METRIZATION OF SYMMETRIC SPACES

P. W. HARLEY, III AND G. D. FAULKNER

1. Introduction. A distance function d on a set X is a function $X \times X \rightarrow [0, \infty)$ satisfying (1) d(x, y) = 0 if and only if x = y, and (2) d(x, y) = d(y, x). Such a function determines a topology T on X by agreeing that U is an open set if it contains an ϵ -sphere $N(p; \epsilon) (= \{x: d(p, x) < \epsilon\})$ about each of its points. Equivalently, F is closed if and only if d(x, F) > 0 for each $x \in X - F$. A topological space is symmetrizable via a distance function d if its topology is determined by d as above, and semi-metrizable via d if $x \in \overline{A}$ is equivalent to d(x, A) = 0. Although neither need be Hausdorff, and symmetrizable via d is first countable and symmetrizable via d. We also remark that there are distance functions which are semi-metrics for no topology. Denoting by G^*S the union of all members of G that intersect the set S, we say the sequence G_1, G_2, \ldots of open covers for a space X is a development for X if

(1) G_{n+1} refines G_n , n = 1, 2, 3, ..., and

(2) G_1^*x , G_2^*x , ... form a local base at x, whereupon X is *developable* via G_1, G_2, \ldots .

A T_0 space, developable via G_1, G_2, \ldots , is always semi-metrizable by setting $d(x, y) = 1/\min \{n: y \notin G_n^* x\}.$

F. B. Jones in [3] introduced and demonstrated the usefulness of the following metrization theorems, one due to R. L. Moore, the other to himself. R. E. Hodel also mentions these theorems in [2].

THEOREM 1 (Moore). A regular, T_1 space X, developable via G_1, G_2, \ldots , is metrizable provided that whenever F is closed and $x \in X - F$, there is a positive integer n such that $G_n^*x \cap G_n^*F = \emptyset$.

THEOREM 2 (Jones). A regular, T_1 space X, developable via G_1, G_2, \ldots , is metrizable provided that whenever K and F are closed, with K compact and $K \cap F = \emptyset$, there is a positive integer n such that $G_n^*K \cap F = \emptyset$.

Stating the hypotheses of Theorem 2 in terms of the associated semi-metric yields d(K, F) > 0 whenever K is closed and compact, F closed, and $K \cap F = \emptyset$. A. V. Arhangelskii [1] greatly strengthened Theorem 2 by showing that a Hausdorff space, symmetrizable via d satisfying the above, is metrizable. No assumption of first countability or regularity is made. Later H. W. Martin

Received January 30, 1974.

METRIZATION

[4] was able to remove even the Hausdorff assumption to give the theorem below.

THEOREM 3 (Arhangelskii-Martin). A topological space S, symmetrizable via d satisfying d(K, F) > 0 whenever K is compact, F closed, and $K \cap F = \emptyset$, is metrizable.

The authors have been equally successful in stating and proving Moore's Theorem for symmetrizable spaces.

THEOREM 4. Let the topological space X be symmetrizable via d. Suppose that for each closed set F and each $x \in X - F$ there exists $\epsilon > 0$ such that $N(x, \epsilon) \cap$ $N(F, \epsilon) = \emptyset$. Then X is metrizable.

This theorem will be proved in § 2 and several examples will be given in § 3 to show that this is the best possible result of this type.

2. Proofs. We begin with some preliminary lemmas.

LEMMA 1. Let X be symmetrizable via d and K be a compact subset of X. Then for every sequence (x_n) in K, there is a point $x \in X$ and a subsequence (x_{n_i}) of (x_n) such that $d(x_{n_i}, x) \to 0$.

Proof. Otherwise, consider $F_1 = \{x_1, x_2, \ldots\}$. If $x \in X - F_1$ we must have d(x, F) > 0, so that F_1 is closed. Similarly, $F_n = \{x_n, x_{n+1}, \ldots\}$ is closed and $X - F_1, X - F_2, \ldots$ cover K with no finite subcover.

LEMMA 2. Let X be symmetrizable via d satisfying the condition that whenever $x \neq y$, there exists $\epsilon > 0$ such that $N(x, \epsilon) \cap N(y, \epsilon) = \emptyset$. Then compact subsets of X are closed.

Proof. Assume that K is compact, but not closed. Then there is a point $x \in X - K$ with d(x, K) = 0. Choose a sequence (x_n) in K for which $d(x_n, x) \rightarrow 0$ and put $F = \{x_1, x_2, \ldots\} \cup \{x\}$. If F is not closed, there is a point $y \in X - F$ such that d(y, F) = 0. We may assume $d(x_n, y) \rightarrow 0$. But this contradicts our hypothesis, since $d(x_n, x) \rightarrow 0$, also. Now proceed as in Lemma 1.

LEMMA 3. Let X be compact and satisfy the hypothesis of Theorem 4. Then x lies in the interior of $N(x, \epsilon)$, for $\epsilon > 0$.

Proof. Put $S = X - N(x, \epsilon)$ and $L = \{x: d(x, S) = 0\}$. If L is closed, we are through. Otherwise, there is a point $x' \in X - L$ such that d(x', L) = 0. Hence there are one-to-one sequences (x_n) in L - S and (y_n) in S such that $(1) \ d(x_n, x') \to 0$, and $(2) \ d(x_n, y_n) \to 0$. Since X is compact, by Lemma 1 we may assume that there is a point $y \notin \{x_1, x_2, \ldots\} \cup \{x'\}$ for which $d(y_n, y) \to 0$. Put $F = \{x_1, x_2, \ldots\} \cup \{x'\}$. Then F is compact $(d(x_n, x) \to 0)$ implies $x_n \to n$, thus closed by Lemma 2. Hence there does not exist $\epsilon > 0$ for which $N(F, \epsilon)$ and $N(y, \epsilon)$ are disjoint, which is a contradiction. Proof of Theorem 4. Let K be compact, F closed, and $K \cap F = \emptyset$. By Lemma 2, K is closed. Although symmetrizability is not in general hereditary, since K is closed, $d|K \times K$ will induce the relative topology on K. Moreover, the hypothesis on points and closed sets is inherited by K. Thus by Lemma 3, for $x \in K$, x belongs to the interior of $N(x, \epsilon) \cap K$, where the interior is taken relative to K. Hence, for each $x \in K$, choose $\epsilon_x > 0$ such that $N(x, \epsilon_x) \cap N(F, \epsilon_x) = \emptyset$. It follows that there are points $x_1, x_2, \ldots, x_n \in K$ such that $N(x_1, \epsilon_{x_1}), \ldots, N(x_n, \epsilon_{x_n})$ cover K. Putting $\epsilon = \min \{\epsilon_{x_1}, \ldots, \epsilon_{x_n}\}$ we have $d(K, F) \ge \epsilon > 0$. Thus X is metrizable by Theorem 3.

3. Examples and other conditions on d**.** Let R denote the set of real numbers and Z the integers.

Example 1. Let X = R and d be defined below. d(x, y) = |x - y|, if neither x nor y is 0; d(0, x) = d(x, 0) = 1, if $x \in X - Z$; $d(0, \pm n) = d(\pm n, 0) = 1/n$, if $n \in Z$, n > 0. Then d is a distance function, thereby determining a topology on X. To describe the topology more fully, let F be closed and $0 \notin F$. Then d(0, F) > 0, so there exists a positive integer N such that for $n \ge N$ and $n \in Z$, $\pm n \in X - F$. Thus for $n \ge N$, there exists $\epsilon_n > 0$ such that the intervals $(\pm n - \epsilon_n, \pm n + \epsilon_n)$ do not meet F. Denote by U the union of these intervals together with 0. Then U is open and it follows that all sets of this form constitute a local base at 0. At $x \ne 0$, a local base consists of open intervals (chosen sufficiently small, depending on x).

From this description one can easily see that X is Hausdorff, regular, and Lindelof, thus paracompact. However, X is not first countable (To see this easily, show that for Hausdorff symmetrizable spaces $x_n \to x$ implies $d(x_n, x) \to 0$. Then observe that $0 \in X - Z$, whereas d(0, X - Z) = 1 so that no sequence in X - Z converges to 0) or even Fréchet but every point is a G_{δ} . Also, X is not locally compact.

Let K be a compact subset of X. Then K - Z is bounded. Otherwise, there would be an open neighborhood U of Z for which K - U is unbounded, implying that U together with the open intervals $(z, z + 1), z \in Z$, cover K with no finite subcover. Hence, if K and L are disjoint compact subsets of X with $0 \in K$, then L is compact in the usual topology for the reals and K is contained in a set of the form $K_1 \cup \{0, \pm (n), \pm (n + 1), \ldots\}$ which does not intersect L, where K_1 is compact in the usual topology for the reals. From this, it follows that any two disjoint compact subsets of X have disjoint ϵ -spheres, but X is not metrizable.

Next after several lemmas, we give an example of a compact, non-Hausdorff symmetrizable space wherein distinct points have disjoint ϵ -spheres.

LEMMA 4. Let X denote the space of Example 4. Then there is a positive valued function f on X satisfying

- (1) inf f(K) > 0, when K is compact, and
- (2) inf f(F) = 0, when F is closed but not compact.

988

METRIZATION

Proof. Put f(x) = 1, if $x \in Z$; f(x) = |x|, if -1 < x < 1, $x \neq 0$; f(x) = 1/|x|, if |x| > 1 but $x \in X - Z$. Let K be compact. Then, as seen before, K - Z is bounded. But K - Z must also be bounded away from 0, so that inf f(K) > 0. Suppose that F is closed but not compact. Then there is an infinite set (X is paracompact, F Closed) $\{x_1, x_2, \ldots\}$ in F with no limit point. We may assume $x_n \in X - Z$. If $\{x_1, x_2, \ldots\}$ is unbounded, we are through. Otherwise, it clusters with the usual topology at some point x. But x must be 0 or $\{x_1, x_2, \ldots\}$ would cluster at x with the given topology. Hence, $\inf f(F) = 0$.

A set is *sequentially closed* if it contains the limits of its convergent sequences. A space is *sequential* if sequentially closed sets are closed.

LEMMA 5. Let X^* denote the one point compactification of X, obtained by adjoining ∞ . Then X^* is sequential.

Proof. Let F be sequentially closed in X*. Assume $\infty \in F$. If $0 \in F$, F is closed, X* being first countable at all points outside F. If $0 \in X - F$, since F is sequentially closed there exists a positive integer N with $\pm n \in X - F$, whenever $n \ge N$. Hence there is a basic neighborhood of 0 which does not meet F, so that F is closed. If $\infty \in X^* - F$, F is a sequentially closed subset of X, thus closed (All symmetrizable spaces are sequential). If F is not compact, it is not countably compact, being closed in paracompact X. Hence, there is an infinite set $\{x_1, x_2, \ldots\}$ in F with no limit point. Clearly $x_1, x_2, x_3, \ldots \to \infty$, since no compact subset of X contains more than finitely many of the terms. Thus, F is not sequentially closed.

LEMMA 6. X* is symmetrizable by extending d as follows: $d(\infty, x) = d(x, \infty) = f(x)$, where f is defined in Lemma 4.

Proof. Let F be d-closed. If $\infty \in X^* - F$, F is d-closed in X, thus closed in X. If F is not compact, we have $d(\infty, F) = \inf f(F) = 0$, which is a contradiction. If $\infty \in F$ and F is not closed, it is not sequentially closed, by Lemma 5. Hence, there is a sequence (x_n) in F converging to $x \in X^* - F$, x real. But this implies that $d(x_n, x) \to 0$, which is a contradiction, establishing that all d-closed sets are closed. Now suppose F is closed. If $\infty \in X^* - F$, then F is closed and compact in X. Thus $d(\infty, F) > 0$, since F is compact. If $\infty \in F$, $F \cap X$ is closed in X, thus d-closed in X, from which it follows that F is d-closed in X^* .

Example 2. X^* is a compact, non-Hausdorff, symmetrizable space in which distinct points have disjoint ϵ -spheres. To see this, note that N(0, 1/2) and $N(\infty, 1/2)$ are disjoint.

References

1. A. V. Arhangelskii, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.

- 2. R. E. Hodel, Some results in metrization theory, 1950-1972, V.P.I. Conference, April, 1973.
- 3. F. B. Jones, Metrization, Amer. Math. Soc. Monthly 73 (1966), 571–576.
- 4. H. W. Martin, Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1972), 269-274.

University of South Carolina, Columbia, South Carolina

990