than the conventional ESKF ap-
proach. The results obtained from the practical test for travelled trajectory are sum-
marised in Table 2.

5. CONCLUSIONS. The conventional approach for combining SINS information
and the auxiliary data in underwater navigation is the ESKF. In this approach, the
errors in the position, velocity and orientation are estimated using the difference
between SINS outputs and the auxiliary measurements and the KF operates based
on the set of the INS error propagation equations derived from the first order approxi-
mation of the Taylor series expansion of the system dynamic and measurement equa-
tions. In this paper, in order to reduce the first order linearization effect on the
estimation accuracy, an integrated navigation system for underwater applications is
designed using unscented filtering. In the proposed system, the total state nonlinear
dynamic and measurement models are used and the mean and covariance matrix of
the navigation state, whether in the prediction or correction stage, are estimated
using the unscented-based integration algorithm. The lake test results show that the
proposed approach improves the system performance compared with the conventional
ESKF approach.
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