A DIOPHANTINE INEQUALITY WITH PRIME VARIABLES

S. Srinivasan

Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ be non-zero reals, not all of the same sign and such that at least one ratio $\lambda_{i} / \lambda_{j}$ is irrational. Then it is proved that for any given integer $k \geqslant 1$ and real η, the inequaltiy

$$
\left|\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}^{k}+\eta\right|<\varepsilon
$$

is solvable for every $\varepsilon>0$. More general and sharper results are also proved.

Introduction

Here we are concerned with the solvability of the diophantine inequality

$$
\begin{equation*}
\left|\eta+\sum_{j=1}^{\dot{Q}} \lambda_{j} x_{j}^{k}\right|<\varepsilon, \quad(\eta \text { an arbitrary, but fixed, real number }) \tag{1}
\end{equation*}
$$

for every $\varepsilon>0$ in primes x_{j}, where $k \geqslant 2$ is any given integer, under the assumption that $s \geqslant s(k)$ is suitably large and $\lambda_{1}, \ldots, \lambda_{s}$ are any non-zero reals, not all of the same sign and with $\lambda_{1} / \lambda_{2}$ irrational. For details about earlier work in this topic we refer to Vaughan $([4],[5])$, from where we get $s(k) \leqq 2^{k}+1(k=1,2,3)$, and smaller values for $s(k)$ for $k \geqslant 4$ (in fact $s(k) \leqslant c k \log k$ with a certain constant c); also, we can impose the condition that ε is a negative power of $\max x_{j}$.

For $k=2$, Bambah [1] has shown, combining some ideas of Watson with the method of Daveport-Heilbronn (when x_{i} 's are natural numbers), that in (1) one can replace $\lambda_{5} x_{5}^{2}$ by $\lambda_{5} x_{5}^{K}$, where K is any given natural number. Here we prove that one can, analogously, replace any k th power in (1), x_{i}^{k} say, by x_{i}^{K} for any given natural number K, and also can replace ε by a negative power (depending on k, K) of $\max x_{j}$ while taking $s=s(k)$, the value given by the results mentioned above. We obtain this by adding a simple idea to the method of Davenport-Heilbronn as extended by Vaughan and so avoid the use of Watson's work. We prove the

[^0]Theorem. Let k and K be any two given natural numbers and let $s=s(k)$ be as above. Let $\lambda_{1}, \ldots, \lambda_{\Delta}$ be any set of non-zero reals, not all of the same sign and with $\lambda_{1} / \lambda_{2}$ irrational. Fix an $i, 1 \leqslant i \leqslant s$. Let η be any given real number. Then, for a suitable $\delta>0$ (depending on η, k, K and the λ 's), the inequaltiy

$$
\begin{equation*}
\left|\sum_{j \neq i} \lambda_{j} p_{j}^{k}+\lambda_{i} p_{i}^{K}+\eta\right|<\left(\max p_{j}\right)^{-\delta} . \tag{2}
\end{equation*}
$$

has infinitely many solutions in primes p_{1}, \ldots, p_{s}.
In particular, since $s(1) \leqq 3$, we have the following extension of a result of Danicic [2]:

Theorem'. Let k be any given natural number. Let λ, μ be non-zero reals, not both negative and at least one of them irrational. Then both the sets of (real) numbers

$$
\left[\lambda p_{1}+\mu p_{2}^{k}\right],\left[\lambda p_{1}+\mu p_{2}\right]^{1 / k} \quad\left(p_{1}, p_{2} \text { primes }\right)
$$

contain infinitely many primes, where, as usual, $[x]$ denotes the largest integer not exceeding x.

This result gives immediately the following well-known assertion:
Let α be any (positive) irrational. Then, for every integer $k \geqslant 1$, the sequence $[n \alpha], n=1,2,3, \ldots$, contains infinitely many k th powers of primes.

2. Notation

Symbols with or without suffices have the same connotation. The letter p denotes prime numbers. The letters K, b, j, k, m, n, q, r and s denote positive integers. μ, η, x and the λ 's are reals. ε, δ denote sufficiently small positive numbers. Like the implied constants in the 'order notation' the positive numbers a, c, A, B and C depend at most on the λ 's, δ 's, k 's. As usual, $e(x)=\exp (2 \pi i x)$ and $[x]$ denotes the integral part of $x, L=\log X$. Set

$$
S_{k}(x)=\sum_{\delta X^{1 / k}<p \leqslant X^{1 / k}} e\left(x p^{k}\right), I_{k}(x)=\int_{\delta X^{1 / k}}^{X^{1 / k}}(\log u)^{-1} e\left(x u^{k}\right) d u
$$

and $K_{e}(x)=\pi^{-2} x^{-2} \sin ^{2}(\varepsilon \pi x)$ for $x \neq 0 ; K_{e}(x)=\varepsilon^{2}$ for $x=0$. For any function $\Phi(x)$ of a real variable we write $\Phi_{(j)}(x)$ to mean $\Phi\left(\lambda_{j} x\right)$.

3. Some Lemmas

We shall prove completely the case $k \leqslant 3$ 'of the Theorem and conclude its proof by indicating how to adapt the argument in the remaining case. However, we have freely referred to results from [4] and [5]. We begin by noting two lemmas.

Lemma 1. Let λ be any non-zero real number and let $0<\varepsilon<|\lambda|$. Then, for every $m \geqslant 1$, we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|S_{k}(\lambda x)\right|^{2 m} K_{e}(x) d x=\varepsilon \int_{0}^{1}\left|S_{k}(x)\right|^{2 m} d x \tag{3}
\end{equation*}
$$

Proof: By Lemma 1 of [4], the lefthand-side of (3) is equal to

$$
\sum_{\delta X^{1 / k}<p, p^{\prime} \leqslant X^{1 / k}} \max \left(0, \varepsilon-\left|\lambda\left(\sum_{j=1}^{m}\left(p_{j}^{k}-p_{j}^{\prime k}\right)\right)\right|\right) .
$$

Since $|\lambda|>\varepsilon>0$ the non-zero terms here correspond to the solutions of $p_{1}^{k}+\cdots+p_{m}^{k}=$ $p_{1}^{\prime k}+\cdots+\boldsymbol{p}_{m}^{\prime \boldsymbol{k}}$ and then each such term $=\varepsilon$. Thus this quantity is precisely the expression on the right in (3).

Lemma 2. For every integer $k \geqslant 1$ we have

$$
\begin{equation*}
\int_{0}^{1}\left|\sum_{n \leqslant X_{1}} e\left(x n^{k}\right)\right|^{2^{k}} d x=0\left(X_{1}^{2^{k}-k}\left(\log X_{1}\right)^{B}\right) \tag{4}
\end{equation*}
$$

for some B, depending only on k.
Proof: This is a special case of Theorem 4 of Hua [3].
REMARK: For our purposes the easier estimate $0_{\delta}\left(X_{1}^{2^{k}-k+\delta}\right), \delta>0$, suffices, but we use (4) instead to avoid some minor complications in details.

4. Proof of the Theorem

We divide this section into four parts.

4.1. The neighbourhood of the origin.

The results of this sub-section are derived, analogously to those in Section 5 of [4], by the method of Vaughan (particularly Lemma 3 below). The proofs are included only for completeness.

Lemma 3. Let $n \geqslant 3$ and let k, K be any two natural numbers. Fix an i, $1 \leqslant i \leqslant n$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be a set of non-zero reals (not necessarily distinct). Then, there exists a $\delta_{0}=\delta_{0}(k, K)>0$ such that for all sufficiently large X

$$
\left\{\begin{array}{c}
\int_{|x| \leqslant X^{-1+\delta_{0}}}\left|S_{(i), K}(x) \prod_{j \neq i} S_{(j), k}(x)-I_{(i), K}(x) \prod_{j \neq i} I_{(j), k}(x)\right| d x \tag{5}\\
\ll X^{(n-1) / k+K^{-1}-1} L^{-n-1} .
\end{array}\right.
$$

(Here, and in the sequel, n will be bounded in terms of $\underset{,}{ }, K$ and the λ 's).
Proof: Introducing the functions J, B of (5.11), (5.12) of [5] and making their dependence on the degree (k) explicit we see that the integrand in (5) is

$$
=\left|\sum_{j=1}^{n}\left(\prod_{h<j} S_{(h), k(h)}(x)\right)\left(B_{(j), k(j)}(x)-J_{(j), k(j)}(x)\right)\left(\prod_{j<h} I_{(h), k(h)}(x)\right)\right|
$$

where $k(b)=K$ or k according as $b=i$ or not. Obviously,

$$
\left|S_{(h), k(h)}(x)\right| \leqslant X^{1 / k(h)},\left|I_{(h), k(h)}(x)\right| \leqslant X^{1 / k(h)} ; \quad 1 \leqslant h \leqslant n .
$$

Using this estimate to replace all but one of S or I corresponding to a $h \neq i$ (possible since $n \geqslant 3$) we get the last sum in absolute value

$$
\ll \sum_{j=1}^{n} \sum_{h \neq i} X^{\sigma(j)}\left|B_{(j), k(j)}(x)-J_{(j), k(j)}(x)\right|\left(\left|S_{(h), k(h)}(x)\right|+\left|I_{(h), k(h)}(x)\right|\right)
$$

where $\sigma(j)=(n-2) k^{-1}+K^{-1}-k(j)^{-1}$. Now we note that if δ_{0} is small enough, depending on k and K, then the bounds (5.15)-(5.18) of $[5]$ with τ replaced by $X^{-1+\delta_{0}}$ are available to us, for the given values of k, K. Hence integrating the double sum above over $|x| \leqslant X^{-1+\delta_{0}}$, applying Schwarz's inequality and using the above bounds we see that the integral in (5) is

$$
\begin{aligned}
& \ll \sum_{j=1}^{n} X^{\sigma(j)-\frac{1}{2}+\frac{1}{k(j)}} \exp \left(-(\log X)^{\frac{1}{10}}\right) X^{-\frac{1}{2}+\frac{1}{k}} \\
& \ll X^{(n-1) / k+K^{-1}-1} L^{-n-1} .
\end{aligned}
$$

This proves the lemma.
Lemma 4. Under the conditions of Lemma 3, for any $\delta_{0}>0$
(6)

$$
\left\{\begin{aligned}
\int_{|x| \geqslant X^{-1+\delta_{0}}} \mid & I_{(i), K}(x) \prod_{j \neq i} I_{(j), k}(x) \mid K_{\varepsilon}(x) d x \\
& \ll \varepsilon^{2} X^{(n-1) k^{-1}+K^{-1}-1} L^{-n-1}
\end{aligned}\right.
$$

Further supposing that λ 's are not all of the same sign we have. for any given real η,

$$
\left\{\begin{array}{c}
\int_{-\infty}^{\infty} I_{(i), K}(x) \prod_{j \neq i} I_{(j), k}(x) K_{e}(x) \epsilon(x \eta) d x \tag{7}\\
\gg \varepsilon^{2} X^{(n-1) k^{-1}+K^{-1}-1} L^{-n}
\end{array}\right.
$$

Proof: We have $K_{e}(x)<\varepsilon^{2}$ for all x and, by partial intergration, also

$$
I_{k}(x) \ll X^{1 / k} \min \left(1,(X|x|)^{-1}\right)
$$

These give (6). By Lemma 1 of [4], the integral in (7) can be written as

$$
\int_{\delta^{k(1)} X}^{X} \cdots \int_{\delta^{k(n) X}}^{X} \frac{u_{1}^{-1+k(1)^{-1}} \ldots u_{n}^{-1+k(n)^{-1}}}{\log u_{1} \ldots \log u_{n}}(*) d u_{1} \ldots d u_{n}
$$

with $(*) \equiv \max \left(0, \varepsilon-\left|\eta+\sum_{j=1}^{n} u_{j} \lambda_{j}\right|\right)$, where $k(h)=K$ or k according as $h=i$ or not. Since λ 's are not all of the same sign $\lambda_{h}>0>\lambda_{j}$ for some h, j. Now for $\left(u_{1}, \ldots, u_{n}\right)$ with $\delta X \leqslant u_{b} \leqslant 2 \delta X(1 \leqslant b \leqslant n, b \neq h, b \neq j)$, and for a suitably chosen A

$$
n A \delta X\left|\lambda_{h} / \lambda_{j}\right| \leqslant u_{j} \leqslant 2 n A \delta X\left|\lambda_{h} / \lambda_{j}\right|
$$

we see that, when δ is sufficiently small,

$$
\delta X+\frac{1}{2} \varepsilon \lambda_{h}^{-1} \leqslant-\left(\eta+\sum_{b \neq h} \lambda_{b} u_{b}\right) \lambda_{h}^{-1} \leqslant X-\frac{1}{2} \varepsilon \lambda_{h}^{-1} .
$$

This shows that the box $\delta X \leqslant u_{j} \leqslant X \quad(1 \leqslant j \leqslant n)$ contains a region with volume $\gg \varepsilon X^{n-1}$ such that for each $\left(u_{1}, \ldots, u_{n}\right)$ in it

$$
\left|\eta+\sum_{j=1}^{n} \lambda_{j} u_{j}\right|<\varepsilon / 2 .
$$

So the multiple integral above is

$$
\gg \varepsilon^{2} X^{(n-1)+(n-1)\left(-1+k^{-1}\right)+K^{-1}-1} L^{-n}
$$

because $\min k(j) \geqslant 1$. This proves (7).
The next lemma follows immediately from Lemmas 3 and 4.
Lemma 5. Under the hypotheses of Lemmas 3 and 4 we have for any $\delta_{0}, 0<\delta_{0} \leqslant$ $\delta_{0}\left(k, K^{*}\right)$,

$$
\left\{\begin{align*}
\mid \int_{|x| \leqslant X^{-1+\delta_{0}}} S_{(i), K}(x) & \prod_{j \neq i} S_{(j), k}(x) \varepsilon(x \eta) K_{\varepsilon}(x) d x \mid \tag{8}\\
& \gg \varepsilon^{2} X^{(n-1) k^{-1}+K^{-1}-1} L^{-n}
\end{align*}\right.
$$

We also require

Lemma 6. Let $n \geqslant 2^{k}+1$ and let $\delta_{1}>0$. Then, under the hypotheses of Lemma 3, we have

$$
\left\{\begin{align*}
\int_{|x| \geqslant X^{\delta_{1}}} \mid S_{(i), K}(x) & \prod_{j \neq i} S_{(j), k}(x) \mid K_{\varepsilon}(x) d x \tag{9}\\
& \ll X^{(n-1) k^{-1}+K^{-1}-1-\delta_{1}} L^{B}
\end{align*}\right.
$$

with $B=B(k)$, provided $4 X^{-\delta_{1}}<\varepsilon<\min \left|\lambda_{j}\right|$, for all sufficiently large X.
Proof: Obviously $\left|S_{(j), k}(x)\right| \leqslant X^{1 / k}$ for all x, j, k. So it suffices to prove (9) with $n=2^{k}+1$ and further assuming (permuting λ 's if necessary) $i=2^{k}+1$. Thus we need to show that

$$
\int_{|x| \geqslant X^{\delta_{1}}} \prod_{j=1}^{2^{k}}\left|S_{(j), k}(x)\right| K_{e}(x) d x \ll X^{2^{k} k^{-1}-1-\delta_{1}} L^{B} .
$$

By Hölder's inequality (with respect to many factors), Lemmas 1, 2, and Lemma 13 of [5], we get the integral here as

$$
\begin{aligned}
& \leqslant \prod_{j=1}^{2^{k}}\left(\left(\int_{|x| \geqslant X^{\delta_{1}}}\left|S_{(j), k}(x)\right|^{2^{k}} K_{\varepsilon}(x) d x\right)^{2^{-k}}\right) \\
& \ll \prod_{j=1}^{2^{k}}\left(\left(\varepsilon^{-1} X^{-\delta_{1}} \int_{-\infty}^{\infty}\left|S_{(j), k}(x)\right|^{2^{k}} K_{\varepsilon}(x) d x\right)^{2^{-k}}\right) \\
& \ll X^{-\delta_{1}} \int_{0}^{1}\left|S_{k}(x)\right|^{2^{k}} d x \ll X^{\left(2^{k}-k\right) k^{-1}-\delta_{1}} L^{B}
\end{aligned}
$$

This proves the assertion made above, and hence also (9).

4.2 The Intermediate Region.

Lemma 7. Let λ, μ be two non-zero reals with λ / η irrational. Let $C>1$ be any fixed number. Let positive δ_{0}, δ_{1} be such that $\delta_{0}+\delta_{1}<1$. Set $\delta_{2}=\left(1-\delta_{0}-\delta_{1}\right) / 6$ and for sufficiently large Y define $X=Y^{1 /\left(3 \delta_{2}+\delta_{1}\right)}$. Suppose that h / q is a convergent to the continued fraction of λ / μ satisfiying $(h, q)=1$ and $Y \leqslant q \leqslant C Y$. Then for every x in the intervals $X^{-1+\delta_{0}} \leqslant|x| \leqslant X^{\delta_{1}}$ one has the approximations

$$
\begin{equation*}
\left|\lambda x-\frac{h_{1}}{q_{1}}\right| \leqslant q_{1}^{-1} X^{-1+\frac{1}{2} \delta_{0}},\left|\mu x-\frac{h_{2}}{q_{2}}\right| \leqslant q_{2}^{-1} X^{-1+\frac{1}{2} \delta_{0}} \tag{10}
\end{equation*}
$$

with $\left(h_{j}, q_{j}\right)=1(j=1,2)$ and

$$
\begin{equation*}
X^{\delta_{2}} \leqslant \max \left(q_{1}, q_{2}\right) \leqslant X^{1-\frac{1}{2} \delta_{0}} \tag{11}
\end{equation*}
$$

Proof: By Dirichlet's approximation theorem, we have integers $h_{j}, q_{j}(j=1,2)$, for any given x, such that (10) holds with $\left(h_{j}, q_{j}\right)=1$ and $1 \leqslant q_{j} \leqslant X^{1-\frac{1}{2} \delta_{0}}(j=1,2)$. For $|x| \geqslant X^{-1+\delta_{0}}$ we see easily that $h_{1} h_{2} \neq 0$; otherwise, $|x| \geqslant X^{-1+\delta_{0}}>$ $\max \left(|\lambda|^{-1},|\mu|^{-1}\right) X^{-1+\frac{1}{2} \delta_{0}}$ leads to a contradiction. Now it suffices to show that $\max \left(q_{1}, q_{2}\right)<X^{\delta_{2}}$ gives a contradiction. Under this assumption we will have (using $h_{1} h_{2} \neq 0$)

$$
\left\{\begin{align*}
\left|q_{1} h_{2} \lambda \mu^{-1}-q_{2} h_{1}\right| & =\mid h_{2}\left(q_{2} \mu x\right)^{-1} q_{1} q_{2}\left(\lambda x-h_{1} q^{-1}\right) \tag{12}\\
& +h_{1}\left(q_{1} \mu x\right)^{-1} q_{1} q_{2}\left(h_{2} q_{2}^{-1}-\mu x\right) \mid \leqslant 4 X^{\delta_{2}-1+3 \delta_{0} / 4}
\end{align*}\right.
$$

X being sufficiently large. Further $Y^{-1}=X^{-3 \delta_{2}-\delta_{1}}>12 C X^{\delta_{2}-1+3 \delta_{0} / 4}$, since $4 \delta_{2}+$ $\delta_{1}+3 \delta_{0} / 4<1$. So (12) implies

$$
\left|q_{1} h_{2} \lambda \mu^{-1}-q_{2} h_{1}\right|<(2 C Y)^{-1} \leqslant(2 q)^{-1} .
$$

This implies, by Legendre's law of best approximation, that (since $h_{1} h_{2} \neq 0$) $q<q_{1}\left|h_{2}\right|$. But, on the other hand, using $|x| \leqslant X^{\delta_{1}}$ one has

$$
q_{1}\left|h_{2}\right| \leqslant 10|\mu| X^{\delta_{1}} q_{1} q_{2} \leqslant 10|\mu| X^{\delta_{1}+2 \delta_{2}}<Y \leqslant q,
$$

a contradiction. Hence $\max \left(q_{1}, q_{2}\right) \geqslant X^{\delta_{2}}$ and the Lemma is proved.
Let b and m be two given natural numbers, and δ_{0} satisfy, in the notation of Lemma 3, $0<\delta_{0} \leqslant \delta_{0}(b, m)$. Now, with the notation and definitions of Lemma 7, denote by J_{1} the part of the interval $X^{-1+\frac{1}{2} \delta_{0}} \leqslant|x| \leqslant X^{\delta_{1}}$ corresponding (via Lemma 7) to $q_{1}=\max \left(q_{1}, q_{2}\right)$, and by J_{2} the remaining part. Then we prove

Lemma 8. We have

$$
\begin{equation*}
S_{b}(\lambda x)=0\left(X^{b^{-1}-\delta_{b}^{\prime}}\right), x \in J_{1} ; S_{m}(\mu x)=0\left(X^{m^{-1}-\delta_{m}^{\prime}}\right), x \in J_{2} \tag{13}
\end{equation*}
$$

where $\delta_{k}^{\prime}=\left(2^{2 k+2}(k+1)\right)^{-1} \min \left(1 / 3 k, \delta_{2}, \delta_{0} / 2\right)$, for $k \geqslant 1$.
Proof: We prove only the first part of (13), the other part being obtained likewise. We have, by Lemma 7, for $x \in J_{1}$

$$
\left|\lambda x-h_{1} q_{1}^{-1}\right| \leqslant q_{1}^{-2}, X^{\delta_{2}} \leqslant q_{1} \leqslant X^{1-\frac{1}{2} \delta_{0}} .
$$

From this it easily follows that

$$
\log \left(\min \left(\left(\delta^{b} X\right)^{1 / 3 b}, q_{1}, \delta^{b} X q_{1}^{-1}\right)\right) \geqslant\left(2^{6 b-2}(2 b+1)\right) \log \log X
$$

and hence by Lemma 10 of [5] (twice)

$$
S_{b}(\lambda x)=0\left(X^{b^{-1}-\delta_{b}^{\prime}}\right),
$$

with δ_{b}^{\prime} as defined in the statement of the lemma.

4.3 Proof of the Theorem $(k \leqslant 3)$.

We have $s=2^{k}+1$. We treat the cases $i \leqslant 2$ and $i>2$ separately. Let $0<\varepsilon<\min \left|\lambda_{j}\right|$.
(a) $i \leqslant 2$. Without loss of generality we can assume $i=2$. Taking, in Section 4.2, $\lambda=\lambda_{1}, \mu=\lambda_{2} ; b=k, m=K$ and $q=Y$ we get, by Lemma 8 , for $X=q^{1 /\left(3 \delta_{2}+\delta_{1}\right)}$ (where q is a sufficiently large denominator of a convergent to the continued fraction of λ / μ)

$$
\begin{equation*}
S_{(1), k}(x)=0\left(X^{k^{-1}-\delta_{k}^{\prime}}\right), x \in J_{1} ; S_{(2), K}(x)=0\left(X^{K^{\sim 1}-\delta_{K}^{\prime}}\right), x \in J_{2} \tag{14}
\end{equation*}
$$

We use these bounds to estimate

$$
\begin{equation*}
\int_{X^{-1+\delta_{0}}}^{X^{\delta_{1}}}\left|S_{(2), K}(x) \prod_{j \neq 2} S_{(j), k}(x)\right| K_{\varepsilon}(x) d x \tag{15}
\end{equation*}
$$

By (14), the part of the integral over J_{2} is

$$
\ll X^{K^{-1}-\delta_{K}^{\prime}} \int_{-\infty}^{\infty}\left|\prod_{j \neq 2} S_{(j), k}(x)\right| K_{\varepsilon}(x) d x
$$

which, by Hölder's inequality, Lemmas 1 and 2 (as in the proof of Lemma 6) is \ll $\varepsilon X^{a_{1}} L^{B}$, where $a_{1}=\left(2^{k}-k\right) k^{-1}+K^{-1}-\delta_{K}^{\prime}$.

Again, by (14), the part of (15) over J_{1} is, with $c=2^{k}\left(\max \left(2^{k}, 2^{K}\right)\right)^{-1} \leqslant 1$,

$$
\ll\left(X^{k^{-1}-\delta_{k}^{\prime}}\right)^{c} \int_{-\infty}^{\infty}\left|S_{(2), K}(x)\left(S_{(1), k}(x)\right)^{1-c} \prod_{j \geqslant 3} S_{(j), k}(x)\right| K_{e}(x) d x .
$$

By Hölder's inequality, Lemmas 1 and 2, this expression is

$$
\begin{aligned}
& \ll X^{\left(k^{-1}-\delta_{k}^{\prime}\right) c}\left(\left(\prod_{j \geqslant 3}\left(\int_{-\infty}^{\infty}\left|S_{(j), k}(x)\right|^{2^{k}} K_{\varepsilon}(x) d x\right)^{2^{-k}}\right)\right. \\
& \left.\quad\left(\int_{-\infty}^{\infty}\left|S_{(2), K}(x) S_{(1), k}^{1-c}(x)\right|^{2^{k}} K_{\varepsilon}^{\prime}(x) d x\right)^{2^{-k}}\right) \\
& \ll\left(\varepsilon L^{B}\right)^{\left(2^{k}-1\right) 2^{-k}} X^{\sigma_{1}}\left(\int_{-\infty}^{\infty}\left|S_{(2), K}(x) S_{(1), k}^{1-c}(x)\right|^{2^{k}} K_{e}(x) d x\right)^{2^{-k}},
\end{aligned}
$$

where $\sigma_{1}=c\left(k^{-1}-\delta_{k}^{\prime}\right)+\left(1-2^{-k}\right)\left(2^{k}-k\right) k^{-1}$. The integral here is by Hölder's inequaltiy,

$$
\ll\left(\int_{-\infty}^{\infty}\left|S_{(2), K}(x)\right|^{2^{k} c^{-1}} K_{e}(x) d x\right)^{c}\left(\int_{-\infty}^{\infty}\left|S_{(1), k}(x)\right|^{2^{k}} K_{e}(x) d x\right)^{1-c}
$$

Noting that $2^{k} c^{-1} \geqslant 2^{K}$ and using Lemmas 1 and 2, we see that this quantity is $\ll \varepsilon L^{B_{1}} X^{\sigma_{2}}$, for some $B_{1}=B_{1}(k, K)$, where $\sigma_{2}=c\left(2^{k} c^{-1}-K\right) K^{-1}+$ $(1-c)\left(2^{k}-k\right) k^{-1}$. Hence the part of the integral (15) over J_{1} is $\ll \varepsilon L^{B_{2}} X^{a_{2}}$, for some $B_{2}=B_{2}(k, K)$ and $a_{2}=\sigma_{1}+2^{-k} \sigma_{2}=2^{k} k^{-1}+K^{-1}-1-c \delta_{k}^{\prime}$.

Thus the integral (15) is

$$
\begin{equation*}
\ll \varepsilon L^{B} X^{2^{k} k^{-1}-1+K^{-1}-\delta^{\prime \prime}}, \tag{14}
\end{equation*}
$$

where $B=B(k, K)$ and $\delta^{\prime \prime}=\min \left(\delta_{K}^{\prime}, c \delta_{k}^{\prime}\right)$.
(b) $i>2$. In this case we take $\lambda=\lambda_{1}, \mu=\lambda_{2}$, and $b=m=k$ in Section 4.2 and argue as in the case (a) for the part of (15) over J_{1} there. This leads again to a similar bound for (15).

To complete the proof of the Theorem in this case $\left(s=2^{k}+1\right)$ we need, for given $\delta_{1}<1$, only to show that ε satisfies

$$
4 X^{-\delta_{1}} \leqslant \varepsilon<\min \left|\lambda_{j}\right| ; L^{B} X^{-\delta_{1}} \leqslant \varepsilon^{2} L^{-s-1} ; L^{B} X^{-\delta^{\prime \prime}} \leqslant \varepsilon L^{-\theta-1} .
$$

These conditions are satisfied by $\varepsilon=X^{-\alpha}$, where $\alpha=\min \left(\frac{1}{4} \delta_{1}, \frac{\sigma^{\prime \prime}}{2}\right)$ (say). Thus, with this choice of ε, we get, using Lemmas 5 and 6 , (14) that under the hypotheses of the theorem, for a seuence of $X \rightarrow \infty$,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} S_{(i), K}(x) \prod_{j \neq i} S_{(j), k}(x) e(x \eta) K_{e}(x) d x \\
& \gg \varepsilon^{2} X^{\left(2^{k} k^{-1}+K^{-1}-1\right)} L^{-\left(2^{k}+1\right)}
\end{aligned}
$$

Since, by Lemma 1 , the left-side here is $\leqslant \varepsilon$ times the number of solutions of (with $k(j)=K$ or $=k$, according as $j=i$ or not)

$$
\left|\eta+\sum_{j \neq i} \lambda_{j} p_{j}^{k}+\lambda_{i} p_{i}^{K}\right|<X^{-\alpha}, p_{j} \leqslant X^{1 / k(j)}<\delta^{-1} p_{j}
$$

$1 \leqslant j \leqslant 2^{k}+1$. Hence this inequality has $\gg X^{a} L^{-\left(2^{k}+1\right)}, a=2^{k} k^{-1}+K^{-1}-1-\alpha$, solutions in prime p_{j}, for a suitable sequence of $X \rightarrow \infty$. This completes the proof of the theorem for $k \leqslant 3$.

4.4 Proof of the Theorem $(k>3)$.

Here we indicate the changes required to deal with this case using the results of [5]. We have $s=2 r+2 m+1$. Analogously we work with the product

$$
I_{(i), K}(x) \prod_{\substack{j=1 \\ j \neq i}}^{2 r+1} I_{(j), k}(x) F_{1}^{(k)}(x) F_{2}^{(k)}(x)
$$

(since one can assume $i \leqslant 2 r+1$), where $F_{t}^{(k)}(x)$ are exponential sums $F_{t}(x)(t=1,2)$ of [5]. It is apparent from earlier considerations, in view of Theorem 1 of [5] and its analogue in Section 6 of [5], that the problem is to estimate on the intermediate range only; that is we are to estimate the integrals, for $t=1,2$,

$$
\int_{X^{-1+\delta_{0}} \leqslant|x| \leqslant X^{\delta_{1}}}\left|S_{(i), K}(x) \prod_{j \neq i} S_{(j), k}(x)\right|\left|F_{t}^{2}(x)\right| K_{e}(x) d x
$$

This can be done as in Section 4.3 above with $c=\frac{2 r}{\max \left(2 r, 2^{K}\right)}$, using Theorem 1 of [5] for $k>4$ and its analogue in Section 6 for $k=4$.

Thus the Theorem is completely proved. Theorem' is an immediate consequence from it.

References

[1] R.P. Bambah, 'Four squares and a k th power', Quart. J. Math. 5 (1954), 191-202.
[2] J. Danicic, 'On the integral part of a linear form with prime variables', Canad. J. Math. 18 (1966), 621-628.
[3] L.K. Hua, Additive theory of prime numbers (A.M.S., Providence, Rhode Island, 1965).
[4] R.C. Vaughan, 'Diophantine approximations by prime numbers I', Proc. London Math. Soc. (3) 28 (1974), 373-384.
[5] R.C. Vaughan, 'Diophantine approximations by prime numbers II', Proc. London Math. Soc. (3) 28 (1974), 385-401.

School of Mathematics
Tata Institute of Fundamental Research
Homi Blabha Road
Bombay 400005
India

[^0]: Received 15 September 1987
 The present paper is excerpted from my Ph.D. thesis. I wish to take this opportunity to record my gratitude to my thesis advisor Professor K. Ramachandra for his encouragement and interest in my work.

