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AN ALGEBRAIC LINK CONCORDANCE GROUP FOR
(p, 2p—1)-LINKS IN S+

by PAT GILMER and CHARLES LIVINGSTON
(Received 12th March 1990, revised 11th October 1990)

A concordance classification of links of S? | §22~1=§2"*! p>1, is given in terms of an algebraically defined
group, ®., which is closely related to Levine’s algebraic knot concordance group. For p=1, ®_ captures
certain obstructions to two component links in S* being concordant to boundary links, the generalized
Sato-Levine invariants defined by Cochran. As a result, purely algebraic proofs of properties of these
invariants are derived.

1980 Mathematics subject classification (1985 Revision): 57TM25, 57QA45.

In Gilmer and Livingston [3] a group ¥ was defined, along with a map ¢ from the
set of concordance classes of two component linking number O links in S3 to . It was
shown that ¥ contains significant new obstructions relating to boundary links. The
group ¥ is an extension of an algebraically defined group ®_ which captures abelian
invariants of link concordances; the quotient W/®_ relates to Casson—Gordon invar-
iants. This paper begins an analysis of ¥ with a study of ®_, its counterpart ®,, and
their relationship to problems of link concordances.

Levine [10] defined groups G, (¢e=+1) of esymmetric isometric structures and
proved that G, is isomorphic to the concordance group of knotted (2p— 1)-spheres in
§2r+1 for p>2 (e=(—1)?). Although G_ does not determine the classical knot
concordance group (p=1) (Casson and Gordon [1]), it does contain many concordance
invariants. The groups @, are extensions of G,, and play a completely analogous role in
the classification of concordances of links of S? 11§27~ ' <=$2P*1 Two applications are
presented:

High dimensional link concordance. There is a map from the set of concordance
classes of links of S? 1l §27~1<=§2?*! to ®, which is a bijection if p>2, surjective if
p=1, and a bijection onto an index 2 subgroup if p=2. (In the case p=1 we require
that the link have linking number 0.) Furthermore, for p>1 the quotient group, ®,/G,
provides a complete set of obstructions to the existence of a concordance to a split link.
The proofs are simple modifications of Levine’s original argument.

A different classification of such link concordance classes has been described by Mio
and Orr in unpublished work, which includes results in the full metastable range. Their
result led us to the high dimensional observations here. Their classification involved the
concordance group G, and the Kojima function of the link, 5, defined in Kojima and
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Yamasaki [9]. That work was inspired by work in Hacon [4] and Hacon and Mio [S].
The question of realizing obstructions was resolved by Jin [7].

Links in $°. The quotient ®_/G_ provides obstructions to a classical link being
concordant to a boundary link. Previously known obstructions include the Kojima
function, the Sato-Levine invariant (Sato [12]), and the generalized Sato—Levine
invariants, B, defined by Cochran [2]. The relationship between these invariants was
described in Cochran [2], and it will be clear that they provide the same obstruction as
does ®_/G_.

In addition.to providing a purely algebraic formulation of these obstructions, the
present approach offers simple algebraic proofs of previously known properties. For
instance, the fact that the generating function for the ' is rational follows immediately
from the existence of characteristic polynomials of linear transformations. (The proof of
this result in Cochran [2] depended on the definition of 5, which is geometric, and a
geometric argument relating the B and . The rationality of the generating function is
equivalent to the sequence satisfying a linear recursion relation. A complete analysis of
these recursion properties is carried out in Jin [7].)

Notation. We work throughout in the smooth category. Links will always be
(ordered) links of S? 11 $27~! in $27*! Homology is taken with integer coefficients.

Acknowledgements. The relationship of ®_ to Cochran’s invariants is readily
apparent, and hence the connection to the Kojima function. Kent Orr described to us
his work with Mio showing that the Kojima function can be used to classify the higher
dimension link concordance classes and it follows that the same should be true of ®,;
only the details of a direct argument needed to be filled in. Orr also pointed out Jin’s
work on recursion relations among the f, and it was clear that similar results would
follow directly from the structure of ®,.

1. Definition and properties of ®

We follow the notation of Stoltzfus [13] in his description of the integral knot
concordance group. The group itself was first defined by Levine in [10]. The notion of
isometric structure first appeared in Kervaire’s work [8].

Definition. An enhanced e-symmetric isometric structure is a quadruple (M, {,),t,4)
where M is a finitely generated free Z module, {, ) is an e-symmetric bilinear form on
M, t is a linear endomorphism of M, and 4 is an element in M, satisfying:

(i) ¢, ) is nonsingular, and
(i) <{tx,y>+{x,tyy=<x,y), for all x,y in M.

. Definition. An enhanced isometric structure is metabolic if there is a submodule N of
M such that:
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(i) N=N*,
(i) N is invariant under t, and
(iii) AeN.

Definition. ®, is the Witt group of equivalence classes of enhanced eg-isometric
structures modulo metabolic structures.

The proof that this is well defined, and the basic properties of the Witt group, follow
as in Stoltzfus [13]. (Note that —(M, <, >, t,1)=(M, —{, D, t, 1). A metabolizer for the
sum (M, ()t DM, —{,)t,4) is given by N={(x,x)|xeM}. Also note that
M, 0 )=(M,{,>,t,—4); a metabolizer for the difference is given by
N={(x, —x)|xe M})

The definition of G, is the same as for ®,, only without reference to 4. There is an
inclusion of G, into ®, which sends (M, {,),t) to (M,{,),t,0), and this inclusion is
split by the forgetful map. We will want to understand the quotient, ®,/G,. To do so,
first note that the functions a;; (M, {,,t, A))=<t'A, /1), i,j=0, are well defined on @,
and vanish on G,. These functions are a complete (but, as we will see, redundant) set of
invariants for the quotient:

Theorem 1. The class (M, {,),t,A) is in the image of G, if and only if a; ;=0 for all
ij.

Proof. Suppose that a; ;=0 for all i,j. Let L be the smallest (¢ invariant) summand of
M containing {t'4}, i=0. Then (M, {, >, t, ) is Witt equivalent to (L'/L, <, D, t,0), where
{,> and t are induced by those on M. The proof is the same as the usual proof that
Witt classes have anisotropic representatives (Stoltzfus [13]). (A metabolizer for
(M, {0, t, )@ —(LH/L, <, ), t,0) is given by {(x,x+L)|xeLl}.)

2. Link concordance invariants

Let (K,J) be a link of S? 1L S?»~! in S?**! with linking number O if p=1. An
obstruction theory argument shows that J bounds a 2p-manifold V in the complement
of K.

Definition. ¢(K, J)=(H ,(V)/torsion, {, ), t, A)e®d,, where {,) is the standard inter-
section form on H (V); t is defined by <tx, y>=lk(x*,y), (x* is the positive push off of
x) for all x,ye H,; and 4 is defined by (4, y>=1k(K, y) for all y in H (V).

In earlier work lk(x, y*) was used instead of lk(x*, y). Our choice is consistent with
standard conventions on orientations and intersection forms, and also with recent work
on boundary link invariants, such as Cochran [2]. Note also that ¢ could be defined
without reference to intersection forms or linking forms via duality; ¢ is the composition
of i* with the Alexander and Poincaré duality maps.)
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Theorem 2. ¢(K,J) is a well defined concordance invariant.

Proof. Given a concordance from (K,J) to (K',J) with J bounding V and J’
bounding V’, one uses an obstruction theory argument to construct an embedded
manifold W2?*! in §27*! x| with boundary V,V’, and the concordance of the J's. W
can be arranged to be in the complement of the concordance of the K’s. A metabolizer
for the direct sum is given by the smallest summand which includes the kernel of the
inclusion of H, (VL V’) into H,(W).

Given two links, (K, J) and (K', J'), separated by a 2p-sphere, S, it is clear that for any
choice of Seifert manifolds for J and J’ in the complements of K and K’, one can find
bands to form the connected sum of links so that the bands miss the Seifert manifolds
and the core of each intersects S in exactly one point. (A more general construction of
band connect sums is given in Cochran [2].) The following result is immediate.

Theorem 3. ¢ is additive for band sums as described above.

Seifert matrices. If a knot J bounds a Seifert manifold V, the Seifert form ® on
H,(V)/torsion can be defined by O(x, y)=1lk(x*, y). If V is a Seifert matrix representing
© with respect to some basis, then V' — V' represents the intersection form of V. A quick
calculation shows that ¢ is represented by (V' — V)~ 11",

3. High dimensional classification

The proof that for p>2 ®, classifies links (of the appropriate dimension) up to
concordance is the same as Levine’s original argument (Levine [10]), with a few simple
additions. The case of p=2 is also completely analogous, and is omitted. Let (K, J) be a
link of S? 11 §27~1<=§2?*! Let J bound a Seifert manifold V in the complement of K.

Theorem 4. For p>1, if ¢(K,J)=0 then (K, J) is strongly slice.

Proof. Step I (make V simple). A cobordism W of V to a simple manifold V, can be
embedded in B?"*2. Properly embed a copy of KxI into B***2—W with K x {0}
mapping to K. Now use Hirsch’s engulfing theorem (Hirsch [6]) to embed a (2p+2)-
ball B, into B***? so that B,n(W UK xI)=V,u K x {1}. The difference B***2—B,
provides the concordance to the link (K’,J’) in 6B,, where K'=K x {1} and J'=4V,,.

Step 2 (surger V). The pair (K', dV,) determines an element ¢(K',dV,) in @'. The
form is Witt equivalent to ¢(K,J)=0. Hence, one can surger V, to reduce it to a disk.
That surgery can be performed ambiently, via the Whitney trick, in B,. Unfortunately,
the added handles may intersect a slice disk, D, for K in B,

As ¢(K’, dV,)=0, each added handle intersects D algebraically O times. The Whitney
trick can hence be performed to eliminate the intersections of the handles with D.
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Theorem 5. For p>1, links (K,J) and (K',J’) are concordant if and only if
d(K, N)=¢(K', J').

Proof. Form the band connected sum of the links (K, J) and —(K’,J’) as described
in the previous section. The resulting link has ¢ trivial and is hence strongly slice. Now
add a 2p+1 handle to B??*2 along S to construct S2°*! x I. The slice disks are easily
modified to yield the desired concordances.

Theorem 6. For p+2, every enhanced isometric structure is realized by a link.

(The theorem remains true for p=2, with the usual restriction to an index 2 subgroup
of &,)

Proof. Note that by Kervaire [8] any isometric structure is realized by a knotted
sphere bounding a simple Seifert manifold, V. By the Hurewicz theorem and general
position any homology class in H,(S?7*! —V) is represented by a sphere; one constructs
K to correspond to a given A.

Corollary 7. For p>1, a link (K,J) of S? 1L §?P~1<§2P*! is concordant to a split
link if and only if a; ;¢(K,J)=0 for all i,j20.

Proof. The vanishing of the a;; implies that @(K,J) is Witt equivalent to an
isometric structure with 1=0. Hence, the link is concordant to a link with correspond-
ing enhanced isometric structure having A=0. In the above construction K can be taken
to be trivial.

4. Connections with Cochran’s invariants

We first give a very brief sketch the definition of the Sato-Levine invariant and
Cochran’s generalization of it in the classical dimension. See Cochran [2] for details. Let
K bound a manifold W in the complement of J. Let [, be the transverse intersection of
W with the Seifert manifold, V, for J. The Sato-Levine invariant B' is defined to be
Ik(l,,l{). Now, replace K in the original link with If. Repeating the previous
construction gives an /,, and corresponding B2. Iterate the procedure to define an
infinite sequence of invariants.

In Cochran [2] a method of computing the ' in terms of V is given without proof.
As that method provides the connection between the algebra here and previous
geometric methods we will quickly fill in the argument. Recall first that the linking
number of two disjoint closed curves, x and y, in > is computed by letting x bound an
immersed surface F transverse to y, and computing the intersection number of y with F.
In the situation of links (K, J) in S3, let K bound a surface W transverse to the Seifert
surface V for J, as in the previous paragraph, and let /; be the intersection of W and V.
The intersection number of curves on V with I, then gives the linking number with K.
Hence, I, is a representative of A and B = {t(4), 4).
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Similarly, a representative of t(x), where x € H (V), satisfies {t(x), y>=lk(x*,y) for all
y. In particular, #(4) satisfies {t(4), y> =1k (I, y) for all y. Hence, t(1) is represented by
the intersection of a surface bounded by If with V,l, in the previous section.
Continuing, we see that (1) is represented by [,,. Finally, Bi=Ik(/},1)=
k(£ A T A =R, T A =ai- 0

5. (De[Ge’ recursion relations among the a;;, and generating functions

As noted, the g, ; form a complete set of invariants of ®,/G,. Here we develop their
properties. From the definition we have the relations:

vy, a; j41=0;; *)
and

ai'j=£aj','. (**)

View the functions a; ; as defined on the upper right quadrant of the integer lattice.
Relation (*) states that two consecutive entries on a horizontal row determine the entry
immediately above the first. Hence:

Fact 1. The entries a; o determine all the a; ;.

In the case that e= —1, (**) implies that the diagonal entries a;; are 0. If e= +1 (¥)
and (**) imply that a;;=2a;,,,; Next note that a,; and a;,_, together determine
4;+1,i-1. Continuing this “downward propagation” quickly yields:

Fact 2. The entries a;. , ; determine all the a, ;.

Recursion. Suppose that the characteristic polynomial of ¢ is given by p=Yr_, o, x*.
(Note that a,=1. Also, using the Seifert matrix description, one has that up to a power
of x,p is given by the x"A,;(1—1/x) for some n, where A, is the Alexander polynomial.)
It follows that {p(f)t'A, /A =0. Hence, Y 7_o 0,a;4+,, ;=0 for all i,j. Since s consecutive
a;+1,; determine 2s consecutive q; ; for fixed j, the given length n+1 recurrence relation
among the a;; determines a length [(n/2)+ 1)] linear recurrence relation among the

Qiv,i-

Generating functions. Let f(t) be the generating function for the sequence a; ; that
is, f{t)=Y.2oa;;t" Note that * implies that f;, (t)=Pos((1—t""')f{t)), where Pos( )
represents the terms in the power series with non-negative exponents. If p is the degree n
characteristic polynomial of ¢, the recursion relation it determines among the g; ; is
equivalent to the condition that ¢"(p(1/t)) f(t) is a finite polynomial. As an application
we have the special case of Theorem 7.1 of Cochran [2].

Theorem 8. If the Alexander polynomial of J is trivial, then a;,, ;=0 for i large.

https://doi.org/10.1017/50013091500005228 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005228

CONCORDANCE CLASSIFICATION OF LINKS 461

Proof. The Alexander polynomial is of the form t". We then have that p(t)=
t"(1—1/t)*, for some n and k. By the above discussion, (t—1)*f,(t) is a (finite)
polynomial. This implies that f{t) is a polynomial for all j=k. Finally, noting that the
degree of fi,,(t) is less than or equal to the degree of f,(t) for all k completes the
argument.

6. Genus and the length of recursion relations

The genus of a Seifert manifold for a knot can be defined to be half the dimension of
the middle dimensional homology. This is an integer for p odd because a skew
symmetric nonsingular form has even rank. For p even, the form is even, symmetric and
nonsingular, so the signature is divisible by 8, and the rank is again even.

Suppose that J bounds a genus g Seifert manifold in the complement of K. The
characteristic polynomial of ¢ is then of degree at most 2g+1, and hence the linear
recursion relation among the g, ; is of length at most 2¢g +1, for any fixed j. This implies
that the a;,, ;=p" satisfy a linear recursion relation of length g+1. The following
theorem is then immediate.

Theorem 9. If J bounds a genus g Seifert manifold in the complement of K, and p'=0
for 1<i<g, then B'=0 for all i.

Corollary 10. For p>1, if J bounds a genus g Seifert manifold in the complement of
K, and Bi=0 for 1 <i<g, then (K, J) is concordant to a split link.

S T NN TN

~

J

FIGURE 1

Figure 1 gives an interesting example of linking. Note that both K and J are
unknotted in §3, that K bounds a genus 1 surface in the complement of J, and that J
bounds a genus g surface in the complement of K. (The figure illustrates the case g=3.)
Our observation is that (K, J) is not even concordant to a link (K', J') with J' bounding
a surface of genus less than g in the complement of K'.

For the link in Figure 1, it is easily computed that =0 for i<g, and p?=1. (In fact
B =0 for i>g also.) Hence the recursion relation for the ' must be of length at least
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g+1, providing the obstruction to finding a lower genus surface bounded by J' in the
complement of K'.
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