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A GENERALISATION OF A RECENT CHARACTERISATION
OF PLANAR GRAPHS

C.H.C. LITTLE

Planar graphs have recently been characterised as those which

have no strict elegant odd ring of circuits. Here we generalise

that result by showing that its dual yields a theorem that is

valid for all graphs.

1. Introduction

A new characterisation of planar graphs appears in [2]. This

characterisation hinges on the idea of a ring of circuits. If C is a

collection of circuits of a graph G and the edges of G can be directed

so that every circuit of C is a directed circuit, then we say that C is

consistently orientdble. The cyclic sequence C = [c, C' , ..., C ) of

circuits, where n > 3 , is a ring of circuits in the graph G if

(i) C is consistently orientable,

(ii) EC. r, EC. t 0 if and only if i = j , i = j + 1 (mod n)
•z- 3

or i = j - 1 (mod n) , and

( i i i ) no edge of G belongs to more than two circuits of C .

The ring C above is odd if n i s odd, strict i f \VC. n VC.\ < 1
•*- 3

whenever EC. n EC. = 0 , and elegant i f fo r each i € {0 , 1 , . . . , n-l}
i 3

there is a path M. satisfying the conditions EM. = EC. -EC. and
I 1 ^^*1 ^

\VM. f> VC.\ = 2 . (Here, and throughout this paper, subscripts are to be
1r Is
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read modulo n .)

I t is proved in [2] that a graph is planar if and only if i t contains

no s t r i c t elegant odd ring. The proof in [2] has been greatly simplified

by Chen [J] using topological considerations. In this paper, we achieve

further simplification by dualising some of Chen's ideas, thereby also

generalising the result.

Let G be a graph and X, Y c VG . We denote by [X, Y] the set of

a l l edges joining a vertex of X and a vertex of Y . If Y = VG - X ,

then [X, Y] is called an edge out if X # 0 and Y # 0 . We abbreviate

[X, Y] by &(X) or 6(Y) . A minimal non-empty edge cut is a bond. I t

i s well known that i f G is connected, then [X, Y] is a bond if and only

if G[X] and G[Y] are connected. Moreover, any non-empty edge cut is a

union of disjoint bonds. In the case where G is a directed graph and

every edge of <5(X) is directed toward the end in X , we say that &(X)

is a directed edge out.

If C is a collection of bonds of a graph G and the edges of G

can be directed so that every bond of C is directed, then we say that C

is consistently orientable. The cyclic sequence C = [C, C, . . . , C _ )

of bonds, where n > 3 , i s a ring of bonds in the graph G i f

( i ) C i s cons is ten t ly o r ien tab le ,

( i i ) C n C. * 0 i f and only i f i = j , i = 3 + 1 (mod n) or

3=3-1 (mod rc) , and

( i i i ) no edge of G belongs to more than two bonds of C .

Let A and B be bonds of G , where A = [X, Y] . Then a proper

subset P of B i s a B-chord of 4 i f P i s a bond of C[X] or

C[Y] . Note tha t P , being a proper subset of B , cannot be a bond of

C . Hence i f P = [5 , T] and P i s a bond of G[X] , then [Y, S] # 0

and [Y, T] * 0 . Similar ly i f P i s a bond of G[Y] , then [X, S] * 0

and [X, T] * 0 .

The r ing C = (c , C' , . . . , C ) of bonds i s odd i f n i s odd, even

i f n i s even, strict i f there do not ex i s t d i s t i n c t bonds A, B, C

sa t i s fy ing the conditions B € C , C € C , 8 n C = ^ , d c B u C , and

elegant i f for each i there exis ts a unique C. -chord of C. . I t i s
1^ • X ^
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easily seen that if G is planar the dual of a strict elegant odd ring of

circuits is a strict elegant odd ring of bonds. Hence no planar graph can

contain a strict elegant odd ring of bonds. It is our purpose here to

generalise this result to non-planar graphs by proving the following

theorem.

THEOREM. In any graph, every strict elegant ring of bonds is even.

2. Preliminary lemmas

Throughout the rest of this paper, we le t C be a ring
(c , C , ..., C ) of bonds in a graph G . Furthermore, for each i we
will write Ci = \Ait B^ .

n-l
LEMMA 1. There is a component D of G such that U C. <=_ ED .

i=0 %

Proof. Let D be a component of G such that ED n C # 0 . Since

C is a bond, we have C c ED . Proceeding by induction, assume that

k-1

U C. <=_ED for some k > 0 . Since C1 n <? + 0 , it follows that
i=0 % /C"1 "

ED n C # 0 ; hence C, c ED since C, is a bond. The result follows by

induction.

Thus we henceforth assume without loss of generality that G is

connected.
LEMMA 2. For any i and any e € C. --C. , there exists a C. -J ^+l x. £+1

chord of C. which contains e .
is

Proof. Without loss of generality, le t e € \k ., A.] . Then

[A. n A. , A. n B. 1 is a non-empty edge cut of G[4.] and so a union
t- Is* A- 1s 1s*JL %•

of bonds of G[/l.] . Since C. n C. # 0 , these bonds are proper subsets

of C- , , and hence C. -chords of C. . One of them contains e .

LEMMA 3. If C is elegant, then for each i there is a unique C.-
Is

chord of C\ .

https://doi.org/10.1017/S0004972700025703 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025703


228 C.H.C. L i t t l e

Proof. Let P = [X, Y] be the unique C. -chord of C. , and with-

out loss of generality let P c [A A.] . By Lemma 2, any e € C. -C.
Is Is Z'"*"-l- 'Z'

must belong to P . Hence P = C. - C. , and i t follows immediately that

we may assume C. = P u [x, S.] without loss of generality. Since

G[B.] and G[Y] are connected and 0 c [y, S.] c C. , i t follows that
Is I I

, 5.1 is a C.-chord of C. , and i t is clearly the only such chord.
Is Is l"TX

LEMMA 4. Let C be strict and elegant. Then for all

i , j , k 6 {0, 1 , . . . , n - l } , either (c'. u C^) - C\ c [A^. , A^] or

j k^ i — *• i ' i

Proof. Without loss of general i ty , l e t i = 0 and j 5 k . We sha l l

show f i r s t t ha t e i the r C. - CQ c [AQ, AQ] or C. - CQC\BQ, BQ] . This

statement i s t r i v i a l i f j = 0 ; suppose therefore tha t j > 0 .

Case I . Suppose 1 < j < n-l . Then C' n C. = 0 by ( i i ) .

Suppose tha t C. n [A , A~\ i 0 and C . n [B B ] # 0 . Then

A r* A .. , A r> B . , B n A . and B n B . are a l l non-empty. Let D be

a component of G[A , n ^ .] . Thus 6{VD) c C u C. .L 0 J J - 0 j

We show next tha t 6(VD) i s a bond. Since D i s connected, i t

suf f ices to demonstrate t ha t G - VD i s connected. As C. i s a bond,
3

G\B .] must be connected. Because TO c A . , there must therefore be a

component X of G - VD for which B. c VX . I f £>' i s any component of

„ n J4 .1 other than Z? , then [Vo' /!„ n i4 .1 # 0 because ff[/L] must

be connected; hence TO' c VX . F ina l ly , since B n B . ? 0 and G[B ]

i s connected, we must have B c VX .

We infer tha t X i s the only component of G - VD , and tha t &(VD)

erefore a bond. Since < ? € C , C. € C , C n C. = 0 and

c C u C. , the s t r i c t n e s s of C i s contradicted. Hence e i the r
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Case I I . Suppose j € { l , n - l ) . By Lemma 3, we may assume without

loss of general i ty that j = 1 . Since C t C (otherwise

C' n C n C t 0 } , we may further assume without loss of general i ty tha t

C n [A , A~\ + 0 . Then by Lemma 2 , [A , Al contains a C -chord of

C . Similarly i f C " [s , B ] # 0 , then [s , B ] contains a C -

chord of C . Since C i s e legant , there i s only one such chord, and so

we cannot have both C " [A , Al t 0 and C' n [B BQ] # 0 . Thus

either ^ - CQ E & 0 . ^ ° r °1 ~ C
0 ^ K> B0] •

The lemma has now been proved i f k = j ; l e t us therefore assume as

an induction hypothesis tha t j < k < n and (C. u C, ) - C <£ [A , A~\ .

Since C, r> (C. _ -C ) ^ 0 , we have C, n [A 4 ] # 0 , and the previous

re su l t with j replaced by k shows tha t C, - C' c [4 /I 1 . Thus

(£\ u Cfc) - CQ c [4Q, 4 J • Similar ly , (^. u Cfc) - CQ c [BQ . S ^ i f

3. Proof of the theorem

Let the edges of G be oriented so that every bond in C is

directed. Choose any C. € C . By Lemma U, we may assume without loss of
Is

general i ty tha t C. . - C. <= [A ., A.] . We sha l l define C. to be

positive if its edges are directed toward A. and negative otherwise. Let

us assume without loss of generality that C. is positive. It now
Is

suffices to show that C. is negative, for then the bonds in C must

a l te rna te in s ign , so tha t C must be even. Without loss of gene ra l i ty ,
l e t ci ~ Cui - [ W W • " ^ h -Ai+i s i nce

C. n [ S . , 5.] = 0 . Since C. n C. * 0 and C. i s pos i t ive , the

edges of C. _ must be directed toward B. _ . Since

Ct - Ci+1 E D*i + 1 , ^ i + 1 ] . Lennna k shows tha t C i + 2 - C.+1 cCi+1 E D*i + 1 , ^ i + 1 ] . Lennna k shows tha t C i + 2 C.+1 c

I t follows tha t C. i s negative and the theorem i s proved.
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