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Let R be an integral domain. It is well known (see Lambek (1971), Stenstrom
(1971)), that idempotent filters of right ideals, torsion radicals and torsion theories
are in one-to-one correspondence, but that different idempotent filters !F of right
ideals may lead to the same rings of quotiens R?. We have always R cz R?
c Qmax(R)- Given this situation one can ask a number of questions. For example:
Describe all different idempotent filters for a given ring. Determine all different
rings of quotients. When do different filters lead to the same ring of quotients?
When are all rings between R and Qmaji(R) of the form RgP. When is every R? of
the form RS~l, where S is an Ore system?

Some of the problems mentioned above are easier to handle if it is possible
to use a localizing procedure. This is described in section 1, and one can apply
it for example to all noetherian commutative domains (where one knows all
different filters). We then consider noncommutative Krull domains. These rings
are a generalization of Krull domains, and it is possible to determine all their
rings of quotients.

It is known (see for example Gilmer and Ohm (1964)) that every ring between
a commutative noetherian integral domain R and its field of quotients is always
a ring of quotients with respect to some multiplicative system if and only if R is a
Dedekind domain with torsion class group. We will give a similar condition for
the semigroup of divisorial ideals of a non commutative Krull domain to insure
that every ring of quotients with respect to some torsion theory is a ring of
quotients with respect to some Ore system.

We add some related results about principal ideal domains and Bezont do-
mains in the final section.

We will use the word filter instead of idempotent filter and we will use the
definition in Stenstrom (1971), page 12: A filter & is a non empty family of right
deals of R satisfying:

Fl. If JeJ5" and r in R then r~U = {aeR; rael} e^.
F2. If J e & and r~ U e & for all r in J and a right ideal / in R, then 1 e ST.
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[2] Filters and overrings 475

Similarly we will use the term Krull domain instead of non commutative Krull
domain.

The results in this section show that in certain cases the rings of quotients
can be computed locally. We will show further that this is not always possible.

LEMMA 1. Let R be an integral domain, S a right Ore system. If' 2F is a
filter of right ideals in R such that the right ideal {reR; iteSart = sa for
someaeA} is again in ^for every A in S' and s in S, then J5"' = {ARS~1,Ae^r)
is a filter in RS'1 = R'.

PROOF. We have to check the conditions Fl and F2 mentioned at the end of
the introduction. Let A' be in !F', a = as'1 in R' with a in R,seS. Then

(as- i ) -U ' = { r ' e R ' ; s - i r ' 6 a " U ' } .

Since a~1A' contains a " 1 ^ ' C\R)e!F, we have to prove only that with A'
in &' and s in S the right ideal sA' is an element of !F'. But this will be the case
if and only if sA C\R = {reR;r = sat"1} is contained in J5" with a e A' O R e J5",
teS. This is exactly the above condition. To check F2. let A' be in J5" and B'
be a right ideal in R' such that x~1B' is in J*" for all a in A'. But A' nR = A
is in & and therefore a~l(B' C\R) is in J*", which implies B' in J5"' and proves
the Lemma.

The next lemma gives conditions under which the ring R& is the intersection
of the rings R'^.:

LEMMA 2. Let R be a right Ore domain, St be right Ore systems in R and
denote by Rt the rings of quotients RS^1. Assume that for the filter !F in R
the set J^; = {ARh Ae^} is a filter in R, for all i. Assume further that R = nRt

and that for every right ideal A in R the set {ARfn.R} is finite. Then
R#= n(Rd,t.

For a proof let a be an element in R&. Then aA cz R for some A in & and
ccARi c Rt which proves R& c n (i^)^, • If o n the other hand a is in n (Rt)sft,
we know that At = {r e Rt 3 ar G R(} is in J^.

Consider C = {reRaareR}. It follows that CRt <=At.
For as~leAt, aeR, seSt, elements b in R and t in St exist such that

ocas"1 = bt~l, and further aat' = bs' with elements t',s' in R, t' in St and
st' = ts' .

This means that at' is an element of C and as"1 is contained in CRt, proving
that At = CRt for all i.

We conclude from aX; c Ri that a n (At n R) £ n i?; = i?. Using the assump-
tion in the lemma we see that n (yl; n i?) is a finite intersection of members of &
and therefore in &. This proves that a is contained in R and the lemma follows.
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Compare Arnold and Brewer (1971) for related results in the commutative
case. We observe that the condition | {ARt n R, e /} | < Ko is satisfied for any
commutative noetherian domain R and any set of overrinas R( = RS^l. Consider
a finite primary decomposition A = n Qj, where Qj is P;-primary, j 6 A. We obtain
ARt = DjiQjRl) and AR( n J ! = C\j(QjRi n &)• But QjRi n /? is either
equal to .R or Q,- and this shows that ARt C\ R = DjeSiQj f°r a subset A; of A.
To illustrate that R — C\ RS,'1 does not necessarily imply that R^ = n (KSf1)^,,
consider the rina R of all entire functions with the field K of meromorphic functions
as field of quotients. Consider the maximal fixed ideals (see Henriksen (1952)).
Ma = {/(z) s R; f(a) = 0} for every complex number a. It follows that Ra — RMa

are discrete rank 1 valuation rings and that R = n Ra. Define J5" = {A c R
with A => Mai ••• Man, some a j . & is a filter in K, J ^ = {^Ra ; A e&\ are filters
in Ra, but since (Ra)&a = X, we obtain n (^a)jrn = K => i?^ the set of those
meromorphic functions with finitely many poles only.

We will apply the result of section 1 to Krull domains. These rings were
defined in Brungs (1973). An integral domain in which all right ideals are inversely
well ordered by inclusion is called a generalized discrete valuation ring or a
G.D.V. domain. These rings can be defined equivalently as follows: There exists
a mapping v from R/0 onto the semigroup F = {a, a < «'} of ordinals less than
col with addition as operation such that

v(ab) = v(a) + v(b)

v(a + b) ^ max{i>(a), v(b)}
and

v(a) = v(b) if and only if a = be for a unit e in R.

We say in this case that R is of type col + 1.
A Krull domain R is defined by the following properties:
1) R = n Vt, where the Vt are G.D.V. domains s.t. Q(Vt) = D is a common

skewfield of fractions.
2) Vt = RP., where {Pj is a set of strong prime ideals in R such that St = R\Pt

is an Ore system and V{ = RPi = RSj"1. Further P,- HP,- contains no non zero
prime ideal for i ¥= j •

3) a ^ 0 in R implies aVt = Fj for almost all i.
We say a right ideal A in .R is divisorial if 4̂ = n AVt and say that two

right ideals A and B in R are quasi eguaZ if n 4̂Ff = n J3F). The equivalence
classes of quasi equal ideals form a semigroup isomorphic to F = © F( where
Fi={a,a < co1'} with <al'+ 1 as type of Vt. The mapping w with w(A) = {u/aJJeF
defines a homomorphism from the semigroup of all right ideals ^ 0 of R onto F.
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THEOREM 1. Let R be a Krull domain with the associated semigroup T.
Let H = © Af with A,- = {a, a < a>J\ jt ^ /,} <= r ; . Then H is a subsemigroup
ofT and &„ = {AcR,w(A)eH} is a filter of right ideals of R. Different
subgroups H and H' of the above type lead to different filters and different
rings of quotients. Every ring of quotients with respect to any torsion theory
of R is a ring of quotients with respect to some ^u-

PROOF. The condition F.I for a filter is satisfied since right ideals in R are
two-sided. To prove F.2 let A be in #"H and a~lB be in ̂ H for all a in A and a
right ideal B of R. Assume B $ !FH, say vt{B) ̂  a>Ji for a certain i. There exists
a in A with vt(a) < a>JI and r in a~lB with vt(r) < coJl. From this vt(ar) < or"
follows and gives a contradiction, since ar is in B. To prove the second part
of the theorem we consider first the filters of a G.D.V. domain V of type col + 1.
It is clear that the sets of right ideals J5", = {A c V, v(A) < coJ, j g /} form
filters and that these are the only filters of V. Further consider Sj = V\Pj, where
Pj is the prime ideal in V with v{Pj) = coJ. Sj is an Ore system and we obtain

We can now apply Lemmas 1 and 2.
For any filter !F in the Krull domain R we obtain

Rp = n {V^t = c\ VtS]t
l for certain j t .

Since further R^H = n Vfi],1 if H and jt are chosen as in the formulation
of the theorem, we see that every R& is equal to some R^H for a suitable H. To
prove that one obtains different rings of quotients for different ^"H we show
first that every R& itself is a Krull domain. It is clear that every VjS^1 = Viyji

is a G.D.V. domain, and that the defining conditions 1 and 3 are satisfied for
R? = R'. If PiiU is the maximal ideal of VUt then P'iU = P,u OR' and PtJi

= PLii n R are prime ideals in R' and R respectively. Since

Vi.jt=>R'pij,=>Rp,ji =» *%•«> w e o b t a i n FiJ< - ^P'..?*

and the second half of condition 2 for a Krull domain is inherited from the same
property for the Pt's in R.

Now let H, H' be two different subsemigroups of T of the form described
in the theorem, and J5" = !FB, SF' = ̂ H, the corresponding filters. Then there
exists an i with j , >/j'say. In R exists an ideal A with a/ ' '< v^A) < coJl, vk(A) = 0
for fc 7̂  i. It follows that AR&. # R&. and ̂ 4i?̂ r = R& which implies R? ^ R&.
and proves the theorem.

We actually proved the following Corollary also:

COROLLARY. Let R = C\ Vtbe a Krull domain, R' a ring of quotients of R
with respect to some filter. Then R' is a Krull domain, R' = n VtJl where
VUt = F;S7/ /or Ore-systems Si} of Vt.
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Lambek (1971), page 41 gives an example where two different filters lead to
the same ring of quotients. The above considerations show that there is an abun-
dance of such incidents. For example let R be a commutative noetherian unique
factorization domain R with Krull dimension > 1 and infinitely many maximal
ideals Mt with weight (M,) ^ 2. Then every filter ^ t = {A cz R,A=> M", some n}
will lead to the same ring of quotients, namely R, even though all these J5"; are
different filters

Contrary to the commutative case one does not obtain all rings between R
and its field of quotients as rings of quotients if R is a (non-commutative) Dede-
kind domain, i.e. a Krull domain where the set {P,} in condition 2 of the defini-
tion is the set of the maximal ideals.

This is not even true for a G.D.V. of type ^ co2 + 1. For a proof of the last
statement consider a G.D.V. domain of type co2 + 1 with R => xR => yR z> 0 as
its prime ideals and xy = yen, a a certain unit in R. Every right ideal in R has a
unique form y"xmR. We claim that T= yRy~l is a subring of Q(R) which
cannot be realized as a ring of quotients with respect to some torsion theory.
We use the criterion given in Lambek (1971) p. 39, prop. 2.6. Let yxy~l = seT.
One sees that yxy~lx" = yx^y'1 = ykx'seR is not possible, since it leads to
yxa." = yk + 1ae'. We obtain (yxy~x)"lR = yR but y'1 is not contained in T. But
it follows from our results that in the Dedekind case the filters described in
Theorem 1 are all the different filters, and different filters lead to different rings
of quotients.

THEOREM 2. Let R be a Krull domain. Every ring of quotients with respect
to some torsion theory is a ring of quotients with respect to some right Ore
system in R if and only if for every i and every j < I, there exists an ordinal
aJti with a>J S <xj,i<a>J+1 and a principal ideal AiA such that vk(AJA) = 0
for k # i and V^AJJ) — v.iti.

PROOF. Let u e R be an element in a ring of quotients with respect to some
torsion with corresponding filter &. It follows that u ~ 1R = A is a divisorial
r i gh t idea l in R. L e t w(A) = (Pu---,pu---)eT.

We consider the ith component: /?,- = a>Jnj + coi~1nJ-1 + ••• + n0 , nj # 0
where the nt are nonnegative integers. Write a,-; = cojkj -\— + k0 in similar
form with kj i=- 0 by assumption. Since a sufficiently large power of A is contained
in AjA, it follows that AJti is contained in #" and there exists an integer mt such
that tfjO47.'i) = vi(A)- We repeat this procedure for the finitely many i with
v,(A) = Pi •£ 0 and form the product C of the coresesponding AJ\.

C is still a principal right ideal, it is contained in A and a member of J5".
If we write C = cR we obtain uc = reR; u = re'1 follows and c~leR^.
This proves that R^ is a ring of quotients with respect to a right Ore system.
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To prove the converse let F be a filter of R with ring of quotient
^ = 0 t * t Vk n Vij+i • We may assume that J^ is the filter corresponding to
H = A, = {a,<x<ca'+1 g a?1}.

MR? is a ring of quotients with respect to some right Ore system there exists
c~1e Rj? and c~ ̂ A <=R for a right ideal 4̂ in J5". We conclude that aR is contained
in J5" and therefore vk(cR) = 0 for fe ^ i, a>J <= vt(c) <a>J+1 for some c with
c~! in R. The assumption vt(c) < a>J for every c-1 in R would lead to the contra-
diction

R, sR,.= Pi VknVu<=R,.
k*i +

Let R be a right and left Ore domain with weak global dimension R ^ 1.
The classical ring of quotients Q(R) with respect to all non zero elements of R
is the maximal ring of quotients in the sense of Lambek-Utumi and it is flat as
a right and left R module. R is therefore right and left semihereditary (Turnidge
(1970)). It follows further that every ring S between R and Q(R) is flat as a right
and left R module and the injection R into S is an epimorphism in the category of
rings. S is therefore a ring of quotients with respect to some filter which contains
a cofinal family of finitely generated ideals. (Papescu and Spirzu (1970), Sten-
strom (1971)).

If R is a Bezout domain i.e. if every finitely generated right or left ideal is
principal, one concludes that every overring of R contained in Q(R) is a ring of
quotients with respect to some Ore system in R (Beauregard (1973), Stenstrom
(1971)).

If we go one step further and consider principal right and left ideal domains,
we can describe these Ore systems which correspond uniquely to all filters and
uniquely to all overrings of R in the following way (Brungs (1971)): Let p be an
irreducible element in R. We say p is similar to p if R/pR and R/p'R are iso-
morphic as R right modules. For a / 0 set hp(a) = number of irreducible factors
similar to p in any irreducible factorization of a. Finally let n be any set of non-
similar irreducible elements in R.

Set
Sn = {a ^ 0 in R; hp(a) = 0 for all pen) and

.F, = {aR, aeS,}.

The sets Sn are right Ore systems in R, the sets J ^ are all the different filters of
right ideals in R and they correspond uniquely to the different overrings of R.
If R is a principal right ideal domain with maximal condition on left principal
ideals, one can define the sets Sn and the filters ^n as above. These are again
all the filters of right ideals of R, corresponding to different rings of quotients
between R and Q(R), but not every ring between Q(R) is necessarily of this form.
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