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A DIOPHANTINE INEQUALITY WITH
PRIME VARIABLES

S. SRINIVASAN

Let Ai, A2, A3 be non-zero reals, not all of the same sign and such that at least one ratio
A;/Aj is irrational. Then it is proved that for any given integer k ~£ 1 and real 77, the
inequaltiy

|Aipi + A2P2 + X3P3 + IJ| < e

is solvable for every e > 0. More general and sharper results are also proved.

INTRODUCTION

Here we are concerned with the solvability of the diophantine inequality

(1) < e, (77 an arbitrary, but fixed, real number)

for every e > 0 in primes Xj, where k ^ 2 is any given integer, under the assumption
that 3 ^ •'(&) is suitably large and Aj , . . . ,A, are any non-zero reals, not all of the
same sign and with A1/A2 irrational. For details about earlier work in this topic we
refer to Vaughan ([4], [5]), from where we get s(k) < 2* + l(k = 1,2,3), and smaller
values for s(k) for k > 4 (in fact s{k) < cfclogfc with a certain constant c); also, we
can impose the condition that e is a negative power of maxzy .

For k — 2, Bambah [1] has shown, combining some ideas of Watson with the
method of Daveport-Heilbronn (when Xi's are natural numbers), that in (1) one can
replace A5X5 by \$x% , where K is any given natural number. Here we prove that one
can, analogously, replace any fcth power in (1), x* say, by x^ for any given natural
number K, and also can replace e by a negative power (depending on k,K) of maxx,-
while taking s = s(k), the value given by the results mentioned above. We obtain this
by adding a simple idea to the method of Davenport-Heilbronn as extended by Vaughan
and so avoid the use of Watson's work. We prove the
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THEOREM. Let k and K be any two given natural numbers and let s = s(k) be
as above. Let A j , . . . , Xa be any set of non-zero reals, not all of the same sign and with
A1/A2 irrational. Fix an i, 1 < i < s. Let r\ be any given real number. Then, for a
suitable 6 > 0 (depending on TJ, k, K and the A 's), the inequaltiy

(2) + *#? + V < {m&xpj) 6.

has infinitely many solutions in primes p i , . . . ,p, .

In particular, since s(l) ^ 3, we have the following extension of a result of Danicic

[2] =

THEOREM'. Let k be any given natural number. Let \,fi be non-zero reals, not

both negative and at least one of them irrational. Then both the sets of (real) numbers

[Api + MP*]) [*Pi + M>2]1/fc (Pi , P2 primes )

contain infinitely many primes, wiiere, as usual, [x] denotes the largest integer not

exceeding x.

This result gives immediately the following well-known assertion:
Let a be any (positive) irrational. Then, for every integer k ^ 1, the sequence
[no], n = 1, 2 , 3 , . . . , contains infinitely many fcth powers of primes.

2. NOTATION

Symbols with or without suffices have the same connotation. The letter p de-
notes prime numbers. The letters Ky b, j , k, m, n, q, r and s denote positive integers.
H, ri, x and the A's are reals, e, 6 denote sufficiently small positive numbers. Like
the implied constants in the 'order notation' the positive numbers a, c, A, B and C

depend at most on the A's, £'s, fc's. As usual, e(x) =exp(27na;) and [x] denotes the
integral part of x, L = log X . Set

rxl/k

Sk(x)= V e(xpk),h{x)=
«*/» <<*»/» Jsx

and Kc{x) — 7r~2a:~2sin2 (eirx) for x ^ 0; Kc{x) = e2 for x = 0. For any function
$ ( E ) of a real variable we write $(,)(x) to mean

3. SOME LEMMAS

We shall prove completely the case k ^ 3 of the Theorem and conclude its proof by
indicating how to adapt the argument in the remaining case. However, we have freely
referred to results from [4] and [5]. We begin by noting two lemmas.
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LEMMA 1. Let A be any non-zero real number and let 0 < e < |A|. Then, for
every m > 1, we have

(3) I" \Sk{\x)\2m Kt{x)dx = e f \Sk{x)\2mdx.
J-oo Jo

PROOF: By Lemma 1 of [4], the lefthand-side of (3) is equal to

V max 0 , e -

Since |A| > e > 0 the non-zero terms here correspond to the solutions of pf + • • • + pj|, =
p'j + ••• + p ' m and then each such term = £. Thus this quantity is precisely the
expression on the right in (3). |

LEMMA 2. For every integer k ^ 1 we Jiave

(4) i: E
for some B , depending only on k.

PROOF: This is a special case of Theorem 4 of Hua [3]. fl

REMARK: For our purposes the easier estimate Off X\ ~ ) , 6 > 0, suffices, but

we use (4) instead to avoid some minor complications in details.

4. PROOF OF THE THEOREM

We divide this section into four parts.

4.1. The neighbourhood of the origin.
The results of this sub-section are derived, analogously to those in Section 5 of [4],

by the method of Vaughan (particularly Lemma 3 below). The proofs are included only
for completeness.

LEMMA 3. Let n ^ 3 and let k, K be any two natural numbers. Fix an i,
1 < i < n. Let Ai,...,An be a set of non-zero reals (not necessarily distinct). Then,
there exists a So = So{k, K) > 0 such that for all sufficiently large X

(5)
n n dx
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(Here, and in the sequel, n will be bounded in terms of k, K and the A's).

PROOF: Introducing the functions J, B of (5.11), (5.12) of [5] and making their
dependence on the degree (k) explicit we see that the integrand in (5) is

~ JU)Mi)(x))
\j<h

where k(b) — K or k according as 6 = i or not. Obviously,

Using tliis estimate to replace all but one of 5 or / corresponding to a h ^ i (possible
since n ^ 3) we get the last sum in absolute value

where cr{j) = (n — 2)k~1 + K~x — k(j)~ . Now we note that if 80 is small enough,
depending on k and K, then the bounds (5.15)-(5.18) of [5] with r replaced by X~1+s<>
are available to us, for the given values of k, K. Hence integrating the double sum above
over |x| ^ X~1+6° , applying Schwarz's inequality and using the above bounds we see
that the integral in (5) is

fr exp (-

This proves the lemma.

LEMMA 4. Under the conditions of Lemma, 3, for any So > 0

(6) J\x\>X-
h\(x)dx

Further supposing that A 's are not all of the same sign we have, for any given real

(7)
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PROOF: We have K€(x) < e2 for all x and, by partial intergration, also

These give (6). By Lemma 1 of [4], the integral in (7) can be written as

C-jC-)xS . . . xt

log Uj . . . log Un
...dun

with (*) = max I 0,e — , where k(h) — K or k according as h — i

or not. Since A's are not all of the same sign Â  > 0 > Xj for some h,j. Now for
(tt] , . . . ,«„) with 8X ^ Uf, < 2SX{\ < 6 < n, 6 ^ /i, 6 ̂  j ) , and for a suitably chosen

nA*I \Xh/Xj\ ^ w, ^ 2nA^Y |Ah/A,|

we see that, when 6 is sufficiently small,

6X + \e X - l

This shows that the box 6X ^ Uj ^ X (1 ^ j ^ n) contains a region with volume
>> eJC"""1 such that for each («i , . . . , un) in it

<e/2.

So the multiple integral above is

because minA;^) ^ 1. This proves (7).

The next lemma follows iminediately from Lemmas 3 and 4.

LEMMA 5. Under the hypotheses of Lemmas 3 and 4 we have for any 80, 0 < 60

(8)
I / S(i)iK(x)T[SU)jk(x)e(xV)KAx)dx\

We also require
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LEMMA 6. Let n ^ 2k + 1 and let Si > 0. Then, under the hypotheses of Lemma.
3, we have

(9)
'|x|>JC*l

with B = B(k), provided 4Jf ~Sl < e < min |A,|, for all sufficiently large X .

PROOF: Obviously |5(j)|fc(a;)| ^ X1^ for all x,j,k. So it suffices to prove (9)
with n = 2fc + 1 and further assuming (permuting A 's if necessary) i = 2k + 1. Thus
we need to show that

By Holder's inequality (with respect to many factors), Lemmas 1, 2, and Lemma 13 of
[5], we get the integral here as

This proves the assertion made above, and hence also (9). |

4.2 The Intermediate Region.

LEMMA 7. Let A, fi be two non-zero reals with X/TJ irrational. Let C > I be any
fixed number. Let positive SQ, 8\ be such that SQ + 5] < 1. Set 82 = (1 — ô — 8\)/6
and for sufficiently large Y define X = K1/(3*2+*i). Suppose that h/q is a convergent
to the continued fraction of A//x satisRying (h,q) = 1 and Y ^ q ^ CY. Then for
every x in the intervals X~1+s° ^ \x\ ̂  XSl one has the approximations

(10) Xx jXX —

with {hj,qj) — l(j = 1,2) and

(11) X*2 <max(gi,92)

https://doi.org/10.1017/S0004972700027234 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027234


[7] A Diophantine inequality 63

PROOF: By Dirichlet's approximation theorem, we have integers hj,qj(j — 1,2),

for any given x, such that (10) holds with (/i>,9>) = 1 and 1 ^ 9 , ^ X1-\6°(j = 1,2).

For \x\ ^ x~1+s° we see easily that h\h2 / 0; otherwise, \x\ > X~1+*° >

max MAr1 , | / i | - 1 )X~1+is° leads to a contradiction. Now it suffices to show that

max (91,92) < X6* gives a contradiction. Under this assumption we will have (using

{ \q\h2\n~ — 92^1 = l'l2(92M:B) 9i92(Aa! — ^19 )
_

X being sufficiently large. Further Y~l = Jf-"*-*» > 12CX*2-1 + 3*°/ 4 , since U2 +

*i + 3*o/4 < 1. So (12) implies

This implies, by Legendre's law of best approximation, that (since h\h2 ^ 0)q < qi \h2\.

But, on the other hand, using \x\ < X6t one has

qi \h2] ^ 10\»\X6iqiq2 < 10|M|X*1+2*2 < Y < q,

a contradiction. Hence max (91,92) ^ X*2 and the Lemma is proved. fl

Let b and m be two given natural numbers, and So satisfy, in the notation of
Lemma 3, 0 < 6g ^ 6o{b,m). Now, with the notation and definitions of Lemma 7,
denote by Ji the part of the interval X~1+?s° ^ \x\ ^ X*1 corresponding (via Lemma
7) to 91 = max(91,92), and by J2 the remaining part. Then we prove

LEMMA 8. We liave

(13) sb(\x) = o(jr»"x- '»),* e Ji-,sm(nx) = o ^ " 1 " 1 - * - ) , x e J2,

where 6'k = (22k+2(k + I))"1 min(l/3k,62,60/2), for k > 1.

PROOF: We prove only the first part of (13), the other part being obtained likewise.
We have, by Lemma 7, for x € J\

\\x - Mr1! < IT\ **2 < 91 < x1-***.

From tliis it easily follows that

log (min ( ( ^ X ) 1 / 3 6 , qi,6
bXq^)) > (26 6-2(26+l)) loglogA-,

and hence by Lemma 10 of [5] (twice)

with 6'b as defined in the statement of the lemma.
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4.3 Proof of the Theorem (k < 3).
We have s = 2k + 1. We treat the cases i ^ 2 and i > 2 separately. Let

0 < £ < min | Aj |.
(a) i ^ 2 . Without loss of generality we can assume t = 2. Taking, in Section 4.2,

A = Aj, IJ, - A2 ; 6 = fc, m = K and g = y we get, by Lemma 8, for X = 0
1/(3^+5i)

(where q is a sufficiently large denominator of a convergent to the continued fraction
of

(14) S(1)<k(x) = o (x*" l -*») , x € ^i;

We use these bounds to estimate

(15)
Jx-1+6o

Kc{x)dx.

By (14), the part of the integral over Ji is

«X
J—e n

which, by Holder's inequality, Lemmas 1 and 2 (as in the proof of Lemma 6) is <<
LB , where ftl = (2* - k)^1 + K~x ~ S'K .

Again, by (14), the part of (15) over Jx is, with c = 2fc(max (2*,2K))~1 < 1,

Ke{x)dx.

By Holder's inequality, Lemmas 1 and 2, this expression is

Ke(x)dx

Kt{x)dx

,-k

Ke{x)dx
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where <n = c(fc-1 - S'k) + ( l - 2"fc)(2fc - k)^1. The integral here is by Holder's

inequaltiy,

« ( / \SWtK{x)f e~ K.{x)dx) ( I \S(1)th(x)\
1 - c

Noting that 2fcc * ^ 2K and using Lemmas 1 and 2, we see that this quan-
tity is < < eL^X"*, for some 5 j = B^K), where <r2 = c(2*C-1 - A")/?"1 +
(1 - c)(2fc - fc)fc-1. Hence the part of the integral (15) over J j is < < eLB*Xa* , for
some B2 = B2{k,K) and o2 = <rx + 2~*<7-2 = 2*ife~1 + -K""1 -l-c6'k.

Thus the integral (15) is

(14)... « k r l "

where 5 = B(k,K) and 5" = rni
(b) i > 2. In this case we take A = Aj, /* = X2, and 6 = m = fc in Section 4.2

and argue as in the case (a) for the part of (15) over Jj there. This leads again to a
similar bound for (15).

To complete the proof of the Theorem in this case (a = 2* + l) we need, for given
5\ < 1, only to show that e satisfies

4X-*1 < e < xtan\Xj\\LBX-fl < c2L—1;LBX-s" < eL—1.

These conditions are satisfied by e — X~a, where a = min (j$i,4j-J (say). Thus,
with this choice of e, we get, using Lemmas 5 and 6, (14) that under the hypotheses
of the theorem, for a seuence of X —> oo,

Since, by Lemma 1, the left-side here is ^ e times the number of solutions of (with
k(j) = K or = fc, according as j = i or not)

1 ^ j < 2* + 1 . Hence this inequality has » JCaI-(2<1+1), a = 2feJfe-1 + K'1 - 1 - a,
solutions in prime py, for a suitable sequence of X —• oo. This completes the proof of
the theorem for k ^ 3.
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4.4 Proof of the Theorem (fc > 3).
Here we indicate the changes required to deal with this case using the results of

[5]. We have s = 2r + 2ro + 1. Analogously we work with the product

2r+l

(since one can assume i < 2r + 1), where -Ft (x) are exponential sums Ft{x)(t = 1,2)
of [5]. It is apparent from earlier considerations, in view of Theorem 1 of [5] and its
analogue in Section 6 of [5], that the problem is to estimate on the intermediate range
only; that is we are to estimate the integrals, for t ~ 1,2,

L \F?(x)\ K.{x)dx.

This can be done as in Section 4.3 above with c = 7^—CT , using Theorem 1 of [51
max(2r,2JC) > o I J

for k > 4 and its analogue in Section 6 for k = 4.
Thus the Theorem is completely proved. Theorem' is an immediate consequence

from it.
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