BULL. AUSTRAL. MATH. SOC. VOL. 27 (1983), 225-230.

A GENERALISATION OF A RECENT CHARACTERISATION OF PLANAR GRAPHS

C.H.C. LITTLE

Planar graphs have recently been characterised as those which have no strict elegant odd ring of circuits. Here we generalise that result by showing that its dual yields a theorem that is valid for all graphs.

1. Introduction

A new characterisation of planar graphs appears in [2]. This characterisation hinges on the idea of a ring of circuits. If C is a collection of circuits of a graph G and the edges of G can be directed so that every circuit of C is a directed circuit, then we say that C is consistently orientable. The cyclic sequence $C = (C_0, C_1, \ldots, C_{n-1})$ of circuits, where $n \ge 3$, is a ring of circuits in the graph G if

- (i) C is consistently orientable,
- (ii) $EC_i \cap EC_j \neq \emptyset$ if and only if i = j, $i \equiv j + 1 \pmod{n}$ or $i \equiv j - 1 \pmod{n}$, and
- (iii) no edge of G belongs to more than two circuits of C .

The ring C above is odd if n is odd, strict if $|VC_i \cap VC_j| \le 1$ whenever $EC_i \cap EC_j = \emptyset$, and *elegant* if for each $i \in \{0, 1, ..., n-1\}$ there is a path M_i satisfying the conditions $EM_i = EC_{i+1} - EC_i$ and $|VM_i \cap VC_i| = 2$. (Here, and throughout this paper, subscripts are to be

Received 29 October 1982.

read modulo n.)

It is proved in [2] that a graph is planar if and only if it contains no strict elegant odd ring. The proof in [2] has been greatly simplified by Chen [1] using topological considerations. In this paper, we achieve further simplification by dualising some of Chen's ideas, thereby also generalising the result.

Let G be a graph and X, $Y \subseteq VG$. We denote by [X, Y] the set of all edges joining a vertex of X and a vertex of Y. If Y = VG - X, then [X, Y] is called an *edge cut* if $X \neq \emptyset$ and $Y \neq \emptyset$. We abbreviate [X, Y] by $\delta(X)$ or $\delta(Y)$. A minimal non-empty edge cut is a *bond*. It is well known that if G is connected, then [X, Y] is a bond if and only if G[X] and G[Y] are connected. Moreover, any non-empty edge cut is a union of disjoint bonds. In the case where G is a directed graph and every edge of $\delta(X)$ is directed toward the end in X, we say that $\delta(X)$ is a *directed edge cut*.

If C is a collection of bonds of a graph G and the edges of G can be directed so that every bond of C is directed, then we say that C is *consistently orientable*. The cyclic sequence $C = (C_0, C_1, \ldots, C_{n-1})$ of bonds, where $n \ge 3$, is a *ring* of bonds in the graph G if

- (i) C is consistently orientable,
- (ii) $C_i \cap C_j \neq \emptyset$ if and only if i = j, $i \equiv j + 1 \pmod{n}$ or $j \equiv j 1 \pmod{n}$, and

(iii) no edge of G belongs to more than two bonds of C .

Let A and B be bonds of G, where A = [X, Y]. Then a proper subset P of B is a B-chord of A if P is a bond of G[X] or G[Y]. Note that P, being a proper subset of B, cannot be a bond of G. Hence if P = [S, T] and P is a bond of G[X], then $[Y, S] \neq \emptyset$ and $[Y, T] \neq \emptyset$. Similarly if P is a bond of G[Y], then $[X, S] \neq \emptyset$ and $[X, T] \neq \emptyset$.

The ring $C = (C_0, C_1, \ldots, C_{n-1})$ of bonds is *odd* if *n* is odd, *even* if *n* is even, *strict* if there do not exist distinct bonds *A*, *B*, *C* satisfying the conditions $B \in C$, $C \in C$, $B \cap C = \emptyset$, $A \subseteq B \cup C$, and *elegant* if for each *i* there exists a unique C_{i+1} -chord of C_i . It is easily seen that if G is planar the dual of a strict elegant odd ring of circuits is a strict elegant odd ring of bonds. Hence no planar graph can contain a strict elegant odd ring of bonds. It is our purpose here to generalise this result to non-planar graphs by proving the following theorem.

THEOREM. In any graph, every strict elegant ring of bonds is even.

2. Preliminary lemmas

Throughout the rest of this paper, we let C be a ring $(C_0, C_1, \ldots, C_{n-1})$ of bonds in a graph G. Furthermore, for each i we will write $C_i = [A_i, B_i]$.

LEMMA 1. There is a component D of G such that $\bigcup_{i=0}^{n-1} C_i \subseteq ED$.

Proof. Let D be a component of G such that $ED \cap C_0 \neq \emptyset$. Since C_0 is a bond, we have $C_0 \subseteq ED$. Proceeding by induction, assume that $k-1 \\ \cup \\ C_i \subseteq ED$ for some k > 0. Since $C_{k-1} \cap C_k \neq \emptyset$, it follows that $ED \cap C_k \neq \emptyset$; hence $C_k \subseteq ED$ since C_k is a bond. The result follows by induction.

Thus we henceforth assume without loss of generality that G is connected.

LEMMA 2. For any i and any $e \in C_{i+1} - C_i$, there exists a $C_{i+1} - C_i$ of C_i which contains e.

Proof. Without loss of generality, let $e \in [A_i, A_i]$. Then $\begin{bmatrix} A_i \cap A_{i+1}, A_i \cap B_{i+1} \end{bmatrix}$ is a non-empty edge cut of $G[A_i]$ and so a union of bonds of $G[A_i]$. Since $C_i \cap C_{i+1} \neq \emptyset$, these bonds are proper subsets of C_{i+1} , and hence C_{i+1} -chords of C_i . One of them contains e.

LEMMA 3. If C is elegant, then for each i there is a unique C_i -chord of C_{i+1} .

Proof. Let P = [X, Y] be the unique C_{i+1} -chord of C_i , and without loss of generality let $P \subseteq [A_i, A_i]$. By Lemma 2, any $e \in C_{i+1} - C_i$ must belong to P. Hence $P = C_{i+1} - C_i$, and it follows immediately that we may assume $C_{i+1} = P \cup [X, B_i]$ without loss of generality. Since $G[B_i]$ and G[Y] are connected and $\emptyset \subset [Y, B_i] \subset C_i$, it follows that $[Y, B_i]$ is a C_i -chord of C_{i+1} , and it is clearly the only such chord.

LEMMA 4. Let C be strict and elegant. Then for all $i, j, k \in \{0, 1, ..., n-1\}$, either $(C_j \cup C_k) - C_i \subseteq [A_i, A_i]$ or $(C_j \cup C_k) - C_i \subseteq [B_i, B_i]$.

Proof. Without loss of generality, let i = 0 and $j \le k$. We shall show first that either $C_j - C_0 \subseteq [A_0, A_0]$ or $C_j - C_0 \subseteq [B_0, B_0]$. This statement is trivial if j = 0; suppose therefore that j > 0.

Case I. Suppose $1 \le j \le n-1$. Then $C_0 \cap C_j = \emptyset$ by (ii).

Suppose that $C_j \cap [A_0, A_0] \neq \emptyset$ and $C_j \cap [B_0, B_0] \neq \emptyset$. Then $A_0 \cap A_j$, $A_0 \cap B_j$, $B_0 \cap A_j$ and $B_0 \cap B_j$ are all non-empty. Let D be a component of $G[A_0 \cap A_j]$. Thus $\delta(VD) \subseteq C_0 \cup C_j$.

We show next that $\delta(VD)$ is a bond. Since D is connected, it suffices to demonstrate that G - VD is connected. As C_j is a bond, $G[B_j]$ must be connected. Because $VD \subseteq A_j$, there must therefore be a component X of G - VD for which $B_j \subseteq VX$. If D' is any component of $G[A_0 \cap A_j]$ other than D, then $[VD', A_0 \cap A_j] \neq \emptyset$ because $G[A_0]$ must be connected; hence $VD' \subseteq VX$. Finally, since $B_0 \cap B_j \neq \emptyset$ and $G[B_0]$ is connected, we must have $B_0 \subseteq VX$.

We infer that X is the only component of G - VD, and that $\delta(VD)$ is therefore a bond. Since $C_0 \in \mathbb{C}$, $C_j \in \mathbb{C}$, $C_0 \cap C_j = \emptyset$ and $\delta(VD) \subseteq C_0 \cup C_j$, the strictness of \mathbb{C} is contradicted. Hence either $C_j - C_0 \subseteq [A_0, A_0]$ or $C_j - C_0 \subseteq [B_0, B_0]$.

Case II. Suppose $j \in \{1, n-1\}$. By Lemma 3, we may assume without loss of generality that j = 1. Since $C_0 \neq C_1$ (otherwise $C_0 \cap C_1 \cap C_2 \neq \emptyset$), we may further assume without loss of generality that $C_1 \cap [A_0, A_0] \neq \emptyset$. Then by Lemma 2, $[A_0, A_0]$ contains a C_1 -chord of C_0 . Similarly if $C_1 \cap [B_0, B_0] \neq \emptyset$, then $[B_0, B_0]$ contains a C_1 -chord of of C_0 . Since C is elegant, there is only one such chord, and so we cannot have both $C_1 \cap [A_0, A_0] \neq \emptyset$ and $C_1 \cap [B_0, B_0] \neq \emptyset$. Thus either $C_1 - C_0 \subseteq [A_0, A_0]$ or $C_1 - C_0 \subseteq [B_0, B_0]$.

The lemma has now been proved if k = j; let us therefore assume as an induction hypothesis that j < k < n and $(C_j \cup C_{k-1}) - C_0 \subseteq [A_0, A_0]$. Since $C_k \cap (C_{k-1} - C_0) \neq \emptyset$, we have $C_k \cap [A_0, A_0] \neq \emptyset$, and the previous result with j replaced by k shows that $C_k - C_0 \subseteq [A_0, A_0]$. Thus $(C_j \cup C_k) - C_0 \subseteq [A_0, A_0]$. Similarly, $(C_j \cup C_k) - C_0 \subseteq [B_0, B_0]$ if $(C_j \cup C_{k-1}) - C_0 \subseteq [B_0, B_0]$.

3. Proof of the theorem

Let the edges of G be oriented so that every bond in C is directed. Choose any $C_i \in C$. By Lemma 4, we may assume without loss of generality that $C_{i+1} - C_i \subseteq [A_i, A_i]$. We shall define C_i to be *positive* if its edges are directed toward A_i and *negative* otherwise. Let us assume without loss of generality that C_i is positive. It now suffices to show that C_{i+1} is negative, for then the bonds in C must alternate in sign, so that C must be even. Without loss of generality, let $C_i - C_{i+1} \subseteq [A_{i+1}, A_{i+1}]$. Then $B_i \subseteq A_{i+1}$ since $C_{i+1} \cap [B_i, B_i] = \emptyset$. Since $C_i \cap C_{i+1} \neq \emptyset$ and C_i is positive, the edges of C_{i+1} must be directed toward B_{i+1} . Since $C_i - C_{i+1} \subseteq [A_{i+1}, A_{i+1}]$, Lemma 4 shows that $C_{i+2} - C_{i+1} \subseteq [A_{i+1}, A_{i+1}]$. It follows that C_{i+1} is negative and the theorem is proved.

References

- [1] C.C. Chen, "On a characterization of planar graphs", Bull. Austral. Math. Soc. 24 (1981), 289-294.
- [2] D.A. Holton and C.H.C. Little, "Elegant odd rings and non-planar graphs", Combinatorial Mathematics VIII, 234-268 (Proc. Eighth Australian Conf. Combinatorial Mathematics, 1980. Lecture Notes in Mathematics, 884. Springer-Verlag, Berlin, Heidelberg, New York, 1981).

Department of Mathematics and Statistics, Massey University, Palmerston North, New Zealand.