ON THE FUNDAMENTAL GROUP OF A SIMPLE LIE GROUP

MASARU TAKEUCHI

Introduction

Let G be a simply connected simple Lie group and C the center of G, which is isomorphic with the fundamental group of the adjoint group of G. For an element c of G, an element f of the Lie algebra f of f is called a representative of f in f if f exp f = f . Sirota-Solodovnikov [7] found a complete set of representatives of the center f in f and studied the group structure of f and using their results Goto-Kobayashi [1] classified subgroups of the center f with respect to automorphisms of f. The group structure of f was also studied in Takeuchi [8].

Sirota-Solodovnikov's complete representatives were obtained by calculating a free abelian group Z_* modulo a subgroup Z_0 for each simple group. But if G is compact, owing to the classical result of E. Cartan, they are obtained systematically as follows. Let \mathfrak{h} be a maximal abelian subalgebra of \mathfrak{g} , Δ the root system of the complexification \mathfrak{g}^c of \mathfrak{g} with respect to the complexification \mathfrak{h}^c of \mathfrak{h} and $\Pi = \{\alpha_1, \dots, \alpha_l\}$ a fundamental system of Δ . Let $\mu = \sum_{i=1}^l n_i \alpha_i$ be the highest root of Δ with respect to Π and Λ_i^* $(1 \leq i \leq l)$ the dual basis of Π in $\sqrt{-1} \mathfrak{h}$ defined by the relations: $\alpha_i(\Lambda_j^*) = \delta_{ij}$ $(1 \leq i, j \leq l)$. Then the set $\{0\} \cup \{2\pi\sqrt{-1} \Lambda_i^*; 1 \leq i \leq l, n_i = 1\}$ give a complete set of representatives of the center C in \mathfrak{g} . Thus it is quite easy to see how an automorphism of G acts on C.

Moreover, by an unpublished result of Murakami (Theorem 2), if G is compact, C is isomorphic with a subgroup of the group of automorphisms of the extended fundamental system Π^* , where Π^* is defined from Π by adding $-\mu$ to it.

In this note we shall generalize the above results to general G (not necessarily compact). A complete set of representatives of the center C in

Received June 5, 1969.

 $\mathfrak g$ is obtained by seeing the fundamental system and the highest root of $\mathfrak g$ and those of simple components of a maximal compact subalgebra $\mathfrak k$ of $\mathfrak g$, in terms of the dual basis of fundamental systems. The group strucutre of the center C is described by means of a group of automorphisms of the "extended fundamental system" of $\mathfrak k$. Thus it is immediate to find the action of automorphisms of G on C.

§1. Fundamental group of a semi-simple group

Let G be a connected semi-simple Lie group and g its Lie algebra. Let f be a maximal compact subalgebra of g, f' the derived algebra of f and K (resp. K') the connected subgroup of G generated by \mathfrak{k} (resp. \mathfrak{k}'). Then we have $\pi_1(K) \cong \pi_1(G)$ since G is diffeomorphic with the product of K and a Euclidean space (Helgason [22], p. 214). We take a Cartan subalgebra Then \mathfrak{h}_1 contains a regular element of \mathfrak{g} (Murakami [5]) so that \mathfrak{h}_1 can be extended uniquely to a Cartan subalgebra \mathfrak{h} of \mathfrak{g} . Let \mathfrak{g}^c (resp. \mathfrak{k}^c , $\mathfrak{k}^{\prime c}$, \mathfrak{h}^c) denote the complexification of \mathfrak{g} (resp. \mathfrak{k} , \mathfrak{k}^{\prime} , \mathfrak{h}) and let $\mathfrak{h}^c = \mathfrak{h}^c \cap \mathfrak{k}^c$, $\mathfrak{h}'^c = \mathfrak{h}^c \cap \mathfrak{k}'^c$. Then \mathfrak{h}^c (resp. $\mathfrak{h}^c, \mathfrak{h}'^c$) is a Cartan subalgebra of \mathfrak{g}^c (resp. $\mathfrak{k}^c, \mathfrak{k}'^c$). Let \mathfrak{h}_0 be the real part of \mathfrak{h}^c and put $\mathfrak{h}_+ = \mathfrak{h}_0 \cap \mathfrak{h}_+^c$, $\mathfrak{h}' = \mathfrak{h}_0 \cap \mathfrak{h}'^c$, $\mathfrak{c} = \mathfrak{the}$ orthogonal complement of h' in h+ with respect to the Killing form (,) of \mathfrak{g}^c . Then the Weyl group W (resp. W') of \mathfrak{k}^c (resp. \mathfrak{k}'^c) on \mathfrak{h}^c_+ (resp. \mathfrak{h}'^c) is considered as a group of orthogonal transformations of \$\mathfrak{h}_{+}\$ (resp. \$\mathfrak{h}')\$ with respect to the Killing form of g^c and W acts trivially on c and coincides with W' on \mathfrak{h}' . In the following we shall identify the dual space of h₀ with \mathfrak{h}_0 by means of the Killing form of \mathfrak{g}^c , so that the root system Δ (resp. Δ') of \mathfrak{g}^c (resp. \mathfrak{f}'^c) with respect to \mathfrak{h}^c (resp. \mathfrak{h}'^c) is contained in \mathfrak{h}_0 (resp. \mathfrak{h}'). Let $\Pi' = \{\beta_1, \dots, \beta_{l'}\}$ be a fundamental system of Δ' and > the lexicographic order of Δ' associated with Π' . Now we put

$$Z = \frac{1}{2\pi\sqrt{-1}} \text{ kernel } \{\exp : \sqrt{-1} \mathfrak{h}_+ \longrightarrow K\}$$

and let t(z) denote the translation $h \longmapsto h + z$ of \mathfrak{h}_+ by an element z of Z. Then $W \cap t(Z) = \{1\}$ and W normalizes t(Z) since W leaves Z invariant and $wt(z)w^{-1} = t(wz)$ for $w \in W$ and $z \in Z$. Thus we have a group \tilde{W} of isometries of the Euclidean space \mathfrak{h}_+ defining that

$$\widetilde{W} = t(Z)W$$
.

The groups Z and \tilde{W} for the universal covering group of G or the adjoint

group of G will be denoted by Z_0 and \tilde{W}_0 or Z_* and \tilde{W}_* . Then we have

$$Z_* = \{h \in \mathfrak{h}_+; (\alpha, h) \in \mathbb{Z} \text{ for any root } \alpha \text{ of } \Delta\},$$

$$Z_0 = \sum_{i=1}^{l'} \mathbf{Z} \beta_i^*$$
, where $\beta_i^* = (2/(\beta_i, \beta_i))\beta_i$.

The latter equality follows from the fact that the righthand side is the dual group of the group of weights of \mathfrak{f}'^c . It is clear that $Z_0 \subset Z \subset Z_*$ and $\widetilde{W}_0 \subset \widetilde{W} \subset \widetilde{W}_*$. If we denote by K_0 the simply connected subgroup of the universal covering group G_0 of G generated by \mathfrak{f} and by φ the covering homomorphism of K_0 onto K, then the map $\gamma: Z/Z_0 \longrightarrow G_0$ defined by $z \mod Z_0 | \longrightarrow \exp_{G_0} 2\pi \sqrt{-1} z$ induces the isomorphism of Z/Z_0 onto the kernel of φ , which is isomorphic with $\pi_1(K) \cong \pi_1(G)$. Thus

$$Z/Z_0 \cong \pi_1(G)$$
.

LEMMA 1. $wz \equiv z \pmod{Z_0}$ for $w \in W$ and $z \in Z$.

Proof. There exists an element k of the normalizer in K_0 of \mathfrak{h}_+ such that $\mathrm{Ad}\,k$ restricted to \mathfrak{h}_+ coincides with w. Since the kernel of the above covering homomorphism φ is contained in the center of K_0 , the element k centralizes the kernel of φ , which yields Lemma.

Note that $(z, \beta) \in \mathbb{Z}$ for $z \in \mathbb{Z}$ and $\beta \in \Delta'$, since β is obtained as the orthogonal projection to \mathfrak{h}_+ of some root of Δ and $\mathbb{Z} \subset \mathbb{Z}_*$. This fact will be used sometimes in the following.

The subset

$$D = \{h \in \mathfrak{h}_+; (h, \beta) \in \mathbb{Z} \text{ for some root } \beta \text{ of } \Delta'\}$$

of \mathfrak{h}_+ is called the diagram of \mathfrak{k} on \mathfrak{h}_+ and a connected component of $\mathfrak{h}_+ - D$ is called a cell of \mathfrak{k} on \mathfrak{h}_+ . Then \widetilde{W} leaves D invariant since $W(\Delta') \subset \Delta'$ and $(Z, \Delta') \subset Z$. It follows that \widetilde{W} acts on the set of cells of \mathfrak{k} on \mathfrak{h}_+ . A classical theorem of E. Cartan (cf. Helgason [2], p. 265) says that \widetilde{W}_0 acts simply transitively on the set of cells. (An algebraic proof of this theorem is seen in Iwahori-Matsumoto [3].) Let \mathscr{C}' be the positive Weyl chamber of \mathfrak{k}' on \mathfrak{h}' with respect to Π' , that is, $\mathscr{C}' = \{h \in \mathfrak{h}'; (h, \beta_i) > 0 \text{ for any root } \beta_i \text{ of } \Pi'\}$, and S the unique cell of \mathfrak{k} in \mathfrak{h}_+ such that the closure \overline{S} of S contains 0 and $S \cap \mathscr{C}' \neq \emptyset$. We put

$$\widetilde{W}(S) = \{ \tau \in \widetilde{W} ; \ \tau S = S \}.$$

Theorem 1. The group $\tilde{W}(S)$ is isomorphic with the fundamental group $\pi_1(G)$ of G.

Proof. Let us consider the map of \tilde{W} to Z/Z_0 defined by $t(z)w | \longrightarrow z \mod Z_0$ for $z \in Z$ and $w \in W$. Since we have $(t(z_1)w_1)(t(z_2)w_2) = t(z_1 + w_1z_2) (w_1w_2)$, the map is a homomorphism in view of Lemma 1. The kernel of this homomorphism is just the group \tilde{W}_0 . It follows that \tilde{W}_0 is a normal subgroup of \tilde{W} and $\tilde{W}/\tilde{W}_0 \cong Z/Z_0 \cong \pi_1(G)$. On the other hand, the theorem of E. Cartan yields that \tilde{W} is the semi-direct product of $\tilde{W}(S)$ and \tilde{W}_0 . It follows that $\tilde{W}(S) \cong \tilde{W}/\tilde{W}_0 \cong \pi_1(G)$.

COROLLARY. The corresponding group $\tilde{W}_*(S)$ for centerless group G is isomorphic with the center C of the universal covering group of G.

Proof. Obvious since $\pi_1(G)$ is isomorphic with C. An explicit isomorphism is given by $\tilde{W}_*(S) \cong Z_*/Z_0 \stackrel{r}{\cong} C$.

Remark. The group $\tilde{W}(S)$ may be described in terms of covering transformations of the universal covering space of an open submanifold of K (cf. Takeuchi [8], Helgason [2]).

If we put $S' = \mathfrak{h}' \cap S$, we have $S = \mathfrak{c} \times S'$. Now we define certain groups on \mathfrak{h}' similarly to those on \mathfrak{h}_+ . Let

$$Z'_* = \{h \in \mathfrak{h}'; (h, \beta) \in \mathbb{Z} \text{ for any root } \beta \text{ of } \Delta'\},$$

$$\widetilde{W}'_* = t'(Z'_*)W', \text{ where } t'(z')h' = z' + h' \text{ for } h' \in \mathfrak{h}'.$$

Then Z'_* contains $Z \cap \mathfrak{h}'$ and \tilde{W}'_* leaves $D' = \mathfrak{h}' \cap D$ invariant so that \tilde{W}'_* acts on connected components of $\mathfrak{h}' - D'$, which are called *cells* of \mathfrak{k}' on \mathfrak{h}' . S' is the unique cell of \mathfrak{k}' on \mathfrak{h}' such that \bar{S}' contains 0 and $S' \cap \mathscr{C}' \neq \phi$. Put

$$\tilde{W}_{*}'(S') = \{ \tau' \in \tilde{W}_{*}'; \ \tau'S' = S' \}.$$

The same argument as above shows that $\tilde{W}'_*(S')$ is isomorphic with the fundamental group of the adjoint group of \mathfrak{k}' and with the center of the universal covering group of K'.

Lemma 2. 1) Let Z'' be the image of $\bar{S} \cap Z$ by the orthogonal projection of f_+ onto c. Then $\bar{S} \cap Z \subset Z'' \times (\bar{S}' \cap Z'_*)$.

2) Let $\xi(\tau) = \tau(0)$ for $\tau \in \tilde{W}(S)$. Then the map ξ gives a bijection of $\tilde{W}(S)$

onto $\overline{S} \cap Z$. The set $2\pi \sqrt{-1}$ $(\overline{S} \cap Z_*)$ is a complete set of representatives in g of the center C of the universal covering group of G.

- 3) Let $\xi'(\tau') = \tau'(0)$ for $\tau' \in \widetilde{W}'_*(S')$. Then the map ξ' gives a bijection of $\widetilde{W}'_*(S')$ onto $\overline{S}' \cap Z'_*$. The set $2\pi \sqrt{-1} (\overline{S}' \cap Z'_*)$ is a complete set of representatives in \mathfrak{X}' of the center of the universal covering group of K'.
- *Proof.* 1) Let z=(z'',z') be an element of $\overline{S} \cap Z=(\mathfrak{c} \times \overline{S}') \cap Z$, where $z'' \in Z''$ and $z' \in \overline{S}'$. Then for any root β of Δ' we have $(z',\beta)=(z,\beta)-(z'',\beta)=(z,\beta)\in Z$ so that $z' \in \overline{S}' \cap Z'_*$.
- 2) For any element $\tau=t(z)w$ of $\tilde{W}(S)$, where $z\in Z$ and $w\in W$, we have $\xi(\tau)=\tau(0)=z\in Z$. It follows that $\xi(\tau)\in \bar{S}\cap Z$ since $0\in \bar{S}$. We shall show first that ξ is surjective. In view of 1), any element z of $\bar{S}\cap Z$ can be written as z=z''+z', where $z''\in Z''$ and $z'\in \bar{S}'\cap Z'_*$. Then $t(z)^{-1}S=c\times t(z')^{-1}S'$ and $t(z')^{-1}S'$ is a cell of \mathfrak{k}' on \mathfrak{h}' such that its closure contains 0. Since W' acts transitively on Weyl chambers of \mathfrak{k}' on \mathfrak{h}' , we have an element w of W such that $w^{-1}t(z')^{-1}S'=S'$. It follows that $w^{-1}t(z)^{-1}S=c\times S'=S$ so that $\tau=t(z)w\in \tilde{W}(S)$ and $\xi(\tau)=z$. We shall show next that ξ is injective. Let $\tau_i=t(z_i)w_i$ (i=1,2) be elements of $\tilde{W}(S)$ such that $\xi(\tau_1)=\xi(\tau_2)$. Then we have $z_1=z_2$ and $\tau_2^{-1}\tau_1=w_2^{-1}w_1\in W\cap \tilde{W}(S)\subset \tilde{W}_0\cap \tilde{W}(S)$. But since $\tilde{W}_0\cap \tilde{W}(S)=\{1\}$ by the theorem of E. Cartan, we have $\tau_1=\tau_2$. The second statement follows from the first statement and Corollary of Theorem 1.
 - 3) is proved similarly to the above.

q.e.d.

Lemma 3. 1) Z'' is a subgroup of c. The corresponding group Z''_* for centerless group G is a lattice of c.

2) Let F be the subset of $\widetilde{W}'_*(S')$ corresponding to $\overline{S}' \cap Z$ under the bijection $\xi' \colon \widetilde{W}'_*(S') \longrightarrow \overline{S}' \cap Z'_*$ and let $\pi''(\tau) = z''$ for an element $\tau = t(z'' + z')w$ of $\widetilde{W}(S)$, where $z'' \in Z''$, $z' \in \overline{S}' \cap Z'_*$ and $w \in W$. Then F is a subgroup of $\widetilde{W}'_*(S')$ and the map $\pi'' \colon \widetilde{W}(S) \longrightarrow Z''$ is a homomorphism. Moreover we have a split exact sequence:

$$0 \longrightarrow F \longrightarrow \widetilde{W}(S) \xrightarrow{\pi''} Z'' \longrightarrow 0.$$

Thus we have an isomorphism: $\tilde{W}(S) \cong Z'' \times F$.

Proof. For elements $\tau_i = t(z_1'' + z_1')w_1$ of $\tilde{W}(S)$ (i = 1, 2), we have $\tau_1\tau_2 = t((z_1'' + z_2'') + (z_1' + w_1z_2'))(w_1w_2)$ so that π'' is a homomorphism of $\tilde{W}(S)$ into c. Since $\pi''\tilde{W} = Z''$ in view of Lemma 2, Z'' is a subgroup of c.

If $\pi''(\tau) = 0$ for an element $\tau = t(z)w$ of $\widetilde{W}(S)$, then $z \in \mathfrak{h}' \cap Z \subset Z'_*$. It follows that τ is identity on \mathfrak{c} , its restriction τ' to \mathfrak{h}' belongs to $\widetilde{W}'_*(S')$ and $\xi'(\tau') \in \overline{S}' \cap Z$. Conversely if τ' is an element of $\widetilde{W}'_*(S')$ with $\xi'(\tau') \in \overline{S}' \cap Z$, then the trivial extension τ of τ' to \mathfrak{h}_+ satisfies $\tau \in \widetilde{W}(S)$ and $\overline{w}''(\tau) = 0$. It follows that F is a subgroup of $\widetilde{W}'_*(S')$ and isomorphic with the kernel of π'' . So we have the desired exact sequence, which splits because Z'' is free.

If G is centerless, then K is compact so that $Z_* \cap \mathfrak{c}$ is a lattice of \mathfrak{c} . Since Z_*'' contains $Z_* \cap \mathfrak{c}$, Z_*'' is also a lattice of \mathfrak{c} .

Now we want to describe the structure of the group F. Let $\mathfrak{k}' = \sum_{i=1}^{r} \mathfrak{k}'_i$ be the decomposition of \mathfrak{k}' into simple factors. Then $\mathfrak{h}', \Delta', \Pi', Z'_*, S', \overline{S}' \cap Z'_*, W', \widetilde{W}'_*$ and $\widetilde{W}'_*(S')$ are the direct products of corresponding objects for simple factors \mathfrak{k}_i , which will be denoted by the same symbol with the suffix i. Let μ'_i be the highest root of Δ'_i and $\Pi'_i^* = \Pi'_i \cup \{-\mu'_i\}$. Let $\operatorname{Aut}(\Pi'_i^*)$ denote the group of orthogonal transformations of \mathfrak{h}'_i preserving Π'_i^* and let

$$\begin{split} &\Pi'^* = \mathop{\cup}_{i=1}^r \Pi'_i^*,\\ &\operatorname{Aut}\left(\Pi'^*\right) = \mathop{\Pi}_{i=1}^r \operatorname{Aut}\left(\Pi'_i^*\right). \end{split}$$

THEOREM 2. 1) Let $\pi'(\tau') = w'$ for an element $\tau' = t'(z')w'$ of $\tilde{W}'_*(S')$, where $z' \in Z'_*$ and $w' \in W'$. Then $\pi'(\tau') \in \operatorname{Aut}(\Pi'^*)$ for any element τ' of $\tilde{W}'_*(S')$ and the map $\pi' : \tilde{W}'_*(S') \longrightarrow \operatorname{Aut}(\Pi'^*)$ is an injective homomorphism. The image $\pi'\tilde{W}'_*(S')$ of π' will be denoted by $\mathscr{F}(\mathfrak{k}')$, which is isomorphic with the fundamental group of the adjoint group of \mathfrak{k}' .

- 2) If \mathfrak{k}' is simple, the group $\mathscr{F}(\mathfrak{k}')$ is obtained as follows. Let $M_i^* \in \mathfrak{h}'$ $(1 \leq i \leq l')$ be the dual basis of Π' , that is, $(M_i^*, \beta_j) = \delta_{ij}$ $(1 \leq i, j \leq l')$ and $P_i = (1/m_i) M_i^* (1 \leq i \leq l')$, where m_i is the i-th coefficient of the highest root $\mu' = \sum_{i=1}^{l'} m_i \beta_i$ of Δ' . We put $\beta_0 = -\mu'$, $M_0^* = P_0 = 0$ and $m_0 = 1$. Then
 - a) $\{P_0, P_1, \dots, P_{t'}\}\ is\ the\ set\ of\ vertices\ of\ \bar{S}'.$
- b) $\bar{S}' \cap Z'_* = \{M_i^*; 0 \le i \le l', m_i = 1\}$ and the set $\{2\pi\sqrt{-1} M_i^*; 0 \le i \le l', m_i = 1\}$ is a complete set of representatives of the center of the simply connected Lie group with the Lie algebra \mathfrak{t}' .
- c) Let τ_i' be the element of $\tilde{W}_*'(S')$ with $\xi'(\tau_i') = M_i^*$ and π_i the element of the symmetric group of (l'+1) letters $\{0,1,\cdots,l'\}$ defined by $\tau_i'P_j = P_{\pi_i(j)} (0 \leq j \leq l')$. Then $\pi'(\tau_i')\beta_j = \beta_{\pi_i(j)} (0 \leq j \leq l')$.

d) $\pi'(\tau'_i)$ is characterized by the property:

$$\{\beta \in \Delta'; \ \beta > 0, \ \pi'(\tau_i')^{-1}\beta < 0\} = \{\beta \in \Delta'; \ (\beta, M_i^*) > 0\}.$$

Proof. They were proved in a more general situation in Takeuchi [8] except 2), d) and the last statement was contained together with the other in Iwahori-Matsumoto [3], but we prove them again here for the sake of completeness.

Since we have $\tau'_1\tau'_2=t'(z'_1+w'_1z'_2)\,(w'_1w'_2)$ for $\tau'_i=t'(z'_i)w'_i\in \tilde{W}'_*(S')$ (i=1,2), π' is a homomorphism of $\tilde{W}'_*(S')$ to W'. To prove the statements that $\pi'\tilde{W}'_*(S)\subset \operatorname{Aut}(\Pi'^*)$ and π' is injective, we may assume that \mathfrak{f}' is simple. But in this case they are true in view of 2), c).

2) a) follows from

$$S' = \{h' \in \mathfrak{h}'; \ (h', \beta_i) > 0 \ (1 \leqslant i \leqslant l'), \ (h', \mu') < 1\},$$
$$\overline{S}' = \{h' \in \mathfrak{h}'; \ (h', \beta_i) \geqslant 0 \ (1 \leqslant i \leqslant l'), \ (h', \mu') \leqslant 1\}.$$

- b) The first statement follows from a) and that $Z'_* = \sum_{i=1}^{l'} ZM_i^*$. The second follows from Lemma 2, 3).
- c) We shall show first that $m_j=m_{\pi_i(j)}$ $(0\leqslant j\leqslant l')$. Since $\pi'(\tau_i')=t'(\xi'(\tau_i'))^{-1}\tau_i'$, we have $\pi'(\tau_i')P_j=P_{\pi_i(j)}-\xi'(\tau_i')=(1/m_{\pi_i(j)})M_{\pi_i(j)}^*-\xi'(\tau_i')$ and therefore

(*)
$$\pi'(\tau_i')M_j^* = (m_j/m_{\pi,(j)})M_{\pi,(j)}^* - m_j\xi'(\tau_i').$$

Hence $(m_j/m_{\pi_i(j)})M_{\pi_i(j)}^* \in \mathbb{Z}_*'$. It follows from the equality: $\mathbb{Z}_*' = \sum_{k=1}^{l'} \mathbb{Z}M_k^*$ that $m_j/m_{\pi_i(j)} \ge 1$. The same argument for τ_i^{-1} shows that $m_{\pi_i(j)}/m_j \ge 1$. Thus we have $m_j = m_{\pi_i(j)}$.

Since $\xi'(\tau_i') = \tau_i'(0) = \tau_i' P_0 = P_{\pi_i(0)} = (1/m_{\pi_i(0)}) M_{\pi_i(0)}^* = (1/m_0) M_{\pi_i(0)}^* = M_{\pi_i(0)}^*$, we have from (*) that $\pi'(\tau_i') M_j^* = M_{\pi_i(j)}^* - m_j M_{\pi_i(0)}^*$. Replacing τ_i by τ_i^{-1} we have

$$\pi'(\tau_i')^{-1}M_j^* = M_{\pi_i^-} \mathbf{1}_{(j)}^* - m_j M_{\pi_i^-} \mathbf{1}_{(0)}^* \ \, (0 \leqslant j \leqslant l').$$

Now it is easy to derive $\pi'(\tau_i')\beta_j = \beta_{\pi_i(j)}$ using $m_j = m_{\pi_i(j)}$ and the above equalities: If $j \neq 0$, $\pi_i^{-1}(0)$, then for $1 \leq k \leq l'$ we have $(\pi'(\tau_i')\beta_j, M_k^*) = (\beta_j, \pi'(\tau_i')^{-1}M_k^*) = (\beta_j, M_{\pi_i^{-1}(k)}^*) - m_k M_{\pi_i^{-1}(0)}^* = (\beta_j, M_{\pi_i^{-1}(k)}^*) = \delta_{\pi_i(j),k} = (\beta_{\pi_i(j)}, M_k^*)$, so that $\pi'(\tau_i')\beta_j = \beta_{\pi_i(j)}$. We can similarly confirm the same equality for j = 0 or $\pi_i^{-1}(0)$.

d) Since the existence and the uniqueness of an element w' of W' such that

$$\{\beta \in \Delta'; \beta > 0, w'^{-1}\beta < 0\} = \{\beta \in \Delta'; (\beta, M_i^*) > 0\}$$

is known (Kostant [4]), it suffices to show that $\tau' = t'(M_i^*)w'$, with w' as above and $m_i = 1$, leaves S' invariant. We may assume that $i \neq 0$. Take an element h' of S'. Let $1 \leq j \leq l'$, then $(\tau'h', \beta_j) = (w'h' + M_i^*, \beta_j) = (h', w'^{-1}\beta_j) + (M_i^*, \beta_j)$. If $w'^{-1}\beta_j > 0$, then $(h', w'^{-1}\beta_j) > 0$ since $h' \in S'$. If $w'^{-1}\beta_j < 0$, then $(M_i^*, \beta_j) = 1$ from the assumption for w' and $(h', w'^{-1}\beta_j) > -1$ since $h' \in S'$. Thus in both cases we have $(\tau'h', \beta_j) > 0$. Furthermore we have $(\tau'h', \mu') = (w'h' + M_i^*, \mu') = (h', w'^{-1}\mu') + 1$. If $w'^{-1}\mu' < 0$, then $(h', w'^{-1}\mu') < 0$ since $h' \in S'$, so that $(\tau'h', \mu') < 1$. If $w'^{-1}\mu' > 0$, then from the assumption for w' we have $(\mu', M_i^*) \leq 0$, which is a contradiction. Thus we have $(\tau'h', \mu') < 1$. It follows that $\tau'h'$ is also an element of S'. q.e.d.

Theorem 3. Let $\mathscr{F} = \pi' F \subset \mathscr{F}$ (\mathfrak{f}'), that is, \mathscr{F} is the image of $\bar{S}' \cap Z$ by the injection $\pi' \xi'^{-1} : \bar{S}' \cap Z'_* \longrightarrow \operatorname{Aut}(\Pi'^*)$, and let Z'' be the free abelian group defined in Lemma 2. Then

$$\pi_1(G) \cong Z^{\prime\prime} \times \mathscr{F}$$
.

If G has no center, then the rank of $Z'' = Z''_*$ is the same as the dimension of the center of the maximal compact subgroup K of G. The set $2\pi\sqrt{-1}$ $(\bar{S}' \cap Z_*)$ is a complete set of representatives of the torsion part of the center C of the universal covering group of G.

Proof. $\pi_1(G)$ is isomorphic with $Z'' \times F$ by Theorem 1 and Lemma 3, 2) and F is isomorphic with \mathscr{F} by Theorem 2. It follows that $\pi_1(G)$ is isomorphic with $Z'' \times \mathscr{F}$. The second statement follows from Lemma 3, 1). The last follows from Lemma 2, 2).

§ 2. Center of a simply connected simple group

Let g_u be a compact simple Lie algebra.

(A) Let \mathfrak{h}_u be a Cartan subalgebra of \mathfrak{g}_u . Then the complexification \mathfrak{h}^c of \mathfrak{h}_u is a Cartan subalgebra of the complexification \mathfrak{g}^c of \mathfrak{g}_u . The real part \mathfrak{h}_0 of \mathfrak{h}^c is identified with the dual space of \mathfrak{h}_0 as in Section 1 by means of the Killing form (,) of \mathfrak{g}^c , so that the root system Δ of \mathfrak{g}^c with respect to \mathfrak{h}^c is a subset of \mathfrak{h}_0 . Choose a set $\{e_a; \alpha \in \Delta\}$ of root vectors

of $\mathfrak{g}^{\mathbf{c}}$ with respect to $\mathfrak{h}^{\mathbf{c}}$ such that $[e_{\alpha}, e_{-\alpha}] = -\alpha \ (\alpha \in \Delta)$ and $[e_{\alpha}, e_{\beta}] = N_{\alpha,\beta} e_{\alpha+\beta} (\alpha, \beta, \alpha + \beta \in \Delta)$ where $N_{\alpha,\beta} \neq 0$, $N_{\alpha,\beta} \in \mathbf{R}$. Let $\Pi = \{\alpha_1, \dots, \alpha_l\}$ be a fundamental system of Δ and > the lexicographic order of Δ associated with Π . Let $\Lambda_i^* \in \mathfrak{h}_0$ $(1 \leq i \leq l)$ be the dual basis of Π , that is, $(\Lambda_i^*, \alpha_j) = \delta_{ij}$ $(1 \leq i, j \leq l)$ and put $\Lambda_0^* = 0$, $\alpha_0 = -\mu$, where μ is the highest root of Δ . Take an involutive transformation ρ of \mathfrak{h}_0 with $\rho \Delta = \Delta$ and $\rho \Pi = \Pi$, and put

$$\mathfrak{h}_{+} = \{h \in \mathfrak{h}_{0}; \ \rho h = h\}.$$

Changing indices of the α_i if necessary, we may assume that $\rho\alpha_i = \alpha_i \ (1 \le i \le p)$, $\rho\alpha_{p+i} = \alpha_{l_0+i} \ (1 \le i \le l_0 - p)$ and $\rho\alpha_{l_0+i} = \alpha_{p+i} \ (1 \le i \le l_0 - p)$. Then we have $\Lambda_i^* \in \mathfrak{h}_+$ if $0 \le i \le p$. Let θ_ρ be the involutive automorphism of \mathfrak{g}_u leaving \mathfrak{h}_u invariant, which is characterized by property that its C-linear extension θ_ρ to \mathfrak{g}^C satisfies $\theta_\rho = \rho$ on \mathfrak{h}_0 and $\theta_\rho e_{\alpha_i} = e_{\rho\alpha_i}$ for any root α_i of Π . Let $\bar{\alpha}$ denote the image of a root α of Δ by the orthogonal projection of \mathfrak{h}_0 onto \mathfrak{h}_+ . Then

$$\Delta_0 = \{\bar{\alpha}; \alpha \in \Delta\}$$

is the root system of a complex simple Lie algebra of rank l_0 and

$$\Pi_0 = \{\bar{\alpha}_i; \alpha_i \in \Pi\} = \{\alpha_1, \cdots, \alpha_p, \bar{\alpha}_{p+1}, \cdots, \bar{\alpha}_{l_0}\}$$

is a fundamental system of Δ_0 (Murakami [6], p. 301, p. 302). The lexicographic order > of Δ_0 associated with Π_0 is nothing but the one induced by the order > of Δ . Let $\mu_0 = n_1\alpha_1 + \cdots + n_p\alpha_p + n_{p+1}\bar{\alpha}_{p+1} + \cdots + n_{t_0}\bar{\alpha}_{t_0}$ be the highest root of Δ_0 and put $n_0 = 1$. Then

$$\theta = \theta_{\rho} \exp \pi \sqrt{-1}$$
 ad $\Lambda_{i_0}^*$ $(0 \le i_0 \le p, n_{i_0} = 1 \text{ or } 2)$

is an involutive automorphism of g_u . We put

$$\begin{split} & \mathbf{f} = \{x \in \mathfrak{g}_u; \ \theta x = x\}, \ \ \mathfrak{p}_u = \{x \in \mathfrak{g}_u; \ \theta x = -x\}, \\ & \mathbf{g} = \mathbf{f} + \sqrt{-1} \ \mathfrak{p}_u. \end{split}$$

Then g is a real simple Lie algebra, which is a real form of \mathfrak{g}^c , and \mathfrak{k} is a maximal compact subalgebra of g. Let $\mathfrak{h}' = \mathfrak{h}_+ \cap \sqrt{-1} \, \mathfrak{k}'$, where \mathfrak{k}' is the derived algebra of \mathfrak{k} , and \mathfrak{c} the orthogonal complement of \mathfrak{h}' in \mathfrak{h}_+ . Then \mathfrak{h}_+ , \mathfrak{h}' and \mathfrak{c} play the same roles as those in Section 1. So we shall use the same notation as there.

156 masaru takeuchi

(B) Let g be the scalor restriction to R of the complexification $(g_u)^C$ of g_u . Then g is a real simple Lie algebra, whose maximal compact subalgebra is isomorphic with g_u .

THEOREM. (Murakami [6], p. 295, p. 303) Any real simple Lie algebra \mathfrak{g} is obtained from a compact simple Lie algebra \mathfrak{g}_u by the construction (A) or (B). In case (A), a fundamental system Π' of the root system Δ' of $\mathfrak{k}'^{\mathbf{C}}$ with respect to $\mathfrak{h}'^{\mathbf{C}}$ and \mathfrak{c} are obtained as follows.

- 1) $\rho = 1$, $i_0 = 0$ $\Pi' = \Pi = \{\alpha_1, \dots, \alpha_l\}$, $c = \{0\}$.
- 2) $\rho = 1, 1 \le i_0 \le l, n_{i_0} = 2$ $\Pi' = (\Pi \{\alpha_{i_0}\}) \cup \{\alpha_0\}, c = \{0\}.$
- 3) $\rho = 1, \ 1 \leq i_0 \leq l, \ n_{i_0} = 1 \quad \Pi' = \Pi \{\alpha_{i_0}\}, \ c = R\Lambda_{i_0}^*$
- 4) $\rho \neq 1$, $i_0 = 0$ $\Pi' = \Pi_0$, $c = \{0\}$.
- 5) $\rho \neq 1$, $1 \leq i_0 \leq p$, $n_{i_0} = 1$ or 2 $\Pi' = (\Pi_0 \{\alpha_{i_0}\}) \cup \{\bar{\xi}\}, \ c = \{0\}$, $where \ \xi = \alpha_{i_0} + \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_t} + \alpha_k$, $1 \leq i_1, \cdots, i_t \leq p, p + 1 \leq k \leq l_0$, $(\alpha_{i_0}, \alpha_{i_1}), \ (\alpha_{i_1}, \alpha_{i_2}), \cdots, (\alpha_{i_{t-1}}, \alpha_{i_t}), \ (\alpha_{i_t}, \alpha_k) \ are \ all \ negative$.

Now we want to calculate the center C of the simply connected Lie group with the Lie algebra \mathfrak{g} constructed in (A) or (B). The center C is isomorphic with the fundamental group $\pi_1(G)$ of the adjoint group G of \mathfrak{g} . In case (B), the problem is reduced to the one in case (A), 1, since $\pi_1(G) \cong \pi_1(G_u)$ where G_u is the adjoint group of \mathfrak{g}_u . In case (A), 1, we have $\pi_1(G) = \pi_1(G_u) \cong \mathscr{F}(\mathfrak{g}_u)$, which can be calculated by Theorem 2. So we shall restrict ourselves to find $\overline{S}' \cap Z_*$ in cases (A), 2 > 5 and a generator of the free part of $\pi_1(G)$ in case (A), 3. Let $\mathfrak{k}' = \sum_{k=1}^r \mathfrak{k}'_k$ be the decomposition of \mathfrak{k}' into simple factors and $\Pi'^* = \bigcup_{k=1}^r \Pi_k'^*$ and $\overline{S}' \cap Z_*' = \prod_{k=1}^r \overline{S}_k' \cap (Z_*')_k$ be the corresponding decompositions. We can associate to any element r of r of r a positive integer r and an element r of r in the expression of the highest root of r in the expression of the highest root of r is the coefficient of r in the expression of the highest root of r is the linear combination of fundamental roots. r is the dual basis of r in r in r in r and r in r

rem 2 any element z' of $\bar{S}' \cap Z'_{*}$ is of the form $z' = \sum_{k=1}^{r} M^{*}_{r_{k}}$, where $M^{*}_{r_{k}}$ is an element of $\bar{S}'_{k} \cap (Z'_{*})_{k}$, that is, $r_{k} \in \Pi'_{k}$ and $m_{r_{k}} = 1$.

Case (A), 2). We have $\mu = \sum_{i=1}^{l} n_i \alpha_i$ since $\rho = 1$. We associate to any element τ of Π'^* a non-negative integer n'_{τ} as follows: $n'_{\tau} = n_i$ for $\tau = \alpha_i \in \Pi'$ and $n'_{\tau} = 0$ for $\tau \in \Pi'^* - \Pi'$. Let $z' = \sum_{k=1}^{r} M_{\tau_k}^*$ be an element of $\overline{S}' \cap Z'_*$. Then for $i \neq i_0$, $1 \leq i \leq l$, we have $(\alpha_i, z') \in (\Pi', Z'_*) \subset \mathbb{Z}$ and $(\alpha_{i_0}, z') = (-(1/2)(\alpha_0 + \sum_{\substack{i=i_0 \ 1 \leq i \leq l}} n_i \alpha_i), z') = -(1/2) (\sum_{\tau \in \Pi'} n'_{\tau}, \sum_k M_{\tau_k}^*) = -(1/2) \sum_k n'_{\tau_k}$. It follows that

$$\bar{S}' \cap Z_* = \{\sum_k M^*_{\tau_k}; \ m_{\tau_k} = 1 \cdot for \ all \ k, \sum_k n'_{\tau_k} \in 2\mathbf{Z} \}.$$

Case (A), 3). Let $a_{ij}=2(\alpha_i,\alpha_j)/(\alpha_j,\alpha_j)$ $(1\leqslant i,\ j\leqslant l)$ be Cartan integers of Π and (b_{ij}) the inverse of the Cartan matrix (a_{ij}) . We associate to any element τ of Π'^* a non-negative real number λ_{τ} as follows: $\lambda_{\tau}=b_{i_0,i}/b_{i_0,i_0}$ for $\tau=\alpha_i\in\Pi'$ and $\lambda_{\tau}=0$ for $\tau\in\Pi'^*-\Pi'$. We shall show first that \mathfrak{h}' -component of α_{i_0} is $-\sum\limits_{\tau\in\Pi'}\lambda_{\tau}^{r}$. Let $\alpha_{i_0}=\lambda \Lambda_{i_0}^*+\sum\limits_{\alpha_i\in\Pi'}\lambda_{i'}^{r}\alpha_i$ $(\lambda,\lambda_i'\in\mathbf{R})$. From $1=(\alpha_{i_0},\Lambda_{i_0}^*)=\lambda(\Lambda_{i_0}^*,\Lambda_{i_0}^*)$, we have $\lambda=1/(\Lambda_{i_0}^*,\Lambda_{i_0}^*)$. For $i\neq i_0$, $1\leqslant i\leqslant l$, from $0=(\alpha_{i_0},\Lambda_i^*)=\lambda(\Lambda_{i_0}^*,\Lambda_i^*)+\lambda_i'$, we have $\lambda_i'=-\lambda(\Lambda_{i_0}^*,\Lambda_i^*)=-(\Lambda_{i_0}^*,\Lambda_i^*)/(\Lambda_{i_0}^*,\Lambda_{i_0}^*)$. If we put $c_{ij}=c_{ji}=(\Lambda_i^*,\Lambda_j^*)$ $(1\leqslant i,\ j\leqslant l)$, we have $\Lambda_i^*=\sum\limits_{j=1}^{l}c_{ij}\alpha_j$ and $\delta_{ki}=\delta_{ik}=(\Lambda_i^*,\alpha_k)=\sum\limits_{j}c_{ij}(\alpha_j,\alpha_k)=\sum\limits_{j}(c_{ij}(\alpha_j,\alpha_j)/2)$ $(2(\alpha_j,\alpha_k)/(\alpha_j,\alpha_j))=\sum\limits_{j}a_{kj}((\alpha_j,\alpha_j)c_{ji}/2)$ $(1\leqslant i,\ k\leqslant l)$. It follows that $b_{ji}=(\alpha_j,\alpha_j)c_{ji}/2$ and $c_{ij}=(2/(\alpha_i,\alpha_i))b_{ij}$. Hence $\lambda_i'=-c_{i_0,i}/c_{i_0,i_0}=-b_{i_0,i}/b_{i_0,i_0}=-\lambda_{a_i}(1\leqslant i\leqslant l,\ i\neq i_0)$, as is desired.

Let $z' = \sum\limits_k M_{\tau_k}^*$ be an element of $\bar{S}' \cap Z_k'$. For $i \neq i_0$, $1 \leqslant i \leqslant l$, we have $(\alpha_i, z') \in (\Pi', Z_k') \subset \mathbb{Z}$ and $(\alpha_{i_0}, z') = (-\sum\limits_{\tau \in \Pi'} \lambda_\tau \tau, \sum\limits_k M_{\tau_k}^*) = -\sum\limits_k \lambda_{\tau_k}$. It follows that

$$\bar{S}' \cap Z_* = \{ \sum_k M_{\tau_k}^*; m_{\tau_k} = 1 \text{ for all } k, \sum_k \lambda_{\tau_k} \in \mathbb{Z} \}.$$

Let again $z' = \sum_{k} M_{i_k}^*$ be an element of $\bar{S}' \cap Z'_*$. If we put $z = \lambda'' \Lambda_{i_0}^* + z'$ $(\lambda'' \in \mathbb{R})$, then for $i \neq i_0$, $1 \leq i \leq l$, we have $(z, \alpha_i) = (z', \alpha_i) \in (Z'_*, \Pi') \subset \mathbb{Z}$ and $(z, \alpha_{i_0}) = \lambda'' - \sum_{k} \lambda_{i_k}$. It follows that $z \in \bar{S} \cap Z_*$ if and only if $\lambda'' - \sum_{k} \lambda_{i_k} \in \mathbb{Z}$. Let

$$\lambda_{z'} = \operatorname{Min} \{ |\sum_{k} \lambda_{r_k} + m| ; m \in \mathbb{Z}, \sum_{k} \lambda_{r_k} + m \neq 0 \},$$

$$\lambda_0 = \operatorname{Min}_{z' \in S' \cap Z'} \lambda_{z'}.$$

Let λ_0 be attained by $z_0' = \sum_k M_{7k}^* \in \overline{S}' \cap Z_*'$, that is, $\lambda_0 = \sum_k \lambda_{7k} + m_0$ for some integer m_0 . Let $w_0' = \pi' \xi'^{-1}(z_0')$ and w_0 the trivial extension of w_0' to \mathfrak{h}_+ . Then by Lemma 3 $z_0 = \lambda_0 A_{i_0}^* + z_0'$ gives a representative of a generator of the free part of C by multiplying $2\pi \sqrt{-1}$ and $\tau_0 = t(z_0)w_0$ is a generator of the free part of $\tilde{W}_*(S) \cong \pi_1(G)$.

Case (A), 4). Since $\Pi' = \Pi_0$, we have

$$\bar{S}' \cap Z_* = \bar{S}' \cap Z'_*$$
 and $\mathscr{F} = \mathscr{F}(\mathfrak{k}).$

Case (A), 5). Let z' be an element of $\bar{S}' \cap Z'_*$. For $i \neq i_0$, $1 \leq i \leq l$, we have $(\alpha_i, z') = (\bar{\alpha}_i, z') \in (\Pi', Z'_*) \subset \mathbf{Z}$ and $(\alpha_{i_0}, z') = (\xi - \alpha_{i_1} - \cdots - \alpha_{i_t} - \alpha_k, z') = (\bar{\xi} - \alpha_{i_1} - \cdots - \alpha_{i_t} - \bar{\alpha}_k, z')$ is contained in the subgroup of \mathbf{Z} generated by (Π', Z'_*) . It follows again that

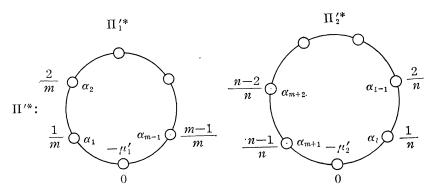
$$\bar{S}' \cap Z_* = \bar{S}' \cap Z'_*$$
 and $\mathcal{F} = \mathcal{F}(\mathfrak{f}).$

Example of Case (A), 3).

 $g_u = A_l \quad (l \geqslant 1).$

$$\Pi: \qquad \bigcirc \begin{matrix} \alpha_1 & \alpha_2 & & \alpha_{l-1} & \alpha_l \\ 0 & 0 & 1 & & 1 \end{matrix} \qquad \cdots \qquad \bigcirc \begin{matrix} \alpha_{l-1} & \alpha_l & & \alpha_{l-1} & \alpha_l \\ 0 & 0 & 0 & & 1 \end{matrix}$$

Let $i_0 = m$, $1 \le m \le (l+1)/2$ and put n = l+1-m. Then $b_{m,i} = in/(m+n)$ $(1 \le i \le m)$ and $b_{m,m+i} = (n-i)m/(m+n)$ $(1 \le i \le n-1)$.



We wrote the number λ_{r} at the vertex r. $m_{r} = 1$ for all root r of Π'^{*} . Let $\{M_{i}^{*}; 1 \leq i \leq l, i \neq m\} \subset \mathfrak{h}'$ be the dual basis of $\{\alpha_{i}; 1 \leq i \leq l, i \neq m\}$ and put $M_{0}^{*} = M_{m}^{*} = 0$. Then $\bar{S}' \cap Z'_{*} = \{M_{i}^{*} + M_{m+j}^{*}; 0 \leq i \leq m-1, 0 \leq j \leq n-1\}$. It follows that $\mathscr{F}(\mathfrak{k}')$ is the direct product of the groups of "rotations" of

 $\Pi_1^{\prime *}$ and $\Pi_2^{\prime *}$ so that $\mathscr{F}(\mathfrak{f}') \cong \mathbb{Z}_m \times \mathbb{Z}_n$. Let d = (m, n) and a and b the integers such that $0 \leqslant a \leqslant m-1$, $0 \leqslant b \leqslant n-1$ and $an+bm \equiv d \pmod{mn}$. Put p = m/d and q = n/d. Then we have

$$\bar{S}' \cap Z_* = \{M_{pk}^* + M_{m+qk}^*; \ 0 \le k \le d-1\}$$

so that $\mathscr{F} \cong \mathbf{Z}_d$. We have $\lambda_0 = d/mn$ so that

$$z_0 = (d/mn) \Lambda_m^* + M_a^* + M_{m+n-b}^*$$

gives a representative of a generator of the free part of C by multiplying $2\pi\sqrt{-1}$.

REFERENCES

- [1] M. Goto and E. Kobayashi: On the subgroups of the centers of simply connected simple Lie groupsclassification of simple Lie groups in the large, to appear.
- [2] S. Helgason: Differential geometry and symmetric spaces, New York, 1962.
- [3] N. Iwahori and H. Matsumoto: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Inst. des Hautes Etudes Sci. Pub. Math. 25(1965), 237–280.
- [4] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
- [5] S. Murakami: On the automorphisms of a real semi-simple Lie algebra, J. Math. Soc. Japan 4 (1952), 103-133.
- [6] ————: Sur la classification des algèbres de Lie réelles et simples, Osaka J. Math. 2 (1965), 291-307.
- [7] A.I. Sirota and A.S. Solodovnikov: *Non-compact semi-simple Lie groups*, Uspekhi Mat. Nauk **18**, No. 3 (1963), 87–144. English translation of the same issue, 85–140.
- [8] M. Takeuchi: On the fundamental group and the group of isometries of a symmetric space, J. Fac. Sci. Univ. Tokyo, I, 10(1964), 88–123.

Osaka University