A GENERALISATION OF A RECENT CHARACTERISATION OF PLANAR GRAPHS

C.H.C. Little

Abstract

Planar graphs have recently been characterised as those which have no strict elegant odd ring of circuits. Here we generalise that result by showing that its dual yields a theorem that is valid for all graphs.

1. Introduction

A new characterisation of planar graphs appears in [2]. This characterisation hinges on the idea of a ring of circuits. If \mathcal{C} is a collection of circuits of a graph G and the edges of G can be directed so that every circuit of C is a directed circuit, then we say that C is consistently orientable. The cyclic sequence $C=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ of circuits, where $n \geq 3$, is a ring of circuits in the graph G if
(i) C is consistently orientable,
(ii) $E C_{i} \cap E C_{j} \neq \varnothing$ if and only if $i=j, i \equiv j+1(\bmod n)$ or $i \equiv j-1(\bmod n)$, and
(iii) no edge of G belongs to more than two circuits of C. The ring C above is odd if n is odd, strict if $\left|V C_{i} \cap V C_{j}\right| \leq 1$ whenever $E C_{i} \cap E C_{j}=\emptyset$, and elegant if for each $i \in\{0,1, \ldots, n-1\}$ there is a path M_{i} satisfying the conditions $E M_{i}=E C_{i+1}-E C_{i}$ and $\left|V M_{i} \cap V C_{i}\right|=2$. (Here, and throughout this paper, subscripts are to be Received 29 October 1982.
read modulo n.)
It is proved in [2] that a graph is planar if and only if it contains no strict elegant odd ring. The proof in [2] has been greatly simplified by Chen [1] using topological considerations. In this paper, we achieve further simplification by dualising some of Chen's ideas, thereby also generalising the result.

Let G be a graph and $X, Y \subseteq V G$. We denote by $[X, Y]$ the set of all edges joining a vertex of X and a vertex of Y. If $Y=V G-X$, then $[X, Y]$ is called an edge cut if $X \neq \emptyset$ and $Y \neq \emptyset$. We abbreviate $[X, Y]$ by $\delta(X)$ or $\delta(Y)$. A minimal non-empty edge cut is a bond. It is well known that if G is connected, then $[X, Y]$ is a bond if and only if $G[X]$ and $G[Y]$ are connected. Moreover, any non-empty edge cut is a union of disjoint bonds. In the case where G is a directed graph and every edge of $\delta(X)$ is directed toward the end in X, we say that $\delta(X)$ is a directed edge cut.

If C is a collection of bonds of a graph G and the edges of G can be directed so that every bond of C is directed, then we say that C is consistently orientable. The cyclic sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ of bonds, where $n \geq 3$, is a ming of bonds in the graph G if
(i) \mathcal{C} is consistently orientable,
(ii) $\quad C_{i} \cap C_{j} \neq \emptyset \quad$ if and only if $i=j, \quad i \equiv j+1(\bmod n)$ or

$$
j \equiv j-1(\bmod n), \text { and }
$$

(iii) no edge of G belongs to more than two bonds of \mathcal{C}.

Let A and B be bonds of G, where $A=[X, Y]$. Then a proper subset P of B is a B-chord of A if P is a bond of $G[X]$ or $G[Y]$. Note that P, being a proper subset of B, cannot be a bond of G. Hence if $P=[S, T]$ and P is a bond of $G[X]$, then $[Y, S] \neq \emptyset$ and $[Y, T] \neq \emptyset$. Similarly if P is a bond of $G[Y]$, then $[X, S] \neq \emptyset$ and $[X, T] \neq \emptyset$.

The ring $\mathcal{C}=\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ of bonds is odd if n is odd, even if n is even, strict if there do not exist distinct bonds A, B, C satisfying the conditions $B \in C, C \in C, B \cap C=\varnothing, A \subseteq B \cup C$, and elegant if for each i there exists a unique C_{i+1}-chord of C_{i}. It is
easily seen that if G is planar the dual of a strict elegant odd ring of circuits is a strict elegant odd ring of bonds. Hence no planar graph can contain a strict elegant odd ring of bonds. It is our purpose here to generalise this result to non-planar graphs by proving the following theorem.

THEOREM. In any graph, every strict elegant ring of bonds is even.

2. Preliminary lemmas

Throughout the rest of this paper, we let C be a ring $\left(C_{0}, C_{1}, \ldots, C_{n-1}\right)$ of bonds in a graph G. Furthermore, for each i we will write $C_{i}=\left[A_{i}, B_{i}\right]$.

LEMMA 1. There is a component D of G such that $\bigcup_{i=0}^{n-1} C_{i} \subseteq E D$.
Proof. Let D be a component of G such that $E D \cap C_{0} \neq \emptyset$. Since C_{0} is a bond, we have $C_{0} \subseteq E D$. Proceeding by induction, assume that k-1
$\underset{i=0}{U} C_{i} \subseteq E D$ for some $k>0$. Since $C_{k-1} \cap C_{k} \neq \emptyset$, it follows that $E D \cap C_{k} \neq \emptyset$; hence $C_{k} \subseteq E D$ since C_{k} is a bond. The result follows by induction.

Thus we henceforth assume without loss of generality that G is connected.

LEMMA 2. For any i and any $e \in C_{i+1}-C_{i}$, there exists a $C_{i+1}{ }^{-}$ chord of C_{i} which contains e.

Proof. Without loss of generality, let $e \in\left[A_{i}, A_{i}\right]$. Then $\left[A_{i} \cap A_{i+1}, A_{i} \cap B_{i+1}\right]$ is a non-empty edge cut of $G\left[A_{i}\right]$ and so a union of bonds of $G\left[A_{i}\right]$. Since $C_{i} \cap C_{i+1} \neq \emptyset$, these bonds are proper subsets of c_{i+1}, and hence c_{i+1}-chords of c_{i}. One of them contains e.

LEMMA 3. If C is elegant, then for each i there is a unique c_{i} chord of C_{i+1}.

Proof. Let $P=[X, Y]$ be the unique C_{i+1}-chord of C_{i}, and without loss of generality let $P \subseteq\left[A_{i}, A_{i}\right]$. By Lemma 2 , any $e \in C_{i+1}-C_{i}$ must belong to P. Hence $P=C_{i+1}-C_{i}$, and it follows immediately that we may assume $C_{i+1}=P \cup\left[X, B_{i}\right]$ without loss of generality. Since $G\left[B_{i}\right]$ and $G[Y]$ are connected and $\emptyset \subset\left[Y, B_{i}\right] \subset C_{i}$, it follows that $\left[Y, B_{i}\right]$ is a C_{i}-chord of C_{i+1}, and it is clearly the only such chord.

LEMMA 4. Let C be strict and elegant. Then for all
$i, j, k \in\{0,1, \ldots, n-1\}$, either $\left(c_{j} \cup C_{k}\right)-C_{i} \subseteq\left[A_{i}, A_{i}\right]$ or $\left(C_{j} \cup C_{k}\right)-C_{i} \subseteq\left[B_{i}, B_{i}\right]$.

Proof. Without loss of generality, let $i=0$ and $j \leq k$. We shall show first that either $C_{j}-C_{0} \subseteq\left[A_{0}, A_{0}\right]$ or $C_{j}-C_{0} \subseteq\left[B_{0}, B_{0}\right]$. This statement is trivial if $j=0$; suppose therefore that $j>0$.

Case I. Suppose $1<j<n-1$. Then $C_{0} \cap C_{j}=\emptyset$ by (ii).
Suppose that $C_{j} \cap\left[A_{0}, A_{0}\right] \neq \emptyset$ and $C_{j} \cap\left[B_{0}, B_{0}\right] \neq \emptyset$. Then $A_{0} \cap A_{j}, A_{0} \cap B_{j}, B_{0} \cap A_{j}$ and $B_{0} \cap B_{j}$ are all non-empty. Let D be a component of $G\left[A_{0} \cap A_{j}\right]$. Thus $\delta(V D) \subseteq C_{0} \cup C_{j}$.

We show next that $\delta(V D)$ is a bond. Since D is connected, it suffices to demonstrate that $G-V D$ is connected. As C_{j} is a bond, $G\left[B_{j}\right]$ must be connected. Because $V D \subseteq A_{j}$, there must therefore be a component X of $G-V D$ for which $B_{j} \subseteq V X$. If D^{\prime} is any component of $G\left[A_{0} \cap A_{j}\right]$ other than D, then $\left[V D^{\prime}, A_{0} \cap A_{j}\right] \neq \emptyset$ because $G\left[A_{0}\right]$ must be connected; hence $V D^{\prime} \subseteq V X$. Finally, since $B_{0} \cap B_{j} \neq \emptyset$ and $G\left[B_{0}\right]$ is connected, we must have $B_{0} \subseteq V X$.

We infer that X is the only component of $G-V D$, and that $\delta(V D)$ is therefore a bond. Since $C_{0} \in \mathcal{C}, C_{j} \in \mathcal{C}, C_{0} \cap C_{j}=\emptyset$ and $\delta(V D) \subseteq C_{0} \cup C_{j}$, the strictness of C is contradicted. Hence either $C_{j}-C_{0} \subseteq\left[A_{0}, A_{0}\right]$ or $C_{j}-C_{0} \subseteq\left[B_{0}, B_{0}\right]$.

Case II. Suppose $j \in\{1, n-1\}$. By Lemma 3, we may assume without loss of generality that $j=1$. Since $C_{0} \neq C_{1}$ (otherwise $C_{0} \cap C_{1} \cap C_{2} \neq \emptyset$), we may further assume without loss of generality that $C_{1} \cap\left[A_{0}, A_{0}\right] \neq \emptyset$. Then by Lemma 2, $\left[A_{0}, A_{0}\right]$ contains a C_{1}-chord of C_{0}. Similarly if $C_{1} \cap\left[B_{0}, B_{0}\right] \neq \emptyset$, then $\left[B_{0}, B_{0}\right]$ contains a $C_{1}-$ chord of C_{0}. Since C is elegant, there is only one such chord, and so we cannot have both $C_{1} \cap\left[A_{0}, A_{0}\right] \neq \emptyset$ and $C_{1} \cap\left[B_{0}, B_{0}\right] \neq \emptyset$. Thus either $C_{1}-C_{0} \subseteq\left[A_{0}, A_{0}\right]$ or $C_{1}-C_{0} \subseteq\left[B_{0}, B_{0}\right]$.

The lemma has now been proved if $k=j$; let us therefore assume as an induction hypothesis that $j<k<n$ and $\left(C_{j} \cup C_{k-1}\right)-C_{0} \subseteq\left[A_{0}, A_{0}\right]$. Since $C_{k} \cap\left(C_{k-1}-C_{0}\right) \neq \emptyset$, we have $C_{k} \cap\left[A_{0}, A_{0}\right] \neq \emptyset$, and the previous result with j replaced by k shows that $C_{k}-C_{0} \subseteq\left[A_{0}, A_{0}\right]$. Thus $\left(C_{j} \cup C_{k}\right)-C_{0} \subseteq\left[A_{0}, A_{0}\right]$. Similarly, $\left(C_{j} \cup C_{k}\right)-C_{0} \subseteq\left[B_{0}, B_{0}\right]$ if $\left(C_{j} \cup C_{k-1}\right)-C_{0} \subseteq\left[B_{0}, B_{0}\right]$.

3. Proof of the theorem

Let the edges of G be oriented so that every bond in C is directed. Choose any $C_{i} \in \mathcal{C}$. By Lemma 4, we may assume without loss of generality that $C_{i+1}-C_{i} \subseteq\left[A_{i}, A_{i}\right]$. We shall define C_{i} to be positive if its edges are directed toward A_{i} and negative otherwise. Let us assume without loss of generality that C_{i} is positive. It now suffices to show that C_{i+1} is negative, for then the bonds in C must alternate in sign, so that C must be even. Without loss of generality, let $C_{i}-C_{i+1} \subseteq\left[A_{i+1}, A_{i+1}\right]$. Then $B_{i} \subseteq A_{i+1}$ since $C_{i+1} \cap\left[B_{i}, B_{i}\right]=\emptyset$. Since $C_{i} \cap C_{i+1} \neq \emptyset$ and C_{i} is positive, the edges of C_{i+1} must be directed toward B_{i+1}. Since $c_{i}-C_{i+1} \subseteq\left[A_{i+1}, A_{i+1}\right]$, Lemma 4 shows that $C_{i+2}-C_{i+1} \subseteq\left[A_{i+1}, A_{i+1}\right]$. It follows that c_{i+1} is negative and the theorem is proved.

References

[1] C.C. Chen, "On a characterization of planar graphs", Bull. Austral. Math. Soc. 24 (1981), 289-294.
[2] D.A. Holton and C.H.C. Little, "Elegant odd rings and non-planar graphs", Combinatorial Mathematics VIII, 234-268 (Proc. Eighth Australian Conf. Combinatorial Mathematics, 1980. Lecture Notes in Mathematics, 884. Springer-Verlag, Berlin, Heidelberg, New York, 1981).

Department of Mathematics and Statistics, Massey University, Palmerston North, New Zealand.

