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It is shown that thermal waves applied on the bounding surface of a horizontal slot generate
a pumping effect. Reynolds stress developed by the change in the flow field due to the
thermal inertia associated with the penetration of the wave into the fluid interior drives
the net fluid movement in the horizontal direction. The induced flow rate increases with
the wave speed, but excessive wave speed reduces it as convection becomes limited only
in the near-wall area. The excessive increase of the wavelength and its excessive decrease
reduce the flow rate. An increase in the wave amplitude increases the flow rate with a
saturation limiting its growth. Judicious selection of the wave speed and wavelength of a
thermal wave provides a means for optimizing the wave-induced pumping. The magnitude
of the pumping increases with a reduction of Prandtl number.

Key words: drag reduction

1. Introduction

Standard techniques employed to transport fluids require mechanical action involving
direct contact between the fluid and the propulsion mechanism. Many engineering devices,
e.g. pumps, propellers and biological systems, e.g. flapping foils (Schouveiler, Hover
& Triantafyllou 2005), rely on concentrated forces. This type of propulsion may be
detrimental to the structural integrity of these devices, especially in systems involving
biological entities, e.g. cilia and flagella (Taylor 1951; Katz 1974; Brennen & Winet 1997;
Lauga 2016) and snails (Chan, Balmforth & Hosoi 2005; Lee et al. 2008). Pumping
mixtures of delicate constituents prone to mechanical damage, such as bacteria and DNA
samples, remains challenging as collisions between the stream, the bounding walls and
mechanical propulsive devices must be avoided. The formation of stagnant zones also
needs to be avoided to prevent debris accumulation. There is a need for the development
of propulsive techniques which avoid high surface stresses with a preference for methods
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that do not involve direct contact with the moving fluid. In all these cases, distributed
forcing is attractive as it reduces the local surface stresses required to produce a propulsive
effect.

The distributed forcing can be created by applying a pattern of a physical quantity,
e.g. transpiration, heating, vibrations, topography and electric field, along the fluid—solid
boundaries. Several such techniques have been investigated, e.g. surface vibrations relying
on the peristaltic effect (Haq & Floryan 2022), distributed wall transpiration activating
nonlinear streaming tangential to the solid boundary (Jiao & Floryan 2021a,b) and thermal
drift (Abtahi & Floryan 2017) which relies on the pattern interaction effect involving
topography and heating patterns (Floryan & Inasawa 2021; Inasawa et al. 2021; Floryan
et al. 2022). It is known that energy spent on the creation of such forcing results in the
reduction of pressure losses rather than overcoming these losses as in classical propulsion,
e.g. heating patterns reduce frictional losses (Hossain, Floryan & Floryan 2012; Floryan
& Floryan 2015; Hossain & Floryan 2016) similarly to transpiration patterns (Jiao &
Floryan 2021a,b) and vibration patterns (Floryan & Haq 2022; Floryan & Zandi 2019).
These effects can thus be viewed as alternative propulsion methods. It is also known
that specific surface topographies reduce pressure losses, but they do not imply energy
expenditure and can be viewed as passive methods (Chen er al. 1983; Walsh 1983;
Mohammadi & Floryan 2013). A combination of heating and topography patterns leads
to significant and qualitatively different responses depending on the relative position of
both patterns (Hossain & Floryan 2020). Judicious selection of topography patterns leads
to energy-reducing chaotic stirring (Gepner & Floryan 2020).

In this work, we investigate the use of thermal waves propagating along the fluid—solid
boundary to produce a propulsive effect. Analysis of convection created by moving
heat sources started with Halley (1687), who considered periodic heating produced by
solar radiation. Davey (1967) presented a solution linearized based on long-wavelength
approximation and demonstrated that mean flow opposite to the wave direction can be
generated under certain conditions. Hinch & Schubert (1971) considered weak nonlinear
effects in limiting small and large viscosity cases to build upon Davey’s results.
Reiter et al. (2021) investigated high-intensity thermal waves using direct numerical
simulations focusing on fundamental aspects of high Rayleigh number convection. Their
analysis was limited to slow and O(1) wave velocities. Mao, Oron & Alexeev (2013)
applied such waves at the gas—liquid interface and focused on system response driven
by thermocapillary rather than the buoyancy effect with the analysis limited to long
waves.

This analysis aims to quantify the pumping effect of thermal waves over the complete
range of wave properties. The analysis is limited to laminar flows and wave amplitudes
where the use of Boussinesq approximation is justified. Extension to non-Boussinesq
fluids can be done following Paolucci (1982). The presentation is organized as follows.
Section 2 introduces a relevant model problem, and § 3 expresses this model in a frame of
reference moving with the wave speed and discusses numerical solutions. Flow topologies
generated by the waves are described in § 4, with slow waves discussed in § 4.1 and fast
waves in § 4.2. Effects of heating intensity are discussed in § 5, with § 5.1 devoted to weak
heating and discussion of the driving mechanism. Pumping driven by waves with different
wavelengths is discussed in § 6, with § 6.1 discussing long waves and § 6.2 presenting short
waves and, finally, § 6.3 presenting the pumping effectiveness of waves with moderate
wavelengths. Section 7 discusses the effect of fluid types using Prandtl number. Section 8
discusses flow response when the waves are applied with the upper rather than the lower
plate. Section 9 gives a summary of the conclusions.
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Figure 1. Sketch of the flow configuration.

2. Problem formulation

Consider a horizontal slot formed by two parallel plates (see figure 1) placed at a distance
of 2h* apart. The gravitational acceleration g* is acting in the negative Y-direction.
The slot is filled in with a Boussinesq fluid with thermal conductivity k*, specific heat
s*, thermal diffusivity «* = k*/p*s*, kinematic viscosity v*, dynamic viscosity wu*,
thermal expansion coefficient I'* and density p* varying according to the Boussinesq
approximation.

The upper plate is kept isothermal at a mean temperature of 75 and the lower plate is
exposed to a thermal wave travelling in the positive X-direction with the phase speed ¢*
and wavenumber o* as

n=-+Nrt
TR X =Th+ Y Tp explina® (X* — c*r), 2.1)
n=—Nr, n#0

where the subscript L refers to the lower plate, T;(z) represents the coefficients of Fourier

expansions describing wave profiles and Nt is the number of Fourier modes required to
describe these profiles. We select Ty as the reference temperature and define the relative
temperature 6* = T — T resulting in the wave profiles of the form

n=+Nr
G X = Y 67" explina*(X* — 1)), (2.2)
n=—N7, n#0

vlvlhefre éf = T;‘;’ 1- We extract the wave amplitude 0, ; resulting in a plate temperature of
the form

n=+Nt
G XN =05, Y. 05" expline* (X" — ¢*r)), (2.3)
n=—N7, n#0
where
1 g *(n) sk vk * %
—3 < Z 0, exp(ina™ (X" — c"17))
n=—Nr, n#0

n=+Nr é‘[:*(n) 1
= — exp(ina™(X* — ¢*t*)) < -. (2.4)

n=—Nr, n#0 P.L 2
966 A43-3
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Use of h* as the length scale and k*v*/(g* I"*h*3) as the temperature scale results in the
dimensionless expression for the wave profile of the form

n=-+Nr
0.t.X)=Rapr Y 60" exp(ina(X — ct)), (2.5)
n=—Nr, n#0

where Rap = g*F*h*QG; 1/ (k*v*) is the wave Rayleigh number and o is the
dimensionless wavenumber of the thermal wave with the wavelength A = 27 /.
The dimensionless field equations can be written as

8u+8v
X oy
ou du du op 5
U o v2u 2.6b
or TUax Tlar T Tax T (2.65)
W u 2 g2y prlg (2.60)
ar " "ax Ty T oy v e
30 90 90 -
&° = priv2e, 2.6d
or lax Ty =T (2.6d)

where u = (u, v) is the velocity vector with components in the (X, Y)-directions scaled
with U = v*/h* as the velocity scale, p stands for the pressure scaled with ,o"‘U;k2

as the pressure scale, 6 is the relative temperature scaled with «*v*/(g*I"*h*3) as
the temperature scale and Pr = v*/k™ is the Prandtl number. The relevant boundary
conditions at the plates are

ut, X, -1)=u(t,X,1)=0, vt X,—-1)=v({FX,1)=0, (2.7a,b)
0, X,-1)=06,, 06(X,1)=0. (2.7¢c,d)

=0, (2.6a)

There is no externally imposed mean pressure gradient, which leads to a constraint of
the form

0
Rl — 2.8)
8X mean
The mean flow rate Q| eqn evaluated as
1
o, X) | mean = |:f u(t, X,Y) de| (2.9
-1 mean

provides means for quantification of the pumping effectiveness.
Analysis of the flow mechanics requires knowledge of surface forces acting on the fluid.
The wall shear stress at the lower plate can be easily determined as

ou
- - 2.10
OXL= ~3 . (2.10)
The X-component of the total force (ty z) per its unit length can be determined as
B i Xo+4 ou
L =—A1 — dX, (2.11)
Xo oY Jly——1

where X is a convenient reference point. Similar quantities, i.e. ox ¢y and Ty y, can be
defined for the upper plate.
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3. Method of solution

The analysis is simplified by introducing frame of reference moving with wave phase
speed. The relevant Galileo transformation has the form

Y=Y, x=X—ct (3.1a,b)
Its use leads to a steady problem of the form
ou Jv

o= 0, (3.2a)
LU O &, (3.2b)
0x dy ax x| 9y?
w0 P (3.2¢)
ox dy dy  oxz  0y?
(u—c)——i—U%—P _1[820 +@} (3.2d)
dy axz  09y? )
y=4+1l: u=v=0, 6Oykx) =0, (3.2¢)
n=+Nr
y=-1: u=v=0, 6.0)=Rapr Y 60" exp(inox) (3.2f)
n=—Nr,n#0
I o, (3.29)
ax mean

Introducing the streamfunction i defined as u = dvy/dy, v = —dy/dx, and eliminating
pressure, we arrive at the following form of the field equations:

30 Ay 9 Y 9
VAV oo <V2w> Pt 0 W g2y VDG (33
dx ady 0x dx dy
90 Iy a0 Ay 9o
V2 1 opyl _ p, (2000 0¥ 00 (3.3b)
ax dy dx  dx dy
ay
vt W_W o =0, (3.3c-¢)
ay ax
5 P n=+Nr
y=—1: W _W 0.() =Rapr Y. 6 explinax),  (3.3f~h)
ay dx '
n=—Nr, n#0
9
o —0, (3.30)
ax mean

where V2 stands for the Laplace operator. We assume the solution in the form of

n=-+oo n=-+oo
Yy = Y vWexplinax), 60y = )Y 6% explinax),  (34ab)
n=—o00 n=—o00

where ¢ = (=% and 67 = §"* are the reality conditions and stars denote the
complex conjugate. Substitute (3.4a,b) into (3.3) and separate Fourier components to
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arrive at
m=-+00
D,Z,l/f(") + inaeD, ™ — inaPro1o" = i Z
m=—00
X I:me(n—m)Dml//(m) —(n— m)x/f(”_’")D (me(m))] (3.50)
m=-+00
Dne(n) + inOlCPre(n) = iaPr Z [(n — m)e("_’")Dw(m) — mDQ("—m)w(WI)] , (35b)
m=—0oQ

where D = d/dy, D* = d?/dy?, D, = D* — n%a?, D,21 = D* — 2n%a? + na*, —o0 <
m, n < +o00. The relevant boundary conditions have the form

Dy ™ (£1) =0 for — 0o < n < +00, (3.6a)

v (£1) =0 for —oo <n <400, n#0, (3.6b)
YO (=1) =0, (3.6¢)

D>y @) — D>y O =1 =0, (3.6d)

8 (=1) = Rap 16" for —oo <n <400, n#o, (3.6¢)
6O (-1) =0, (3.6f)

9™W(1)=0 for — 00 <n < +00. (3.62)

In the above (3.6¢) sets the arbitrary constant in the definitions of ¢ and (3.6d) expresses
the zero-mean-pressure-gradient constraint.

Expansions (3.4a,b) are truncated after a finite number of terms Ny, resulting in a system
of 2(Nys + 1) equations which is solved using a Chebyshev collocation technique based
on Np collocation points (Canuto et al. 1996) and an under-relaxation based iterative
technique with a specified tolerance limit. The number of collocation points and the
Fourier modes used in the solution have been selected through numerical experiments
to guarantee at least six digit accuracy.

Evaluation of the pressure field completes solution. This field has the form

n=+0o0

plx,y) = Z p™ exp(inox), (3.7a)

n=—00

where the modal functions p™ (y) for n # 0 can be determined from the x-momentum
equation which reduces to the following form:

—inap™ = —D3y™ 4+ n2a’Dy " — inacDy ™
m=+o0

+iae Y [(n—mDy "Dy — (n — m)D*y My MY (3.7b)

m=—00
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The modal function p® can be computed using the relation extracted from the
y-momentum equation in the form of

m=-+00

-y
»© =Pr—1/ 00 dy—a? 3 mPymym 4 pO 1), (3.7¢)
~1

m=—0oQ

In the post-processing stage, the evaluation of the flow rate is very simple as

QW) mean = ¥ O (1). (3.8)

Evaluation of the local forces follows from (2.11) while the expression for the total forces
reduce to much simpler form, i.e.

w1 =-D% O —1, ©y=D*y?|_. (3.9a,b)

4. Flow response to thermal waves

Since a thermal wave can have different modal shapes (see (3.2f)), here, we restrict our
discussion for a uni-modal wave profile described by a single Fourier mode which reduces
the lower wall thermal boundary condition to the following form:

01 (x) = LRap 1 cos(ax). (4.1)

Figure 2 illustrates the flow topologies and temperature fields in the slot. When the
wave is stationary (i.e. wave phase speed ¢ = 0), the topology is elementary and exhibits
symmetries — it consists of pairs of counter-rotating rolls with the wavelength dictated
by the heating wavelength (figure 2a). The wave’s movement breaks these symmetries.
A slow wave travelling to the right separates the rolls from each other with a thin stream
tube carrying fluid to the left (figure 2b). The anti-clockwise roll moves downwards and
adheres to the lower wall. The clockwise roll moves upwards and adheres to the upper
wall. The rolls now form separation bubbles. An increase of the wave speed to ¢ = 2
(figure 2c) slightly reduces the size of the bubbles and increases the width of the stream
tube, producing a larger net flow rate. The bubbles move down, becoming tilted to the
left simultaneously. Further increase of the wave speed to ¢ = 10 (figure 2d) continues
the same process. Still further increase of the wave speed to ¢ = 20 (figure 2¢) shows the
formation of a boundary layer near the heated wall with the majority of fluid not exposed
to any heating.

The thermal wave is applied at the lower plate. As this wave diffuses into the fluid
interior, it is delayed by the fluid thermal inertia, with its position falling further behind
the surface wave as the distance from the lower plate increases. This process leads to
bubble tilting. An increase in the wave velocity reduces the height to which the wave can
diffuse, forming boundary layers.

The above process is symmetric to the wave direction, as a wave travelling to the
left produces an equal but opposite response as a wave travelling to the right (compare
figures 2(c) and 2(f)).

The separation bubbles act as rollers pulling the fluid along their edges. The lower
bubble is exposed to a stronger convection, so its direction of rotation determines the
direction of the net horizontal movement, which is opposite to the wave direction. This
bubble rotates counterclockwise when the wave moves to the right, creating a net flow to
the left (figure 2¢), and rotates clockwise when the wave moves to the left, creating a net
flow to the right (figure 2f). These rollers are the only source of propulsion responsible for
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Figure 2. Topology of flow (black) and temperature (blue) fields at (a) ¢ =0, (b) c=0.1, (c) c =2,
(d) ¢c=10, () ¢ =20 and (f) ¢ = -2 for Rap = 1000, a =2, Pr=0.71. The red colour shows the
meandering flow stream. Shaded zones and dashed lines represent negative temperature.

the pumping effect. Figure 3(a,b) displays distributions of shear forces for different wave
velocities. The shear distribution is symmetric when the wave is stationary and has zero
mean value. Wave movement breaks this symmetry, producing a net shear force which
initially increases with c, attains a maximum and begins to decrease with further increase
of ¢ (figure 3c). Variations of the flow rate Q induced by the net shear force as a function
of the wave speed ¢ are shown in figure 4. The flow rate increases linearly with c, attains

a maximum at ¢ = 2 ~ 3 and then gradually decreases, eventually becoming proportional

toc™4.
In the following sections, we provide a detailed analysis of flow dynamics which
provides further insight into the pumping mechanics.

4.1. Slow waves

In this section we describe system response to slow waves (¢ — 0) and assume the flow
quantities to be in the form of power series in terms of ¢, i.e.

[u, v, 0, p] = [uo, vo, 60, pol + clur, vy, 01, p1] + O(cH). (4.2)
The flow rate can be represented in a similar manner as Q = Qo + cQ1 + O(c?) =
_+11 (ug + cuyp) dy + o(c?).
Substitution of the expansion (4.2) into (3.2) and extraction of the leading-order terms
results in the following systems:

dug dug dpo  *up  d%up
O(1) 1 ug—2 4+ vg2 = 0 4 270, 70 43
(D) w07+ oo ax o2 | oy (4.3a)

966 A43-8
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Figure 3. Wall shear force 7, distributions at the lower (a) and upper (b) plates for selected values of
c at Rap; = 1000, a = 2, Pr = 0.71. Subscripts L, U and av denote lower, upper and average, respectively.
Figure 3(c) displays the variation of the average shear stress as a function of the wave speed c¢. Asymptotes in
this figure are shown by dashed lines.
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Figure 4. Variation of the flow rate Q as a function of the wave speed c for selected values of R, ; at @ = 2,
Pr = 0.71. Asymptotes are depicted by dashed lines.
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dvo dvo apo  d%vg  d*vg 6o
— — = —— —, 4.3b
“0%x o dy dy * 0x2 + 9y? +Pr (4.36)
6, a6, 1 [8%6y 8%
w2 g = |20 20 (4.3¢)
ox dy  Pr| ox? 9y2
0 0

o L 9% _ ), (4.3d)

dx ay

dug dug  dup up oug ap1 82u1 82u1
o) : up— _—— — —_— =t — + —, 4.4
(©) : u 0x i ox  0Ox o dy o dy 0x + 0x2 + 9y? (4.4a)
ov dvg v v v 9 vy v 0
ax ax ox ay ay ay ax ay Pr
30 30y 06 36 36, 1 [8%0; 9%
u0—1+u1—0——0+v0—1 v1—0= — —21 —21 , (4.4c)
0x dx ax ay dy Pr| ox ay
0 0

) (4.4d)

dx ay

One may note that the O(1) system describes the natural convection due to spatial periodic
heating with ¢ = 0. Such a flow system was analysed by Hossain & Floryan (2013) who
represented the solution in the form

n=+o00
[0, v0. 0. pol = Y [u” . vg”, 65" pS") explina), 4.5)
n=—o00

and demonstrated that a horizontal flow rate was not possible since u(()o) =0 and v(()o) =0.

An aperiodic component of u-velocity u§0) exists in the O(c) problem. We express
(u1, v1, 01, p1) in terms of Fourier expansions

n=+00

[ur, v1, 01, p1] = Z [uﬁ'”, vf"), 01("),195")] exp(inax). (4.6)

n=—0oo

Substitution of the above expansions into (4.4a) yields

m=-+00
Z [imau(()n_m)u(lm) +i(n — m)au(()n_m) u(lm) + v(()"_m)Dugm) + vim)Du(()n_m)]
m=—0oo
— inau(()") = —inongn) — nzazuin) 4+ Dzu(ln). “4.7)
Extraction of mode 0 from (4.7) leads to
m=-+00
P’ = > D™ + v Duf ™, 4.8)

m=—00, m#0

and its integration yields an aperiodic u-velocity u(lo). The role of thermal waves is to set
up a velocity field at O(c) which produces Reynolds stresses at O(c) (right-hand side of
(4.8)) which drive the net horizontal flow.

Therefore, the net flow rate Q = ¢ [ u§0> dy 4+ O(c?), and the asymptote is depicted in
figure 4.
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(a) 0.7 ——— —— () VI

Figure 5. (a) Temperature (6/Ray, 1) and (b) u-velocity profiles for ¢ = 3000, Ra,; = 1000, o = 3,
Pr=0.71.

4.2. Fast waves

The foregoing discussion elucidates that a high wave speed reduces the pumping
effectiveness as the heat is carried away by the wave. Figure 5 demonstrates that velocity
and temperature boundary layers are formed, and convective motions are concentrated
very near to the lower wall. The formation of thin velocity and temperature boundary
layers facilitates analysis in the limit ¢ — oo. The temperature field is decomposed into
two parts: one associated with the conduction state that occurs before the outset of the
convection and is denoted as 6, and the other associated with the convective modifications
and is denoted as 6; such that & = 6y + 6. For the case of high velocity waves, i.e.
¢ — 00, one can simplify the conduction solution to the following form:

Ra
0y = p.L

exp(—A(1 4+ y)) exp(GA(1 + y)) exp(iax) + c.c. 4.9)

In the above, A = /acPr/2, the term exp(iA(1 4 y)) provides a sinusoidal temperature
variation with y, whereas the term exp(—A(1 +y)) shows an exponential decrease of

temperature amplitude as y increases. We introduce the stretched scale n = /c(1 + )
in the vertical direction, and represent the inner solution as expansions of the form

8
[Winner, Vinner, Oinner] = Z C_n/z[Un(x, n), Va(x, n), @,(x, n)] + 0(6—9/2)’ (4.10a)
n=2

7
Pinner] =Y ¢ Pa(x, ) + O(c™). (4.10b)
n=1
Substitution of (4.10) into the field equations (3.2) and separation of terms of equal

orders of magnitude reveals that several leading-order equations provide trivial solutions.
The equations that would provide non-zero solutions have the following form:

—1\ . P o
Oc): —=—, 4.11)
an Pr
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which describes a periodic pressure field P created by the heating

_ 92 U@ U3 0P
O(c3"? —_— =, 4.12
(c7%): + ™ . (4.12)

which shows that P| produces a periodic horizontal velocity, U3,

AUz V. P vy V.
0c?Y: 224 g, 22224 00 (4.13a,b)
x| an n an? 0x

which shows that conservation of mass produces a periodic vertical velocity V4 which, in
turn, produces a periodic pressure P3. Further analysis shows that

B 92Us 9Us 9P3; 9%U;  9%0Os 905 96, 96

O(c=5/2 _ _ , P = PrU3— + PrV,—

) e T T e o o r3ax+r4an
(4.14a,b)

with the resulting Us being periodic but ®s becoming aperiodic. In the next step

aUs 3V, P 2V Ve 032V
9% L 9V _ 5 6 6 4

03 RN AL AL
() n 8n2+8x+8x2

(4.15a,b)
ox an

which shows that conservation of mass produces a periodic velocity Vg and interaction of
V4 and Vg velocities yields the periodic pressure Ps. In the next step

9*U; | 8U; _ aPs  9°Us

o 7%y — = , 4.16
@ an? ox ax  9x2 (4.16)
where Us and P5 generate the periodic velocity Uy and, finally,
92Us 9Ug 0dPg U3 U3
O™ =5+ — =4 Us— + V4—, 417
€ an? ox ox 3 ox 4 an (@4.17)

generates an aperiodic velocity Ug. One may note that any constant involved in evaluating
Usg has to be determined by matching with the outer solution (see § 6.2). Evaluation of the
flow rate yields

1
0=c"* / Ugdy + O(c™"%), (4.18)
-1

and is shown in figure 4.

5. Effect of heating intensity

Heating intensity enters the analysis in the form of the wave amplitude Ra,, ;. Figure 6(a)
shows that the flow rate Q increases proportionally to RaIZL ;, with the increase of Ray, 1, but
the nonlinear saturation limits this increase at high enough Ra, ;. The saturation is also
observed in the shear force (see figure 6b).
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Figure 6. Variations of the flow rate Q (a) and the average shear force 7., (b) as functions of the heating
intensity Rap, 1 for o =2, Pr = 0.71.

5.1. Weak heating and mechanism of pumping

To demonstrate the mechanism of pumping activated by the thermal wave, we start with
low intensity waves. We introduce a parameter € as a measure of the heating intensity. We
assume € << 1 and represent the flow variables in terms of asymptotic power series of €
as

U, v,0,p) = €(U1, V1, O1, P1) + €[Uz, V2. ©2, P2] + O(€). (5.1)
Substitution of (5.1) into (3.2) leads to a system of O(¢) in the form

32U] 82U1 n aU dPq

_ 2y, 52
0x2 9y? o 0x (5-24)
82V1 82V1 Vi aP 1
—_—t — — — — =—-Pr @, 5.2b
0x2 + 9y? te dx dy e (5.26)
320, 3%, 90,
—— +cP =0, 5.2
92 + 9y + cPr o (5.2¢)
U aV
Nt R ) (5.2d)
ax ay
1 0P
Ui(£1) = Vi(£1) =0, OL(x) = zRapcos(ax), Ouykx) =0, — =0,
2 ax mean
(5.2¢-h)
and a system of O(€?) in the form
32U,  9°U. dU, P U U
2 SO e B R L vty (5.3a)
0x2 9y? 0x 0x 0x dy
P?Vy  92Va AV, AP, 1 Vi v
— + — — ——==-Pr O +U —+V—, 5.3b
o2 T 552 e 5 rm O+ Ui —+ 1y (5.3D)
320, 30 30 90 30
22,772 + cPr—2 = PrUl—1 + Per—l, (5.3¢)
9x2 9y? dx dx dy
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AU, AV
72 22, (5.3d)
dx ay

which is subject to homogeneous boundary conditions and a constraint associated with the
zero-mean-pressure-gradient condition.
Inspection of (5.2f) leads to a temperature field in the form

O1(x, y) = 0" (y) exp(iax) + c.c., (5.4)
where c.c. stands for the complex conjugate, and an energy equation of the form
p*eV — (@* —iacPno!"’ =0, (5.5a)
whose solution is

o _
0, =

Ray 1 [cosh(ﬁy) sinh(?y)

8 | cosh(¥) Sinh(ﬁ)]exp(iotx), (5.5b)

with ¥ = /(? — icaPr).
Equations (5.2a,b) are reduced to a single equation of the form

_18@1

4 J 2 _
V', +c— (VW) = Pr ,
0x 0x

(5.6)

where ¥ denotes the streamfunction. The character of the forcing on the right-hand of
(5.6) suggests a solution in the form

vi(x,y) = lIfl(l)(y) exp(iax) + c.c. (5.7)

Substitution of (5.4) and (5.7) into (5.6) leads to
D411/1(1) + (lxc — 2012)D21P1(1) + (oz4 — ia3c)11/1(1) = iozPr_l@l(l) = Fq, (5.8a)
wV(+1) = pyP (1) =0, (5.8b)

where right-hand side F'| represents the flow forcing (the x-component of the gradient of
the buoyancy force). The velocity components have the form

1
Uy — 2R - _ 0 -
1= 8—y = DV, "(y) exp(iax) + c.c. = U; " (y) exp(iax) + c.c., (5.9a)
aw
Vi = | 1 : _ vy :
1= = —ia¥| 7 (y) exp(iax) + c.c. = V| " (y) exp(iax) + c.c. (5.90)

Analysis of O(e?) equations shows that the unknowns can be represented as

(02, U, Val(x, y) = [057, U, V21 + (057, U, Vi21(») exp(i2ex) + c.c.
(5.10a—c)
It can easily be shown that Vi” = 0. Substitution of (5.9) and (5.10b.¢) into (5.3a)
and extraction of the zero modal function combined with the enforcement of the
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Figure 7. Distributions of the real @,(I) (a) and the imaginary @i(l) (b) parts of the temperature modal
function @1(1), and the phase shift @ of @)1(1) with respect to the wave at the lower plate (c).

mean-pressure-gradient constraint lead to the following flow problem:
DU =gi(»), UPED =0, g =V "pu\’ +v"pUi".  (5.11a-c)

Integration of (5.11a—c) gives Uéo) whose integration gives the net flow Q, i.e.

1
Q=/L@@:m—@, (5.12a)
-1
where

1 n 1
K =/1/1g(n)dndy, Kz:/lg(y)dy, g(y):/gl(y)dy. (5.12b—d)

Equation (5.12) demonstrates that g(y) (Reynolds stress) is responsible for the pumping
effect. Equations (5.8) and (5.11a—c) have been solved numerically using the same
collocation method as described in § 3, and integrations in (5.12) have been performed
with fourth-order accuracy.

Figure 7 displays the real and imaginary parts of @1(1) and its phase shift @ with respect
to the wave imposed at the lower plate. As heat diffuses into the fluid interior, the thermal
inertia delays the wave at each y-elevation with respect to the wave at the lower plate —
the phase shift @ measures this delay. The modal function is purely real when the wave is
stationary and the phase shift @ = 0. When the wave begins to move, the modal function
becomes complex, and its imaginary part represents the wave-induced correction. The
resulting phase shift illustrated in figure 7(c) shows that the delay increases as ¢ increases.
At high wave speeds, the wave amplitude outside the boundary layer decreases with y
in an oscillatory manner, so one should look only at variations of @ within the boundary
layer. The forcing function F in (5.8) changes from purely imaginary when ¢ = 0 to being
complex when ¢ # 0 — its distribution is shown in figure 8(a), and the real part acts in the
opposite direction to the wave motion. The Reynolds stress is zero when ¢ = 0 due to the
orthogonality of the velocity components but becomes non-zero when ¢ # 0 as shown in
figure 8(b). The Reynolds stress acts in the direction opposite to the wave motion. Figure 9
explicitly illustrates the role of the wave-induced correction. The flow pattern obtained by
using only the imaginary part of 1 when solving (3.5a,b) is displayed in figure 9(a), when
using only the real part of F is displayed in figure 9(b), and when using the complete F
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(b) 1

(@) 1

Figure 8. Distributions of the real part of the function F (a), and the Reynolds stress g(y) (b) fora = 2,
Rap 1 =200, Pr=0.71.

@, ®)

0.5 1.0 0 OI.S 1.0 0 OI.S 1.0
x/A x/A x/A

S

Figure 9. Flow topologies determined with (a) only imaginary part of forcing F (b) only real part of forcing
F and (c) complete forcing F.

is displayed in figure 9(c). The imaginary part of F'| creates regular rolls, and the real part
creates stream tube.

It can be concluded that the delay associated with the penetration of thermal waves into
the fluid interior causes a change in the flow field, which generates Reynolds stress which
drives the net fluid movement in the horizontal direction.

Having insight about the mechanism of the pumping action, we next focus our attention
on the effect of wavelength.

6. Effect of wavelength

In this section we shall discuss the effect of the wavelength of the wave on the flow rate.
We start with the long-wavelength heating as such a heating can be solved analytically,
thus, providing explicit relations illustrating the underlying flow dynamics.

6.1. Long-wavelength waves

Let us consider long-wavelength waves which corresponds to the limit o« — 0. We
introduce a slow scale £ = ax, and represent the unknowns as power series in terms of
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« in the following form:

4
[u(E. ). v(E. ). 0E D] = Y a"[U(E. ), Va6, 7). Ou(E. )] + 0@, (61a)

n=1

3
pE.y) =) a"PuE.y) + 0. (6.1b)

n=0

Substitution of (6.1) into the field equations (3.2) and extraction of the leading-order terms
results in the following system:

020y _, o _ Oy Ui _ 3Py Vi

— VY, sy T A — T, o — 0, 6.2 —d
ay? dy — Pr’o9yr  9E 9y (6-2a-)
oP
Oo(—1) = (1/2)Ray 1 cos(ax), Op(l) =0, Ui(£l) = Vi(£l) =0, 20 =0
a%‘ mean
(6.2¢—h)

Its solution is given as

R R
O = “:’L(l —V)cosE, Uy = 48“6’;(1 ) (1 420y — 5} sing, V= 0.
(6.3a—c)
The temperature changes linearly in y and sinusoidally in &, and the velocity U; varies
periodically in &.
The next order of the system
320, 30y 9P Oy U, 9Py AU AUV,
=—cPr— —=—, —=———-c—, —+—=0,
9y? 0E dy  Pr 9y? 0& 0& o0& dy
(6.4a—d)
P
O1(£1) =0, Ux(xl)=Vo(xl) =0, — =0, (6.4e—g)
as mean
has the following solution:
PRL Ho i (sing,  Us = —— oL {11, 51(y) + PrHy ;a( )] cos&
) = —— " Ho sIn &, = - T COS g,
1 2 o,11(Y 2 100800Pr Uu,21(y U220y
Va = oL g1 (v) cos &
=— cosé,
27 Tagopr Y
(6.5a—c)

with coefficients Hg 11, Hy 21, Hy22 and Hy 21 given in Appendix A. At this level of
approximation, the wave generates a temperature correction which is able to create both
horizontal and vertical fluid motions but these motions are unable to produce any net flow
rate.

The next order of the system

920, 90, 90 90y 020y P, 3%V, O,
=—Pr— +PrUj— + PrVop— — ——— — 2= =4 =
9y? & a& ay 9y2 ay 9y? Pr
(6.6a,b)
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92U P AU, 09U U U aU, AV
23:—2—C 2 1—i—U1 1—l-Vz 1, 2+—3:0’ (6.6¢,d)
dy A A 9E2 AE dy AE dy

oP
Oy (£1) =0, Us(xl) =Va(xl) =0, o2 =0, (6.6e—g)
mean

9§

has solution of the form
©2 = Ray [ Ho 20(Y) + Ray [Ho 21(y) + *PriHe 2(y)] cos £

+ Raﬁ,LH@,%(y) cos(2§),
1 .
Us = Rap,1 [Cz[PrHU,31(Y) + Hy ()] + E[HU,33()’) + CzHU,34(Y)]:| sin§

Ra>

L IPrHU 35(3) + Hu.36(3)] sin(26)

+

cRap, L
100800Pr

V3= [Hy 31(y) 4+ PrHy 3] sin§,

(6.7)
with coefficients Hg 20-23, Hy 31-36 and Hy 3132 given in Appendix A. The temperature

field has an aperiodic part (first term of the ®, solution), but the velocity fields are still
purely periodic. Hence we look for the next order of the system

ERIOR Pa@2+PU3@1+PUa@O+PVa@1+PVa@0 920,
= —cPr—— rUy—— rUp—— rVo—— rVy—m— —,
92 9E 15 > Toe >y Ty 92
(6.8a)
oP Vo 9%V ©
P _ 22 2878 (6.8b)
dy 0& 0y2  Pr
92Uy 0P aUs 92U, U AU, U U, ey AU, v U,
—_— — —C p— s
FICIET: 9 ag2 ' T 7P TPy Ty
(6.8¢,d)
Uz 9V
T L + V= Oa
0& dy
aP;
O3(x£1) =0, Us(£l) = Va(£l) =0, — =0. (6.8e—9)
aé mean

Close inspection of this system reveals that the first two equations provide periodic
solutions, but the last four terms (denoted as F(y) ) of the third equation provide an
aperiodic forcing which is capable of producing an aperiodic solution Uy 4per Which
generates a horizontal net flow.

The aperiodic part of U4 can be expressed as

y 124 y+1 1 nw
Uler = [ [ Fonanan =222 [ [ ropanan. 690
—1J-1 —1J-1

and reduced after integration to

cRa?

p,L
- H PrH 6.9b
12192768000p,2 1104000 + PrHy so1 (], (6.9b)

U4|aper =
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giving the flow rate

229CR£1127’LO[4 (14 Pr)

6.10
851350500Pr2 (6.10)

1
Qaper = f U4|aper dy = —
—1

Coefficients Hyy 400—401 are given in Appendix A. The flow rate is directed opposite to the

wave direction and is proportional to ~a*. The net shear force exerted by the rollers (the
upper and the lower bubbles) can be calculated as

cRay ;o*(3 + 17Pr)
11907000Pr2

TL.net = — = —7TU,net- (6.11)

Next, we focus our attention to the short-wavelength heating, as again, this case can be
solved analytically.

6.2. Short-wavelength waves

We consider short-wavelength waves that corresponds to @ — oo, and in this limit, the
conduction temperature field subject to (4.1) is approximated as

Ray 1,
Oy = 2’ exp(—a(1 +y)) cos(ax), (6.12)

demonstrating formation of a thin boundary layer close to the lower plate. We introduce a
fast scale & = ax in the horizontal direction and a stretched scale £2 = «(1 + y) along the
vertical direction and express the solution in the inner layer in expansions in terms of o~
as

6
[ttin: Vin: On] = Y _ & "[Un(€, 2). Val€. 2), O, )1+ O™, (6.13a)
n=1
5
[pin] = Y _a™"[Pu(E. 2)] + O(@™®). (6.13b)
n=0

Substitution of (6.13) into (3.2) and retention of the leading-order terms result in the
following O™ 1 system:

82U1 82U1 dPy 0 32V1 82V1 0Py

Uy 9k _ oVE oo _ 6.14a,b
02 T 90?  oe 02 022 e (6.14a.5)
320, 9O R
; %_21 + 3921 = cPr “2‘”%—9 Sin g, (6.14¢)
dPy
Ur(d1) = Vi) =0, ©,(*1) =0, <2 —o. (6.14d—f)
8%- mean

Elimination of the pressure from (6.14a,b) and introduction of the streamfunction lead to a
system of partial differential equations for streamfunction and temperature. Their solution,
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which can be determined using method of separation of variables, has the form
U =0, Vi=0, O)=—1cPrRa,;2e¢ “siné. (6.14g—i)

One can observe that the temperature field is affected by the wave but without creating
any convection. System O(a~2) has the following form:

U, 9*U, P 2V, 9%V, 9P R
T2 02 Ty, 22,072 T L2 c0se, (6.15a.b)
g2 ' 902 0E €2 902 AR 2Pr
20, 320, 0
= — —cPr——, 6.15
g2 a2 T g (6.15¢)
0P
Us(£]) = Va(x1) =0, O(£1) =0, — =0, (6.15d—f)
ag mean
and its solution can be written as
Ra R
U = 16’}’)%2( 24+ 2)e Csing, Vy= %92&9 cos &, (6.15g,h)
1
Oy = ——c*Pr*Ra, 1 2(1 + 2) e ¥ cos . (6.150)

16

At this level of approximation, the heating creates periodic motion. System O(x—>) has
the following form:

02Uy  9*U; 9P AU 92Vs  9%v3 9P v, O
ST R R 3,253 2 22 Pl (6.16a.b)
R TP - A 982 A2 R aE  Pr
3203  3°03 06, PrRapL _
8—52 + 292 = —cPr——= oF > [Uz sin§ 4+ Vp cos &], (6.16¢)
P,
Us(x£l) = Va(£1) =0, O3(x1) =0, —= =0, (6.16d—)
85 mean
and its solution can be written as
cRap 1 2 201 =2
= P26 —32 +202%+2Pr(—6+ £2%)]e * cos&, (6.16g)
192Pr
cRapL _0
Vi=——L2Q%3 4202 +2Pr(3 + £2)] e “ siné, (6.16h)
192Pr
1 N
O3 = S [Ra, | +256B,2 — e *7Ray (14202 +22%)]
3PrR
_ %9(3 1302+ 2% e 2 cosk
Rap 1 282 .
+ = BB Q2(1 + 282) cos(28). (6.16)

The velocity field remains periodic, whereas the temperature field produces a net heat
transfer between the plates described by the first bracketed term in @3 and the constant
B> in this term is to be calculated from the matching with the outer solution. The system
O(a™*) has the following form:

02U, 0*Us 0P AU a2V, 0*Vy 9P aV; O
e T O N e 40 98 08 P2 (617ab)
g2 92 3 A€ AE2 T 9R2  aR aE  Pr’
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3204 3364 005 PrRayL _gq
8—52 + Yol = —CPrE T [Ussin& + V3 cosé&]
| 0,200 4y, 29 (6.17¢)
r — — |, A7c
S R Y7
oP3
Us(£1) = Va(£1) =0, Ou(£1) =0, —2> =0, (6.17d—f)
ag mean

whose solution can be written as

2 -2
c Rap,Le 3 2 3
Up= -5 [-12-6Q2 + 2%+ Pr(—18 — 92 +20% + 23)
768 Pr
+ Pr} (=30 — 302 4+ 2022 + 2%)]sin&, (6.179)
2R -2
Vi= —SRLS T 026 a0 4+ Q% + Pr3 4+ 2)2 + PR35 + 682 + 22
4 = 763Pr [6 + + + Pr(3 + £2)° + Pr-(15 + + )]cosé&,
(6.17h)
c4Pr4RapLe_Q 5 3. .
Oy = TS’Q(IS + 152 + 6827 4+ 27) siné&
CRapL -2 2 2
W9(9+ 182 + 822 + 24Pr(1 + £2)) sin(2€). (6.17i)

The velocity field is still periodic, so we look into the O(c™>) system which has the
following form:

2Us 93°Us 0Ps AUy AU, AU,
_ ot U V. i 6.18
082 T a2 ar - S TP T (6.184)
%Vs  9%Vs 9P V. V. vV, O
SELEIET G I A T AR T TS S (6.18b)
92 92 AR P PR 92  Pr
3’05  3%0s 004  PrRapi Lo
a—gz—l-W:—c r T > [U4s1n$—l-V4cos$]
| 0,292 +U8@ 11,202 L, 90 (6.18¢)
r —_— s A8¢
2 g g e T P e
0Py
Us(+£1) = Vs(£1) =0, Os(1)=0, — =0. (6.18d—f)
ag mean

The above system still provides only a periodic velocity field. Hence it is necessary to
analyse the £-momentum equation in O(a~°) system, i.e.

3?Us 0°Us 0Ps aUs U3 AU, U3 AU,
i R B U U Vo2 4 v 22 (619
052 oz ar - e Ui TUTe tVagg Thagge OB
9P
Us(£1) = Vo(£1) =0, 22| =0 (6.19b)
ag mean
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The last four terms of the right-hand side of (6.19a) are aperiodic, and the aperiodic part
of the solution Ug, gper can easily be determined as

cRay | (14 Pr)

Us.aper = B32 —
Oaper = 3 4096Pr2

1
[1 —3B+62+ 6527 +42°% + 2524)} . (6.20)

The constant B3 needs to be determined by matching with the outer solution.

One can note that the outer solution cannot be a function of x as all x-variations are
confined to the boundary layer. Consequently, we assume the outer solution to be of the
following form:

Uouter(6,y) = @ Us + 0@™"),  Vouter(x,y) =0, (6.21a,b)
Pouter(®,y) = a 3P+ 0@ ™), Opurer(x,y) = @303 + 0(@™). (6.21c,d)

Substitution of (6.21) into the field equations and retention of the leading-order terms
result in the following system:

92Us Py O3 3’0

n: ay  Pr 9y?

=0, (6.22a—c)

whose solutions have the form
Us(y) =As(y—1). P3(y) =A3(3%/2—y). O3(y) =As(y—1). (6.22d~f)

Constants A\g and /T(, are determined from the matching with the inner solution, and the
matching process provides

cRa[%,L(l + Pr)

Yo.aper = = 006p72

[(1 —y) - %(3 + 682 + 6027 +402° + 294)] . (6.23)

Therefore, the net flow

B _cRaIZ)’L(l + Pr)

6 7
o). 6.24
s006p2 ¢ TO@) (6.24)

As o — 00, the flow rate Q decreases proportionally to ~«~® and the proper asymptote
is depicted in figure 10.

6.3. Waves with moderate wavelength

Having observed the flow structures at small and large « values, we now investigate the
in between « values . Figure 10 shows that the mean flow rate increases with the increase
of o, attains a maximum value at o« = 2.2, 2 and 1.3 for ¢ = 0.1, 2 and 10, respectively.
There is a specific o for each wave speed ¢ which provides the maximum flow rate, and
this o does not vary too much (¢ = 1.3 ~ 2.2) with the increase of ¢ for ¢ = 0.1 ~ 10.
Figure 11 illustrates the variations of the flow rate Q as function of the wavenumber « and

the wave speed c. Large o (o > 7) and large wave speed ¢ (¢ > 10) provide Q ~ 0(1072)
and lower. It is found that 1 < « < 4 and ¢ = 1 ~ 5 are most effective in generating large

o> 0.5).
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Figure 10. Variations of the flow rate Q as a function of the heating wavenumber « for Ra;, ; = 1000,
Pr =0.71. Asymptotes are depicted by dashed lines.
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Figure 11. Variations of the flow rate Q as a function of the wavenumber « and the wave speed ¢ for
Ray, 1 = 1000, Pr=0.71.

7. Effect of Prandtl number

The role of the Prandtl number Pr in the induced flow rate Q is explicitly illustrated
in figure 12. Variations of the flow rate with ¢ are qualitatively similar for all types of
fluids considered (figure 12a). Variation of the flow rate with « also follows a similar
course for all types of fluids considered (figure 12b). The flow rate decreases with the
increase of Pr (figure 12¢). The low-Pr fluids generate higher Q than the high-Pr fluids
as the thermal wave diffuses quickly into the fluid interior, causing a more intense fluid
movement whereas, for high-Pr fluids, the wave diffuses slowly. It is found numerically

that the flow rate varies proportional to ~Pr~> for high-Pr fluids.
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Figure 12. Variations of the flow rate Q as a function of (a) wave speed ¢ at « = 2, (b) wavenumber « at
¢ =2, (c) Prandtl number Prat o = 2, ¢ = 2 for Ra, ;1 = 500. In (c), the asymptote is depicted by dashed line.

8. Waves at the upper plate

We discuss how the flow response is changed when the thermal waves are moved to the
upper plate. The resulting thermal boundary conditions take the following form:

O0L(x) =0, Oykx) = lRap,U cos(ax). (8.1a,b)

One can easily find a correlation between the fluid response to waves at the lower
and upper plates. If we set up a problem considering the thermal wave on the lower
plate with Rap ; = A and Rap y = 0 and take the transformation Rap ; — 0, Rap .y — A,
u— —-Uv—> —-V,p—> P, > —0,x > —X + 7,y —> —Y, together with the thermal
boundary conditions reversed in sign, the resulting governing equations become identical.
Consequently, all the properties of the flow system with a thermal wave applied on the
upper plate can be deduced directly from the analysis of the system with a wave on the
lower plate.

9. Summary

Effects of thermal waves propagating along the boundary of a horizontal conduit were
investigated. The investigation considered sinusoidal waves propagating either along the
lower or the upper plate. The wave was characterized by the wave speed ¢, the wavenumber
«a and the amplitude expressed in terms of a Rayleigh number Ra,, ;. The flow problem was
solved with spectral accuracy in the reference frame moving with the wave speed using
Fourier expansions in the horizontal direction and the collocation method in the vertical
direction. Analytic solutions were determined for the large and small wavenumber limits,
the small and large wave speed limits and the small amplitude limit. The wave effectiveness
was measured using the net induced horizontal flow rate. It was shown that as the wave
diffuses into the fluid interior, it is delayed by thermal inertia setting up a convective
velocity field which generates Reynolds stresses propelling fluid in the direction opposite
to the wave direction.

In the limit ¢ — 0, the convective flow field reduces to pairs of counterrotating rolls
with wavelength dictated by the wavelength. Wave movement breaks the symmetry with
one roll replaced by a separation bubble attached to one of the walls while the other one is
attached to the opposite wall and with a stream tube in between carrying the net flow rate
in the horizontal direction. The wave direction dictates details of the flow re-arrangement
with symmetry between the flow response generated by the wave moving to the right and
the wave moving to the left. The separation bubbles act as rollers pushing the fluid in the
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direction opposite to the wave direction, which is qualitatively similar to the peristaltic
effect. Density-difference-driven rotational motion in the bubbles amplifies this effect. An
increase in wave speed c initially increases the flow rate at the rate proportional to ~c, but
its excessive increase reduces the flow rate at the rate proportional to ~c~*. The high-speed
waves create a boundary layer near the heated wall preventing the penetration of convective
flow into the slot. As a result, most of the slot remains unheated. An excessive increase
in the wavelength reduces the flow rate proportionally to ~a*. An excessive reduction of
the wavelength reduces the flow rate proportionally to ~«~®. A thermal boundary layer
forms near the heated wall in the latter case. Waves with the wavenumbers in the range
1 < o < 4 and phase speed in the range 1 < ¢ < 5 provide the most effective pumping. An
increase of the wave amplitude initially increases the flow rate proportionally to ~Raz’ I

until saturation effects set in for Ra, ; >~ 1000 and slow down the growth. Overall, the
wave speed ¢ and wavenumber « of the thermal wave act as control parameters, and their
proper selection provides the means for optimizing the wave-induced pumping. Waves
applied at the lower and upper plates produce the same effect.
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Appendix A. Coefficients of long wavelengh solution

Hon=3-y—37"+). (Ala)

Hya1 = (=1 4 y?)(11 4 1190y — 70y*> — 210y° + 35y*), (A2a)

Hyo = 5(—1 4 y»)(5 4 378y — 28y> — 42 + Ty*). (A2b)

Hy o = (=5 + ) (=1 4y (A3)

He .20 = 1/3840 + 79y/134 400 — y?/1280 — y /1280 + y* /1280 + y° /6400

—15/3840 + y7 /26 880, (Ada)

Hoo = —1/8+y/24+y*/8 —y’ /24, (A4D)

Ho.2 = —5/96 + Ty/1440 + y*/16 — y* /144 — y* /96 + y° /480, (Adc)
He oz = 1/1440 — y/1575 — y2 /1920 + y? /1152 — y* /2880

— 7 /4800 + y° /5760 — y’ /40 320. (Add)

Hy 31 = 73/483 840 — 31y/4032 — (107y%) /302400 + (5y°)/576 — (7y*)/34 560
—y°/960 + y°/17280 + y’ /20 160 — y8/161 280, (A5a)
Hy 3 = —19/483 840 — 43y/20 160 + (107y%)/604 800 + y* /320 — (11y*)/80 640
—°/960 + y° /17280 + y7 /20 160 — y /161 280, (A5b)
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Hy 33 = 1/576 — 41y/1440 — (113y?)/33 600 + (5y°)/144 — (11y*)/2880
—y°/160 + y° /960, (A5¢)
Hy 34 = —13/806 400 — 31y/60480 + (229y%)/3 024 000 4 (7y*)/8640
— (3y*) /44 800 — y /2880 + y°/28 800 + y7 /20 160 — y®/161280,  (A5d)
Hy s = —577/14515200 + 307y/1 451 520 + (197y%)/2 112 000
— 374320 + y*/18 900 + y° /57600 — y°/69 120 + y7 /302 400 + y® /806 400
—y? /1451520 + y'°/14 515 200, (A5e)
Hy 36 = —25577/290 304 000 + 269y,/29 030 400 + (32759y*)/118 272 000
— /69120 — y*/55 296 + y° /230400 — (49y°)/6 912000 + y /483 840

+ (23y%)/6 451 200 — y° /829 440 + y'° /8 294 400. (A5f)
Hy 31 = (=1 4+y*)2(105 — 11y — 35y + 5y%), (A6a)
Hy 3 =5(—14y)701 = 5y = Ty* + 7). (AGD)
Hy 400 = 3(1 — y*)(1477 + 1076y — 5873y% — 184y> + 8722y* — 1360y° — 5698°
+1400y” + 1337y — 420y° + 35y'0), (A7q)
Hy .01 = (1 — y?) (4431 + 24172y — 17 619y* — 26 648> + 26 166y* + 12 160y°
—17094y° 4 280y 4 4011y® — 1260y° + 105y'%). (A7b)
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