Bull. Austral. Math. Soc.

ON A CLASS NUMBER FORMULA FOR REAL QUADRATIC NUMBER FIELDS

David M. Bradley, Ali E. Özlük and C. Snyder

For an even Dirichlet character ψ, we obtain a formula for $L(1, \psi)$ in terms of a sum of Dirichlet L-series evaluated at $s=2$ and $s=3$ and a rapidly convergent numerical series involving the central binomial coefficients. We then derive a class number formula for real quadratic number fields by taking $L(s, \psi)$ to be the quadratic L-series associated with these fields.

1. Introduction

In [1], acceleration formulæ are derived for Catalan's constant $L\left(2, \chi_{4}\right)$. (Here χ_{4} is the non-principal Dirichlet character of modulus 4.) In some of these formulæ $L\left(2, \chi_{4}\right)$ is given as the sum of two terms: one involving a rapidly convergent series and the other involving the natural logarithm of a unit in the ring of integers of a finite Abelian field extension of the rational number field \mathbb{Q}. The existence of the logarithmic terms suggested to the authors that these terms should somehow be related to the values of Dirichlet L-series at the argument $s=1$. This leads to the general question of whether or not there exist relations between the value of L-series at $s=1$ and values of L-series at integer arguments larger than 1.

The purpose of this note is to exhibit such a relation between values of L-series. For an even Dirichlet character ψ, we obtain a formula for $L(1, \psi)$ in terms of a sum of Dirichlet series evaluated at $s=2$ and $s=3$ and a convergent numerical series involving powers of twice special values of the sine function divided by $\binom{2 n}{n} n^{3}$. See Theorem 1 below for a precise statement. (It is perhaps interesting to notice that not much is known about number theoretic properties of the values of the L-series on the right-hand side of the formula given in this theorem.) We then deduce a class number formula for real quadratic number fields by letting ψ be the quadratic character associated with a real quadratic number field; see Corollary 1. This class number formula seems new to us and is perhaps an interesting curiosity.

[^0]To derive our results, we employ a formula of Zucker [5] that expresses

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{x^{2 n}}{\binom{2 n}{n} n^{3}}, \quad|x| \leqslant 2 \tag{1}
\end{equation*}
$$

in terms of periodic zeta functions. Proposition 1 below shows how periodic zeta functions may be expressed in terms of Dirichlet L-series. Thus, we can rewrite (1) in terms of L-series values, thereby obtaining our result.

2. Preliminaries

Let m be a positive integer. We denote the group of Dirichlet characters of modulus m by \widehat{U}_{m}. The Dirichlet L-series associated with $\chi \in \widehat{U}_{m}$ is

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

Similarly, for real β we define the periodic zeta function (a special case of the Lerch transcendent) by

$$
\Phi(s, \beta)=\sum_{n=1}^{\infty} \frac{e^{2 \pi \mathrm{i} \beta n}}{n^{s}}, \quad \operatorname{Re}(s)>1
$$

Let $\zeta_{m}=e^{2 \pi i / m}$. Throughout, the sum over a complete set of residues modulo m is denoted by $\sum_{a \bmod m}$ and the sum over the positive integer divisors of m is denoted by $\sum_{d \mid m}$. Thus, Ramanujan's sum is

$$
c_{m}(k)=\sum_{\substack{\nu \bmod m \\ \nu, m)=1}} \zeta_{m}^{\nu k}
$$

and likewise the Gaussian sum attached to χ is

$$
\tau(\chi)=\sum_{\nu \bmod m} \chi(\nu) \zeta_{m}^{\nu}
$$

Also, $\bar{\chi}$ denotes the inverse-or equivalently, the complex conjugate-of the character χ. Finally, as customary, $\mu(), \varphi()$, and $\zeta()$ denote the Möbius, Euler totient, and Riemann zeta functions, respectively.

Our immediate goal is to represent periodic zeta functions in terms of L-series. It turns out to be easier to do the reverse first. The following result is well known, so we omit the proof.

Lemma 1. Let m be a positive integer, let χ be a Dirichlet character of modulus m, and let $L(s, \chi)$ be the associated Dirichlet L-series. Then

$$
L(s, \chi)=\frac{1}{m} \sum_{a \bmod m} \chi(a) \sum_{b \bmod m} \zeta_{m}^{-a b} \Phi(s, b / m), \quad \operatorname{Re}(s)>1
$$

Lemma 2. Let a and m be positive integers. Then

$$
\frac{1}{\varphi(m)} \sum_{\chi \in \widehat{U}_{m}} \chi(a) \tau(\bar{\chi}) L(s, \chi)=\frac{1}{m} \sum_{b \bmod m} \Phi(s, b / m) c_{m}(a-b), \quad \operatorname{Re}(s)>1
$$

Proof: First recall that

$$
\sum_{\chi \in \widehat{U}_{m}} \bar{\chi}(c) \chi(a)= \begin{cases}\varphi(m) & \text { if }(a c, m)=1 \text { and } a \equiv c \bmod m \\ 0 & \text { otherwise }\end{cases}
$$

We claim that if $(c, m)=1$, then

$$
\begin{equation*}
\frac{\varphi(m)}{m} \sum_{b \bmod m} \zeta_{m}^{-b c} \Phi(s, b / m)=\sum_{\chi \in \widehat{U}_{m}} \chi(c) L(s, \chi) \tag{2}
\end{equation*}
$$

By Lemma 1,

$$
\begin{aligned}
\sum_{\chi \in \widehat{U}_{m}} \bar{\chi}(c) L(s, \chi) & =\frac{1}{m} \sum_{a \bmod m} \sum_{b \bmod m} \zeta_{m}^{-a b} \Phi(s, b / m) \sum_{\chi \in \hat{U}_{m}} \bar{\chi}(c) \chi(a) \\
& =\frac{\varphi(m)}{m} \sum_{b \bmod m} \zeta_{m}^{-b c} \Phi(s, b / m)
\end{aligned}
$$

On the other hand, if $(c, m)>1$, then clearly

$$
\sum_{\chi \in \widehat{U}_{m}} \bar{\chi}(c) L(s, \chi)=0
$$

We now multiply equation (2) by $\zeta_{m}^{a c}$ with $(a, m)=1$, and then sum over all c modulo m, obtaining

$$
\begin{aligned}
\frac{\varphi(m)}{m} \sum_{b \bmod m} \sum_{\substack{c \bmod m \\
(c, m)=1}} \zeta_{m}^{(a-b) c} \Phi(s, b / m) & =\sum_{c \bmod m} \zeta_{m}^{a c} \sum_{x \in \hat{U}_{m}} \bar{\chi}(c) L(s, \chi) \\
& =\sum_{c \bmod m} \zeta_{m}^{a c} \sum_{x \in \hat{U}_{m}} \bar{\chi}(c) L(s, \chi) \\
& =\sum_{x \in \hat{U}_{m}} \sum_{c \bmod m} \bar{\chi}(c) \zeta_{m}^{a c} L(s, \chi) \\
& =\sum_{x \in \hat{U}_{m}} \chi(a) \tau(\bar{\chi}) L(s, \chi)
\end{aligned}
$$

Rewriting this latter equation in terms of Ramanujan sums completes the proof.
We now state the main proposition of this section.
Proposition 1. Let a and m be coprime positive integers. Then

$$
m^{s} \Phi(s, a / m)=\sum_{d \mid m} \frac{d^{s}}{\varphi(d)} \sum_{\chi \in \hat{U}_{d}} \chi(a) \tau(\bar{\chi}) L(s, \chi), \quad \operatorname{Re}(s)>1
$$

Before proving Proposition 1, we state and prove two lemmata which are used in the proof of Proposition 1.

Lemma 3. Let $f: \mathbb{Z} \rightarrow \mathbb{C}$ be multiplicative and such that for all positive integers m,

$$
F(m):=\sum_{d \mid m} \mu^{2}(d) f(d)
$$

is non-zero. Furthermore, let

$$
g(m):=\sum_{d \mid m} \frac{\mu(d)}{F(d)}
$$

Then for all positive integers k and m such that k divides m,

$$
\sum_{\substack{d|m \\ k| d}} \mu^{2}(d) f(d)=F(m) \mu^{2}(k) g(k)
$$

In particular,

$$
\sum_{\substack{d|m \\ k| d}} \frac{\mu^{2}(d)}{\varphi(d)}=\frac{m}{\varphi(m)} \frac{\mu^{2}(k)}{k}
$$

Proof: First, let us define $F(x)=f(x)=0$ if x is not an integer. Next, observe that $F\left(p^{a}\right)=F(p)$ for all positive primes p and positive integers a. We may write m as $\prod_{p} p^{a_{p}}$ and k as $\prod_{p} p^{b_{p}}$ where p ranges over all positive primes and a_{p} and b_{p} are non-negative integers with $b_{p} \leqslant a_{p}$. Since F is multiplicative, we have

$$
\begin{align*}
\sum_{\substack{d|m \\
k| d}} \mu^{2}(d) f(d) & =\prod_{p \mid m}\left(\sum_{\nu_{p}=b_{p}}^{a_{p}} \mu^{2}\left(p^{\nu_{p}}\right) f\left(p^{\nu_{p}}\right)\right) \\
& =\prod_{p \mid m}\left(F\left(p^{a_{p}}\right)-F\left(p^{b_{p}-1}\right)\right) \\
& =\prod_{p \mid m} F\left(p^{a_{p}}\right)\left(1-\frac{F\left(p^{b_{p}-1}\right)}{F\left(p^{a_{p}}\right)}\right) \\
& =F(m) \prod_{p \mid m}\left(1-\frac{F\left(p^{b_{p}-1}\right)}{F\left(p^{a_{p}}\right)}\right) \tag{3}
\end{align*}
$$

Notice that the final product in (3) vanishes if any $b_{p} \geqslant 2$, for then $F\left(p^{b_{p}-1}\right)=F(p)=$ $F\left(p^{a_{p}}\right)$. Hence if k is not square-free, then the lemma is trivially true as both sides are equal to 0 . Therefore, we may assume henceforth that k is square-free. Now if $b_{p}=0$, then $1-F\left(p^{b_{p}-1}\right) / F\left(p^{a_{p}}\right)=1$, and thus (under the assumption that k is square-free), we
may restrict the final product in (3) to primes p for which $b_{p}=1$. This yields

$$
\begin{aligned}
\sum_{\substack{d|m \\
k| d}} \mu^{2}(d) f(d) & =F(m) \prod_{p \mid k}\left(1-\frac{1}{F\left(p^{a_{p}}\right)}\right)=F(m) \prod_{p \mid k}\left(1-\frac{1}{F(p)}\right) \\
& =F(m) \sum_{d \mid k} \frac{\mu(d)}{F(d)} \\
& =F(m) g(k)
\end{aligned}
$$

Thus, in general, we have

$$
\sum_{\substack{d|m \\ k| d}} \mu^{2}(d) f(d)=F(m) \mu^{2}(k) g(k)
$$

The special case is obtained by taking $F(m)=m / \varphi(m)$, so that if k is square-free, then

$$
g(k)=\sum_{d \mid k} \frac{\mu(d) \varphi(d)}{d}=\prod_{p \mid k}\left(1-\frac{\varphi(p)}{p}\right)=\prod_{p \mid k} \frac{1}{p}=\frac{1}{k} .
$$

This completes the proof of Lemma 3.
Lemma 4. Let m be a positive integer and let β be any real number. Then

$$
\sum_{\substack{n=1 \\(n, m)=1}}^{\infty} \frac{e^{2 \pi i \beta n}}{n^{s}}=\sum_{d \mid m} \frac{\mu(d)}{d^{s}} \Phi(s, \beta d)
$$

Proof: Let x be any complex number with $|x| \leqslant 1$. Then

$$
\begin{aligned}
\sum_{\substack{n=1 \\
(n, m)=1}}^{\infty} \frac{x^{n}}{n^{s}} & =\sum_{n=1}^{\infty} \frac{x^{n}}{n^{s}} \sum_{d \mid(n, m)} \mu(d)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{s}} \sum_{\substack{d|n \\
d| m}} \mu(d)=\sum_{d \mid m} \mu(d) \sum_{k=1}^{\infty} \frac{x^{k d}}{(k d)^{s}} \\
& =\sum_{d \mid m} \frac{\mu(d)}{d^{s}} \sum_{k=1}^{\infty} \frac{x^{k d}}{k^{s}}
\end{aligned}
$$

Replacing x by $e^{2 \pi i \beta}$ completes the proof.
Proof of Proposition 1: First, recall (see for example [4, p. 238]) that Ramanujan's sum has the explicit representation

$$
c_{m}(k)=\varphi(m) \frac{\mu(m /(m, k))}{\varphi(m /(m, k))}
$$

Hence, we have

$$
\begin{aligned}
\frac{1}{m} \sum_{b \bmod m} \Phi(s, b / m) c_{m}(a-b) & =\frac{1}{m} \sum_{b \bmod m} \Phi(s, b / m) \varphi(m) \frac{\mu(m /(m, a-b))}{\varphi(m /(m, a-b))} \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \sum_{\substack{b, \bmod m \\
(a-b, m)=m / d}} \Phi(s, b / m) \frac{\mu(d)}{\varphi(d)} \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \frac{\mu(d)}{\varphi(d)} \sum_{\substack{\nu(\nu, d d \\
(\nu, d)=1}} \Phi\left(s, \frac{a+m \nu / d}{m}\right) \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \frac{\mu(d)}{\varphi(d)} \sum_{n=1}^{\infty} n^{-s} \sum_{\substack{\nu \bmod ^{d} d \\
(\nu, d)=1}} \zeta_{m}^{(a+m \nu / d) n} \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \frac{\mu(d)}{\varphi(d)} \sum_{n=1}^{\infty} n^{-s} \zeta_{m}^{a n} c_{d}(n) \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \frac{\mu(d)}{\varphi(d)} \sum_{n=1}^{\infty} n^{-s} \zeta_{m}^{a n} \varphi(d) \frac{\mu(d /(n, d))}{\varphi(d /(n, d))} \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \mu(d) \sum_{f \mid d} \frac{\mu(f)}{\varphi(f)} \sum_{\substack{n=1 \\
(n, f)=1}}^{\infty}(n d / f)^{-s} \zeta_{f m / d}^{a n} \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \mu(d) \sum_{f \mid d} \frac{\mu(f)}{\varphi(f)}\left(\frac{d}{f}\right)^{-s} \sum_{n=1}^{\infty} n^{-s} \zeta_{f m / d}^{a n} .
\end{aligned}
$$

By Lemma 4 the final expression in (4) can be rewritten as

$$
\begin{equation*}
\frac{\varphi(m)}{m} \sum_{d \mid m} \mu(d) \sum_{f \mid d} \frac{\mu(f)}{\varphi(f)}\left(\frac{d}{f}\right)^{-s} \sum_{\delta \mid f} \delta^{-s} \mu(\delta) \Phi\left(s, \frac{a d \delta}{f m}\right) \tag{5}
\end{equation*}
$$

Now transform (5) by changing the variable f to d / f, then letting $k=f \delta$ (noticing that the only non-zero terms occur when d is square-free), then observing that $\sum_{f \mid k} \varphi(f)=k$, and finally replacing d by $k d$. Thus, from (4) and (5),

$$
\begin{align*}
\frac{1}{m} \sum_{b \text { mod } m} \Phi(s, b / m) c_{m}(a-b) & =\frac{\varphi(m)}{m} \sum_{d \mid m} \mu(d) \sum_{f \mid d} \frac{\mu(d / f)}{\varphi(d / f)} f^{-s} \sum_{\delta \mid(d / f)} \delta^{-s} \mu(\delta) \Phi(s, a f \delta / m) \\
& =\frac{\varphi(m)}{m} \sum_{d \mid m} \sum_{k \mid d} \frac{\mu^{2}(d)}{\varphi(d)} k^{-s} \mu(k) \Phi(s, a k / m) \sum_{f \mid k} \varphi(f) \\
& =\frac{\varphi(m)}{m} \sum_{k \mid m} k^{1-s} \mu(k) \Phi(s, a k / m) \sum_{\substack{d|m \\
k| d}} \frac{\mu^{2}(d)}{\varphi(d)} \tag{6}
\end{align*}
$$

By applying Lemma 3 to (6) and then replacing m / k by d, we find that

$$
\begin{align*}
\frac{1}{m} \sum_{b \bmod m} \Phi(s, b / m) c_{m}(a-b) & =\sum_{k \mid m} k^{-s} \mu(k) \Phi(s, a k / m) \\
& =\frac{1}{m^{s}} \sum_{d \mid m} d^{s} \mu(m / d) \Phi(s, a / d) . \tag{7}
\end{align*}
$$

Hence by (7) and Lemma 2, we see that

$$
\begin{aligned}
\frac{1}{m^{s}} \sum_{d \mid m} d^{s} \mu(m / d) \Phi(s, a / d) & =\frac{1}{m} \sum_{b \bmod m} \Phi(s, b / m) c_{m}(a-b) \\
& =\frac{1}{\varphi(m)} \sum_{\chi \in \widehat{U}_{m}} \chi(a) \tau(\bar{\chi}) L(s, \chi)
\end{aligned}
$$

An application of Möbius inversion now completes the proof.

3. Main Results

We are now in a position to derive our class number formula. To this end, for $|x| \leqslant 2$ and $2 \leqslant k \in \mathbb{Z}$, put

$$
s(k, x):=\sum_{n=1}^{\infty} \frac{x^{2 n}}{\binom{2 n}{n} n^{k}}
$$

Let $0<\theta<\pi$ and $x=2 \sin \theta / 2$. Then [3, p. $61(2)] 2 s(2, x)=\theta^{2}$ and by formula (2.7) of [5],

$$
\begin{align*}
\theta^{2} \log (2 \sin \theta / 2)=2 \zeta(3)+\sum_{n=1}^{\infty} & \frac{(2 \sin \theta / 2)^{2 n}}{\binom{2 n}{n} n^{3}} \\
& -2 \theta \operatorname{Im} \Phi(2, \theta / 2 \pi)-2 \operatorname{Re} \Phi(3, \theta / 2 \pi) \tag{8}
\end{align*}
$$

where $R e$ and Im denote the real and imaginary parts of a complex number, respectively. Now substitute $\theta=2 \pi a / m$ with $(a, m)=1$ and $0<a<m / 2$ in (8) to obtain

$$
\begin{align*}
\log \left(2 \sin \frac{\pi a}{m}\right)=\frac{m^{2}}{2 \pi^{2} a^{2}} \zeta(3)+ & \frac{m^{2}}{4 \pi^{2} a^{2}} \sum_{n=1}^{\infty} \frac{(2 \sin \pi a / m)^{2 n}}{\binom{2 n}{n} n^{3}} \\
& -\frac{m}{\pi a} \operatorname{Im} \Phi\left(2, \frac{a}{m}\right)-\frac{m^{2}}{2 \pi^{2} a^{2}} \operatorname{Re} \Phi\left(3, \frac{a}{m}\right) \tag{9}
\end{align*}
$$

In our main result, character sums of consecutive integer powers arise, and it is convenient to fix some notation for these.

Definition 1. Let m be a positive integer. If χ is a Dirichlet character of modulus m and j is any integer, put

$$
\begin{equation*}
\mathcal{B}_{j}(\chi):=\sum_{0<a<m / 2} a^{j} \chi(a) \tag{10}
\end{equation*}
$$

We now state and prove our main result.
THEOREM 1. Let m be a positive integer, let ψ be an even primitive character of modulus m, and let \mathcal{B}_{j} be as in (10). Then

$$
\begin{aligned}
L(1, \psi)= & \frac{2 \tau(\psi)}{\pi i m^{2}} \sum_{d \mid m} \frac{d^{2}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi o d d}} \mathcal{B}_{-1}(\chi \bar{\psi}) \tau(\bar{\chi}) L(2, \chi) \\
& +\frac{\tau(\psi)}{\pi^{2} m^{2}} \sum_{d \mid m} \frac{d^{3}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi \in V{ }_{d}}} \mathcal{B}_{-2}(\chi \bar{\psi}) \tau(\bar{\chi}) L(3, \chi)-\frac{m \tau(\psi)}{\pi^{2}} \mathcal{B}_{-2}(\bar{\psi}) \zeta(3) \\
& \quad-\frac{m \tau(\psi)}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{\binom{2 n}{n} n^{3}} \sum_{0<a<m / 2} \frac{\bar{\psi}(a)}{a^{2}}\left(2 \sin \frac{\pi a}{m}\right)^{2 n}
\end{aligned}
$$

Proof: We start with (9) and write $\operatorname{Im} \Phi(2, a / m)$ and $\operatorname{Re} \Phi(3, a / m)$ in terms of L-series via Proposition 1. First observe that

$$
\begin{aligned}
\operatorname{Im}\left(\sum_{\chi \bmod d} \chi(a) \tau(\bar{\chi}) L(2, \chi)\right) & =\frac{1}{2 i} \sum_{x \in \hat{U}_{d}}(\chi(a) \tau(\bar{\chi}) L(2, \chi)-\overline{\chi(a) \tau(\bar{\chi}) L(2, \chi)}) \\
& =\frac{1}{2 i} \sum_{\chi \in \widehat{U}_{d}}(\chi(a) \tau(\bar{\chi}) L(2, \chi)-\chi(-1) \bar{\chi}(a) \tau(\chi) L(2, \bar{\chi}))
\end{aligned}
$$

since $\overline{\tau(\chi)}=\chi(-1) \tau(\bar{\chi})$. Now split the sum over the two terms and in the second sum replace χ by $\bar{\chi}$. The even characters cancel and we obtain

$$
\operatorname{Im}\left(\sum_{\chi \in \hat{U}_{d}} \chi(a) \tau(\bar{\chi}) L(2, \chi)\right)=\frac{1}{i} \sum_{\substack{\chi \in \hat{U}_{d} \\ \chi(-1)=-1}} \chi(a) \tau(\bar{\chi}) L(2, \chi)
$$

Similarly, we see that

$$
\operatorname{Re}\left(\sum_{\chi \in \hat{U}_{d}} \chi(a) \tau(\bar{\chi}) L(3, \chi)\right)=\sum_{\substack{x \in \hat{U}_{d} \\ \chi(-1)=1}} \chi(a) \tau(\bar{\chi}) L(3, \chi)
$$

Thus by (9) and Proposition 1,

$$
\begin{align*}
& \log \left(2 \sin \frac{\pi a}{m}\right)=\frac{m^{2}}{2 \pi^{2} a^{2}} \zeta(3)+\frac{m^{2}}{4 \pi^{2} a^{2}} \sum_{n=1}^{\infty} \frac{(2 \sin \pi a / m)^{2 n}}{\binom{2 n}{n} n^{3}} \\
&-\frac{1}{\pi i m a} \sum_{d \mid m} \frac{d^{2}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi \text { odd }}} \chi(a) \tau(\bar{\chi}) L(2, \chi) \\
&-\frac{1}{2 \pi^{2} m a^{2}} \sum_{d \mid m} \frac{d^{3}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi \text { even }}} \chi(a) \tau(\bar{\chi}) L(3, \chi) . \tag{11}
\end{align*}
$$

Next, recall (see for example [2, p. 336]) that if ψ is an even primitive character of modulus m, then

$$
\begin{align*}
L(1, \psi) & =-\frac{\tau(\psi)}{m} \sum_{a=1}^{m-1} \bar{\psi}(a) \log \left(2 \sin \frac{\pi a}{m}\right) \\
& =-\frac{2 \tau(\psi)}{m} \sum_{0<a<m / 2} \bar{\psi}(a) \log \left(2 \sin \frac{\pi a}{m}\right) \tag{12}
\end{align*}
$$

Substituting (12) into (11) completes the proof.
Let D be a (positive fundamental) discriminant of a real quadratic number field. Let $h(D)$ denote its class number, $\varepsilon=\varepsilon_{D}$ its fundamental unit >1, and $\chi_{D}=(D / \cdot)$, the Kronecker symbol, that is, the Dirichlet character associated with the quadratic field of discriminant D. Then by Dirichlet (see for example [2, p. 343]), we know that

$$
2 h(D) \log \varepsilon_{D}=\sqrt{D} L\left(1, \chi_{D}\right)
$$

Hence by Theorem 1 , using the fact that $\tau\left(\chi_{D}\right)=\sqrt{D}$, we obtain the following class number formula.

Corollary 1. Class Number Formula

$$
\begin{aligned}
h(D) \log \varepsilon_{D}= & \frac{1}{\pi D i} \sum_{d \mid D} \frac{d^{2}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi \text { odd }}} \mathcal{B}_{-1}\left(\chi \chi_{D}\right) \tau(\bar{\chi}) L(2, \chi) \\
& +\frac{1}{2 \pi^{2} D} \sum_{d \mid D} \frac{d^{3}}{\varphi(d)} \sum_{\substack{\chi \in \hat{U}_{d} \\
\chi \text { even }}} \mathcal{B}_{-2}\left(\chi \chi_{D}\right) \tau(\bar{\chi}) L(3, \chi) \\
& \quad-\frac{D^{2}}{2 \pi^{2}} \mathcal{B}_{-2}\left(\chi_{D}\right) \zeta(3) \\
& -\frac{D^{2}}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{\binom{2 n}{n} n^{3}} \sum_{0<a<D / 2} \frac{\chi_{D}(a)}{a^{2}}\left(2 \sin \frac{\pi a}{D}\right)^{2 n} .
\end{aligned}
$$

3.1. A Computation. As an amusing conclusion, we now show how to use our class number formula to compute $h(5)$, the class number of the quadratic field $\mathbb{Q}(\sqrt{5})$. Since the discriminant $D=5$, the only relevant moduli of characters are $m=1$ and $m=5$. For $m=1$, the unique character is the even constant character 1 . For $m=5$, we have four characters determined by the homomorphisms from $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$into \mathbb{C}^{\times}, namely χ_{ν} for $\nu=0,1,2,3$ determined by $\chi_{\nu}(2)=i^{\nu}$. Notice that $\overline{\chi_{1}}=\chi_{3}$ and that $\chi_{2}=(5 / \cdot)=\chi_{5}$, the Kronecker character modulo 5 .

By Corollary 1, we have $h(5)=(A+B+C+S) / \log \varepsilon_{5}$, where

$$
\begin{aligned}
A & =\frac{5}{4 \pi i}\left(\mathcal{B}_{-1}\left(\chi_{3}\right) \tau\left(\chi_{3}\right) L\left(2, \chi_{1}\right)+\mathcal{B}_{-1}\left(\chi_{1}\right) \tau\left(\chi_{1}\right) L\left(2, \chi_{3}\right)\right), \\
B & =\frac{1}{10 \pi^{2}}\left(\mathcal{B}_{-2}\left(\chi_{5}\right) \tau(1) \zeta(3)+\frac{125}{4}\left(\mathcal{B}_{-2}\left(\chi_{5}\right) \tau\left(\chi_{0}\right) L\left(3, \chi_{0}\right)+\mathcal{B}_{-2}\left(\chi_{0}\right) \tau\left(\chi_{5}\right) L\left(3, \chi_{5}\right)\right)\right) \\
C & =-\frac{25}{2 \pi^{2}} \mathcal{B}_{-2}\left(\chi_{5}\right) \zeta(3) \\
S & =-\frac{25}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{\binom{2 n}{n} n^{3}}\left(\chi_{5}(1)(2 \sin \pi / 5)^{2 n}+\frac{1}{4} \chi_{5}(2)(2 \sin 2 \pi / 5)^{2 n}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{B}_{-1}\left(\chi_{1}\right) & =\chi_{1}(1)+\frac{1}{2} \chi_{1}(2)=1+\frac{1}{2} i \\
\mathcal{B}_{-1}\left(\chi_{3}\right) & =1-\frac{1}{2} i \\
\mathcal{B}_{-2}\left(\chi_{0}\right) & =1+\frac{1}{4}=\frac{5}{4} \\
\mathcal{B}_{-2}\left(\chi_{5}\right) & =1-\frac{1}{4}=\frac{3}{4} \\
\tau(1) & =1 \\
\tau\left(\chi_{0}\right) & =-1 \\
\tau\left(\chi_{5}\right) & =\sqrt{5} \\
\tau\left(\chi_{1}\right) & =\zeta_{5}+i \zeta_{5}^{2}-i \zeta_{5}^{3}-\zeta_{5}^{4}=\left(i+\frac{1-\sqrt{5}}{2}\right) \sqrt{\frac{5+\sqrt{5}}{2}} \\
\tau\left(\chi_{3}\right) & =\zeta_{5}-i \zeta_{5}^{2}+i \zeta_{5}^{3}-\zeta_{5}^{4}=\left(i+\frac{\sqrt{5}-1}{2}\right) \sqrt{\frac{5+\sqrt{5}}{2}} \\
L\left(3, \chi_{0}\right) & =\left(1-5^{-3}\right) \zeta(3)=\frac{124}{125} \zeta(3) .
\end{aligned}
$$

In order to evaluate $L\left(s, \chi_{\nu}\right)$ for $\nu=0,1,2,3$ and $s=2,3$ we write

$$
L\left(s, \chi_{\nu}\right)=5^{-s} \sum_{r=1}^{4} \chi_{\nu}(r) \zeta(s, r / 5)
$$

where $\zeta(s, a)=\sum_{n=0}^{\infty}(n+a)^{-s}$ is the Hurwitz zeta function. Hence to evaluate these L series, it suffices to evaluate the Hurwitz zeta functions. The following table gives the appropriate approximations.

r	$\zeta(2, r / 5)$	$\zeta(3, r / 5)$
1	$26.26737720 \ldots$	$125.73901805 \ldots$
2	$7.27535659 \ldots$	$16.1195643 \ldots$
3	$3.63620967 \ldots$	$4.98141576 \ldots$
4	$2.29947413 \ldots$	$2.21505785 \ldots$

Thus, we find that

$$
\begin{aligned}
& L\left(2, \chi_{1}\right)=0.95871612 \ldots+(0.14556587 \ldots) i \\
& L\left(2, \chi_{3}\right)=0.95871612 \ldots-(0.14556587 \ldots) i \\
& L\left(3, \chi_{5}\right)=0.85482476 \ldots
\end{aligned}
$$

Furthermore, $\zeta(3)=1.20205690 \ldots$, so that

$$
\begin{aligned}
& A=1.24907310 \ldots \\
& B=0.48248793 \ldots \\
& C=-1.14181713 \ldots \\
& S=-0.10853146 \ldots
\end{aligned}
$$

Finally, the fundamental unit

$$
\varepsilon_{5}=\frac{1+\sqrt{5}}{2}
$$

(which generally can be computed efficiently by continued fractions).
From all of this we obtain $h(5)=1.0000000 \ldots+(0.0000000 \ldots) i$, whence $h(5)=1$.

References

[1] D. Bradley, 'A class of series acceleration formulae for Catalan's constant', Ramanujan J. 3 (1999), 159-173.
[2] A. Borevich and I. Shafarevich, Number theory (Academic Press, New York and London, 1966).
[3] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, (5th edition) (Academic Press, Boston, 1994).
[4] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, (5th edition) (Clarendon Press, Oxford, 1979).
[5] I.J. Zucker, 'On the series $\sum_{k=1}^{\infty}\binom{2 k}{k}^{-1} k^{-n}$ and related sums', J. Number Theory 20 (1985), 92-102.

Department of Mathematics and Statistics
University of Maine
Orono, Maine 04469
United States of America
e-mail: bradley@gauss.umemat.maine.edu ozluk@gauss.umemat.maine.edu snyder@gauss.umemat.maine.edu

[^0]: Received 28th August, 2001
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

