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Abstract

Given m linearly independent vectors n , , . . . , nm 6 Zk and an integer / e [m, k] one

proves the existence of / linearly independent vectors p ( , . . . , p; € Z or q j , . . . , q7 € Z* of
small size (suitably measured) such that the n,'s are linear combinations of Py's with rational
coefficients or of q;'s with integer coefficients.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 H 41.

In order to generalize the results of [ 10] (Part III of this series) let us introduce
the following notation. Given m linearly independent vectors nx, ... , nm e
Zk let i /(n, , n 2 , . . . , nm) denote the maximum of the absolute values of all
minors of order m of the matrix

n i

and D ( n , , . . . , nOT) the greatest common divisor of these minors. Further-
more, let

h{n) = H(n) for n ^ 0, h(0) = 0.
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34 A. Schinzel [2]

DEFINITION 1. For k> I >m, k > m , let

co(k, I, m) = supinf (%* ' - ' y\)^ f[h<pt),

where the supremum is taken over all sets of linearly independent vectors
iij, . . . , nm 6 Zfc and the infimum is taken over all sets of linearly indepen-
dent vectors p , , . . . , p, € Zfc or ^,... , qt eZk such that for all i <m,

The Bombieri-Vaaler refinement [1] of the Siegel lemma easily leads (on
the lines of the proof of (8) in [10]) to the conclusion that co{k, I, m) is
finite, first obtained by Yu. Teterin. The aim of this paper is to give bounds
for co(k, I, m) and c, (k, I, m) which are independent of k. First however
we shall introduce three further series of constants, this time of geometric
character.

DEFINITION 2. For a given positive integer m, let tcm be the volume of
the unit ball in Rm ,

/ N • fVOlP . . . . VOlP K
go(m) = supinf — , gl(m) = supinf ^

where the suprema are taken over all m-dimensional convex bodies K situ-
ated in Rm, symmetric with respect to the origin, the infima are taken over
all parallelopipeds containing K symmetric with respect to the origin and
f (K) denotes the ellipsoid of the maximum volume contained in K. (It is
unique; see [7].) Clearly

Km Km

The best published result pertaining to go(m), gx(m) seems to be the
following inequality due to Dvoretzky and Rogers [4, Theorem 5A]:

Professor A. Pelczynski who indicated to me the paper [4] has improved
the above inequality by showing together with S. J. Szarek that (see [9, Propo-
sition 2.1])
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[3] A decomposition of integer vectors. IV 35

and, on the other hand, they have proved that (ibid., Section 6)

. . 2 . 2m

*(m) ^ ^ T T -
For m < 2 the two bounds coincide and give

According to [9, Theorem 5.1], for every e > 0 ,

I am indebted to Professor Pelczynski also for the paradigm (for 1 = 2)
of the proof of Lemma 1 below, which he has since proved in another way
(see [9], Corollary 3.1).

We shall prove

THEOREM 1. For all integers k, I, m satisfying k > I > m, k > m> 0,

(1) cQ(k, I, m)<mml(l-m+l)l/2gl(m)Yl
l
/2, ^gQ{m),

where yt is the Hermite constant. For I = m < 2 we have here equality.

THEOREM 2. For all integers k, k, m satisfying k > I > m, k > m > 0
we have

where [S^] = UA"1, A and U run through all lower triangular non-singular
integral matrices and all lower triangular unimodular integral matrices of or-
der I, respectively. Moreover

/ ( / ) < -V-T — where k = - .
4'~*(2k+l)\ [ 4 J

S. Chaladus and Yu. Teterin prove in the forthcoming paper [2] that the
exponent (k - l)/(k - m) in the definition of co(k, I, m) is the correct one,
that is, for any smaller exponent the corresponding supremum is infinite.
Moreover they give an estimate for co(k, I, m) that depends on k and is
better than (1) for k = o(l2).
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36 A. Schinzel [4]

Let us note that for large / the minimum on the right-hand side of (1) is
equal to the first term for m<cxl/log/, to the last term for m> c2l, where
c,, c2 are suitable constants, ct > 0, c2 < 1, provided in the latter case that
y,, \og(g0{l)K,/2l) are regularly growing functions and

>
/-oo / 2

For m = 1, (1) constitutes an improvement over [8, Theorem 1] already for
/ > 50. The problem of existence of a bound for co{k, l,m) depending
only on m remains open also for m = 1.

LEMMA 1. If A is a parallelohedron given by the inequalities

|a-x| < 1, a,. € » ' {\<i<k)

then for every parallelopiped P containing A, symmetric with respect to 0
and for a suitable subset S of {1, 2,..., k} of cardinality I we have

volP>volP0(5),

where P0(S) is the parallelopiped

|a,x| < 1 (i € 5 ) .

PROOF. We shall proceed by induction on the number n of pairs of par-
allel ( / - I ) dimensional faces of P that do not contain ( / - I ) dimensional
faces of A (in the sequel, briefly, faces). If n = 0 the assertion is true.
Suppose it is true for the case of n - 1 pairs of parallel faces and consider
a parallelopiped P symmetric with respect to 0 with exactly n pairs of
parallel faces not containing faces of A. Let P be given by the inequalities

|b , .x |<l , b,. €R7
 ( 1 < I < / )

and let b(x = ±1 be the pair of hyperplanes corresponding to one of the n
pairs in question. Replacing P if necessary by a smaller parallelopiped we
may assume that there is x0 e A such that

(2) b l X o = 1.

Let I = {i<k: |a(.Xo| = 1} and let

(3) a,.xo = ei. ( / e / ) .

From the fact that the hyperplane b,x = 1 is supporting A at x,, it follows
that

(4) e,a,t < 0 (/ e /) implies b,t < 0 for t € Rl.
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[5] A decomposition of integer vectors. IV 37

Indeed, suppose for some t0 € K' that e,a,t0 < 0 and bjt0 > 0. Then for

t, = ,, ,° , min I min —r7 \ ° , min1 lh(tQ) \iti *(•,) ,-e/

we have ±(x0 +1,) e A, b,(x0 + tj) > 1, b , ( - x -1 , ) < - 1 < 1, and thus the
hyperplane b,x = 1 divides A. This contradiction proves (4). Hence by a
theorem of Farkas [5, page 5] (I owe this reference to Professor S. Rolewicz.
There is a related earlier statement in [8, page 45]) we have

bi=X>M>
16/

where

(5)

and by (2) and (3)

(6)

A. > 0 (I € /)

16 /

Therefore,

(7)

(volP)"1 =2'

= 2'
1 6 /

Regarding At as variables restricted by the conditions (5) and (6), we easily
see that the right-hand side of (7) takes the maximum for Ai — 1 if i = /0,
A, = 0 otherwise. Hence

(8)

where

vo lP>vo lP , ,

is the parallelopiped

|a. x| < 1, (2 < / <

However Pj contains A and it has only n - 1 pairs of parallel faces that
do not contain faces of A. Thus by the inductive assumption there exists a
set S c {1,2, ... , k} of cardinality / and with the property

volP, >volP0(5).

In view of (8) this gives
volP>volP0(5)

and concludes the inductive argument.
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38 A. Schinzel [6]

LEMMA 2. For all linearly independent vectors c , , . . . , c; e Rk the domain

C:h(clxl H— + clxl) < 1

satisfies

V O 1 » L , ^ •• , , ,

PROOF. Put

(9)

Then

2l

, c 2 i , . . .

vol^(C)

,cn] (1 <i<k).

C = { j c e l ' : |a,x| < 1 for all i < k}

and clearly C is a convex body symmetric with respect to 0 . By Definition
2

volC > goC/)"1 infvolP, vo i r (C) > g^iy12~'K,infyolF,

where the infimum is taken over all parallelopipeds P symmetric with respect
to 0 and containing C. However by Lemma 1 the infimum can be replaced
by the minimum taken over the finite set of all parallelopipeds

Po(5), |a , .x |<l (ieS),

where S runs through all subsets of {I, ... , k} of cardinality / . Since

volP0(5) = 2/ |det{a/ : / e S} f '

we have by (9) that

and the lemma follows.

LEMMA 3. If for all linearly independent vectors n , , . . . , nm 6 Zk such that

D(nl,... , nm) = 1 there exist linearly independent vectors p , , . . . , p; e Zk

such that

and

then co(k, I, m) <c.

PROOF. Consider
let JV be the linear space spanned by them over R. Further, let b , , . . . . b

PROOF. Consider m linearly independent vectors n , , . . . , nm e Zfc and
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[7] A decomposition of integer vectors. IV 39

be a basis of the lattice ^fnZfc and c , , . . . , ck_m e Zk linearly independent
vectors perpendicular to JV. Since / n Z * is the lattice of all solutions
x e Z * of the system c(x = 0 (1 < / < k - m), we have by the known
theorem [3, page 53] that

(10) D(bj , . . . ,bm) = l .

On the other hand clearly

[DAD-
where A is an integral square matrix of order m. It follows from (11) that

Z)(n, , . . . , n M ) = | tetA\D(bl,...,bm),

tf(n1,...,nJ = |detA| /J(b1 , . . . ,bJ

and by (10)

,_ . H{n,,... , nm)

By the assumption of the lemma there exist linearly independent vectors
p , , . . . , p, e Zfc and a matrix U e -^mj{Q) such that

= ul :
bj

and

(14)
/r

It follows from (11)

while

Thus

from (12) and

nn
by Definition 1

lh(Pj)<cH«

and (13) that

UJ
(14) that

< (H{n
PJ ~ \D(n

, c o ( k , l , m )

j
= AU

I

i , , . . . ,

< c .

ibm)(*-o/(*--.).

• .

n(t-/)/(k-m)

nm)J
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40 A. Schinzel [8]

LEMMA 4. Let K be a convex domain symmetric with respect to 0 in the
linear subspace -2": x{ = • • • = xm = 0 of R , no* containing in its interior
any point of the lattice J?nZk except 0 and let || ||K be the corresponding
distance Junction. Let n , , . . . , nm e Zk and JV be the linear space spanned

/by n{, . . . , nm over R. If A = det(ny)l->_/-<m ^ 0 anrf ^ ( n , , . . . , nm) =

1 there exist vectors n m + 1 , . . . , nk e Z ^MC/I ?Aâ  n t , . . . , n^ are linearly
independent and

k

i=m+l

REMARK. Since A ̂  0 we have JV D-S? = {0}, and hence (n, +J^) D-S"
consists of one point and IKn, +JV) n -^| |K means the distance from this
point to 0 measured through K.

PROOF. If |A| = 1 the desired conclusion follows directly from Minkow-
ski's second theorem. Indeed by that theorem applied to the domain K there
exist linearly independent vectors n m + I , . . . , nk € S? n K such that

Hn/| |K<2fc-m(volK)-1.

Since / n y = {0} we have (n,. + JIT) n & = {n,} (m < i < k) and
i i j , . . . , nk are linearly independent. Therefore assume that |A| > 1. Let
A.(x) be the determinant of the matrix obtained from ( n , ; ) , ; < m by replacing
the /th row by the first m coordinates of the vector x.

Let us take a real number r > 1 and consider in Rk the domain
m

Dr(K): i m w | |A^(x)| + |A|r||xA -

Then IDr(K) is convex and symmetric with respect to 0. In order to compute
its volume we make the affine transformation

This transformation has Jacobian equal to A(*~m)rm~m+1
 a m i j t transforms

Dr(K) into

m

^( K ) : , 2 s , i^ i + | A r i l [ 0 ' y»+i - • • • > ^ i - E v / f c " m ) r " ' HK "m)r ^ i.
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[9] A decomposition of integer vectors. IV 41

where n^ is the projection of n on S?. Clearly

volOr(K) = |A|(*~m)rm~m+1vollD/(K)

,(k-m)rm-m+l , „
|( volK

r /l-max|y|V/r

/max | , |<1 dyxdVl " d y m \ ^ ^ ~ )

= 2m|A|((fc-m)r-1)m volK fl mtm-\\ - t)xlrdt.
Jo

Put fjmtm-l(l-t)l/rdt = I,tm.

Let A,. = inf{A : dimADr(K) n Z * > /} (1 < / < k). By Minkowski's
second theorem there exist linearly independent points m , , . . . , mk such
that

n Z*(15)

and

(16)

We shall

(17)

k

J^A, <2f c\
i= i

show that

m,. e A,.]D

'olD^K)"1 = 2k~

A^IAI1"^-^
and

(18) m,.

Indeed, for i < m, n <m we have

A^(n() = A if (i = i, 0 otherwise;

and hence

(19) n. e \A\l~lk~m)rDr(K) (1 < / < m).

On the other hand, if x € AOr(K) n 1k and x $ rf we have Ax
Y%=1 nAAA(x), and thus by the assumption about K, ||Ax - £ ^ = 1 n ^ ( x )
> 1 and by the definition of Dr(K),

(20) A<*-"0'|A|<*-»0' > | A | ' . k > |A|

If x e ADr(K) n Z* a n d x e / we have Ax = £™=1 n^AA(x) and thus by
the assumption that Z ^ n , , . . . , nm) = 1 we have A (x) = 0 (modA), and
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42 A. Schinzel [10]

\<n<m l ^ ( x ) l - 1^1' w n i c n t>y the definition of

\-(k-m)r

hence either x = 0 or max
Dr(K) implies

(21) X>\A\

The claims (17) and (18) follow from (19), (20) and (21).
From (16) and (17) we infer that

r ,m
i=m+\

and since by (15)

we obtain

(22)

(k-m)r

i=m+l

. - 1

fl=\

are linearly independent.Moreover, by (18), n , , . . . , nm, m m + 1 , . . . ,

For every r > 1 there corresponds a certain choice of vectors m, € Zfc,
however the set of values which we can obtain on the left-hand side of (22)
is discrete. Therefore there exist vectors n( (m < i < k) such that n,
(1 < i < k) are linearly independent and

kn
i=m+l

. - 1

However

and

which proves the lemma.

= / mtm-{ dt=\,

LEMMA 5. If m<k, nx,... , nm e Z , I

ist vectors n m + 1 , ... ,nkeZ such that n{,.

and for each I e[m, k] the domain D e l '

(23) — 2'ml

, n2, . . . , nm) = 1 there ex-

nk are linearly independent

'=i xinj) ^ ! satisfies
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[11] A decomposition of integer vectors. IV 43

and

(24)

volir(D)>max( K-i , J±-( l

\gl(m)(l-m+lf2' SyiDKm

PROOF. Without loss of generality we may assume that / / ( n , , n 2 , . . . , nm)
= |A|, where A = d e t ^ ) , - j<m . By Lemma 4 applied with K = {x e S? :

h(x) < 1} there exists vectors n m + 1 , . . . ,nk eZ such that n , , . . . , n; are
linearly independent and

k

(25) J J A ( n ) ) < | A f \ where {nj.} = ( n . + y T ) n ^ (m<i<k).
i=m+l

Permuting the vectors n( if necessary we may assume that the sequence /i(n^)
is nondecreasing. Then (25) implies

(26) f l h(n'i)<H(n1,...,nm)-«-m»{k-mK
i=m+\

In order to prove (23) let us write explicitly

ix=\

Then
/ m f i \ i

i=l /i=l V i=m+l / i=m+l

and

\i=l / \/x=l V i=m+l / J i=m+l

It follows by a change of variables that

volD > / dx_^ • • • dx, voW x e Rm : h

i=m+l

where Do is the domain ]C'=m+i lxil^(n/) ^ ^ • However by Lemma 2,

x e Rm : h\ Y xn \< c \ >
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44 A. Schinzel [12]

and hence
i

2 /n!

•*«•)«(• ."j
and (23) follows from (26).

In order to prove the part of (24) corresponding to the first term of the
maximum on the right-hand side, let Bl be the domain h(J2iL\ xini) ^ 1 •
The ellipsoid f (O,) is given by the inequality Fi(xl, . . . , xm) < 1, where
Fx is a positive definite quadratic form.

Since %(D,) c 0 , we have for all xeR™,

(28) \F (x ,...,x ) = ||x||o> > llxll = h

By virtue of Lemma 2, we have

However

and thus

(29) fi(F\)<gl(m)H(nl,...,nm).
Consider now the quadratic form

J^ ailtxt,...\
i=m+l )

i=m+\

For all x e R ' we have by the Cauchy inequality, by (28) and (27), that

y/F(xl,...,xl)>x 1 L . , x t t
(=m+l

F1L.,xtt+

E [
i=m+l \M=' V i=m+l

i=m+\ \i=l
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[13] A decomposition of integer vectors. IV

and thus the ellipsoid

is contained in D and by the definition of i?(B),

(30) A " ~ ' ~ " • • - K'

45

Since F is obtained from the quadratic form

i=m+l

by a unimodular substitution, we have

i=m+1

and by (26), (29) and (30),

In order to prove the remaining part of (24) note that

# ( n , , . . . , n,) = # ( n , , . . . , nm, n'm+l ,...,n',).

Let M be a minor of order of / of the matrix

"m+l

I " / /
and S the set of indices of the columns of M. Developing M according to
the first m rows we obtain from the Laplace theorem

(31)

where Af,

J,J'
is the minor of

consisting of the columns j x , ..., j l _ m , while {j{, ..., jt_m} runs through
all subsets of S of cardinality I -m.
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46 A. Schinzel [14]

By the generalized Hadamard inequality [1, formula (2.6)]

EK jus ri E » ; ^ / ' - ri *<»;)2.
i=m+l j€S i=m+l

and hence, by the Cauchy inequality,

1 / 2 '" - > / 2 r i *<•&•
(=m+l

The inequalities (26), (31) and (32) give

and hence by the arbitrary choice of M

Now Lemma 2 applied with C = D implies

> ^

PROOF OF THEOREM 1. Let n , , . . . , nm € Zk be linearly independent and
£>(n,, . . . , nm) = 1. Let nm+1 , . . . , 1 1 , be vectors the existence of which is

asserted in Lemma 5 and consider the domain D : A(X),=i xjnj) - * •

fit = m i n { f i : d i m / z D n Z1 > i} (1 < / < / ) .
By Minkowski's second theorem there exist linearly independent vectors y, =
\yn > • • • . y,/] ( ! < * ' < / ) such that

(33) y,. e ^ -

and

(34) n ^ . ^
1=1

By another theorem of Minkowski (see [8, §51] or [6, §18, Theorem 3]),

(35)
1=1

where A(JP(D)) is the critical determinant of §*(O) and by the definition of
the Hermite constant

(35) 1 '/2^
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[15] Adecompositionofintegervectors.lv 47

(see [6, formula (37.6)]). Let us put

(37) P,

It follows from the definition of D and from (34)-(37) that ^(p,) = fit,
hence by (34)-(37)

^ , ) <

and by Lemma 5

1=1

Moreover since y,, . . . , y, are linearly independent the system (37) can be
solved with respect to nx,..., n, and we obtain

(1 < / < / ) .

Since n, (1 < / < /) are linearly independent so are p (1 < j < I) and we
obtain from (37) and Lemma 3 that

(38) co(k,l, m) < min{(/ - m + I)"2gx{m)y\12,

f , x 1 / 2 . 1

J/2 (

which proves the first part of the theorem.
In order to prove the second part let us observe that if / = m = 1 the right-

hand side of (38) equals 1, while it immediately follows from the definition
of co{k, I, m) that co{k, 1, 1) > 1. If / = m = 2 the right hand side of
(38) equals | , since

On the other hand, consider the following vectors in Zk (k > 3)

n1 = [ 2 / , 4 * + l , 2 r , 0 , . . . , 0 ] , n2 = [ 4 t - l , 2 r , -2t,0, ... , 0]
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48 A. Schinzel [16]

We have here

H(n{, n2) = I2t2 + It, Z?(n,, n2) = 1.

Hence, if

2
ni = J2uU*j> « y € Q , p y € Z * (1 < ! , . / < 2)

we have

9J = nlxJ + n2yJ, [Xj, yj\ e Z 2 \ { 0 } ( 1 < ; < 2 ) .

If JC;. = yj we have |pj2| > 6t, otherwise \pj3\ > 2t, and thus A(p;) > It
(1 < ; < 2). If for an £ > 0 we have

< (3 "

then for t > to(e)

(39)

and since h(pj) > It we obtain A(p;) < (8 - 5e)f2 (1 < ; < 2). Hence for
t > t{(e), by consideration of the first three coordinates of p7

\2Xj + Ay}\ < 7, |4x, + 2y,.| < 7, |2xy - 2j>,| < 7;

|*y| < 1, Lv>| < 1 and since [xj, yj[ ^ [ 0 , 0 ] , h(Vj) > 4/ - 1 (1 < ; < 2).
It follows that

which for t > max{to(e), ty(e), e~1} contradicts (39). This shows that
co(k, 2, 2) = j and completes the proof of the theorem.

PROOF OF THEOREM 2. The proof does not differ essentially from the
proof of [10, Theorem 2]. In formula (14) and in the fourth displayed for-
mula on page 701 there, one has to replace co(k, I) by co(k, I, m) and

{kl)l(km) hv ("{n> *J)(k-t)/(k-m)
y vi)(n, nmV

Note added in proof

Yu. Teterin has remarked that Lemma 4 holds under a weaker assump-
tion, namely that volK < 00. To see this, it suffices to apply the original
formulation to the body of XK for suitable A.
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