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MEASURE VALUED SOLUTIONS OF ASYMPTOTICALLY
HOMOGENEOUS SEMILINEAR HYPERBOLIC SYSTEMS IN

ONE SPACE VARIABLE

by F. DEMENGEL and J. RAUCH

(Received 7th March 1989)

We study systems which in characteristic coordinates have the form

du/dt + A(t, x) du/dx + F(t, x, u) =g(t, x)

where A is a k x k diagonal matrix with distinct real eigenvalues. The nonlinearity F is assumed to be
asymptotically homogeneous in the sense, that it is a sum of two terms, one positively homogeneous of degree
one in u and a second which is sublinear in u and vanishes when u = 0. In this case, F(t,x, u{t)) is meaningful
provided that u(t) is a Radon measure, and, for Radon measure initial data there is a unique solution
(Theorem 2.1).

The main result asserts that if nn is a sequence of initial data such that, in characteristic coordinates, the
positive and negative parts of each component, (/ij)*, converge weakly to fi±, then the solutions coverge
weakly and the limit has an interesting description given by a nonlinear superposition principle.

Simple weak converge of the initial data does not imply weak convergence of the solutions.

1980 Mathematics subject classification (1985 Revision): 35B25, 35L45, 35D99.

Introduction

This paper is devoted to the study of solutions to semilinear hyperbolic systems in
one space variable whose initial data are or approach measures. The results continue
the line of investigation initiated in [5], [6]. The systems have the form

du/dt+ A(t,x)du/dx + F{t,x,u)=g(t,x)

where t,xeU2, u(t,x)=(«!,... u*) is Uk valued, and A is a kxk matrix valued function
with k distinct real eigenvalues for each t,x. The nonlinearity is assumed to be
asymptotically homogeneous in the sense that it is a sum of two terms, one positively
homogeneous of degree one in u and a second which is sublinear and vanishes when
u=0. In this case, F(t,x,u(t)) is meaningful provided that u(t) is a Radon measure, in
fact if F, is the homogeneous part and F2 the sublinear part then F(u) = F1(u) + F2(uac)
where uac is the absolutely continuous part and F,(M) is defined as in [1], [3]. This
definition is recalled in the next section.
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444 F. DEMENGEL AND J. RAUCH

Rauch and Reed observed that if Ft is linear and L1 initial data converged to a
measure // in a suitably restricted way then the classical solutions converged to a limit
determined by \i. The limit had a relatively simple description given by a nonlinear
superposition principle. The singular part of the limiting measure is determined as a
solution of a linear initial value problem and the absolutely continuous part as the
solution of a semilinear equation in which the singular part enters as a source term. The
results of that paper are here extended in three ways.

1. The term homogeneous of degree one is allowed to be nonlinear.

2. The limiting function is interpreted as a measure valued solution and suitable
existence, uniqueness and continuous dependence theorems (for norm convergence of
the data) are proved (Theorem 2.1). A nonlinear superposition principle is proved
(Section 3).

3. For weakly convergent data we have sharp results telling when the resulting solutions
converge.

On the other hand, some of the sharpest results in [6] asserting that weakly convergent
solutions converge strongly away from characteristics issued from "bad points" are not
generalized. It is our feeling that such results are correct in the present context.

It is easy to see that weak convergence alone is insufficient to guarantee convergence
of the resulting solutions. This is typical of nonlinear equations and is illustrated by the
following example.

Example. The scalar initial value problem

ut = \u\, u{0,) = n

has solution u=n+e' + n~e~' where /x* are the positive and negative parts of /i.
Consider a sequence of Cauchy data /i" converging weakly to a limit ft. In order for the
solutions u" to converge weakly to u, one must have weak convergence of the positive
and negative parts, (//")*, to the corresponding parts /i*. Weak convergence of n" to n is
not enough.

In [2,4] we studied the convergence of functions F(n") for weakly convergent
arguments and F as above. We found necessary and sufficient conditions on ft" in order
that F(fx") converge weakly to F(n) for all such F. As such terms appear in our
differential equations it is natural to suspect that we must assume that the n" at least
satisfy these conditions. We were surprised to discover that in fact one can get by with
less. The reason is that the conditions are placed on the initial data and the differential
equation forces a great deal of structure on the solution in space-time so that even
though the trace at t = 0 may violate our condition the solution in U2 may satisfy it.
What we require of the initial data is easiest to describe in characteristic coordinates for
R\ In these coordinates, the matrix A is diagonal and the condition on the initial data
is that the positive and negative parts of each component, (jij)*, converge weakly to (if.
A part of our results were announced in [3].
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1. Basic definitions

This paper is devoted to the study of measure valued solutions of k x k semilinear
strictly hyperbolic systems in one space dimension:

dtu + A(t,x)dxu + F(t,x,u)=g(t,x). (1.1)

Here AeC^lO, T] x R:Hom((R*)) has k distinct real eigenvalues Ai(t,x) <••• <Xk(t,x)
with the same smoothness as A. The nonlinear function FeC([0, T] x R x Uk) will be
supposed asymptotically homogeneous in the sense that

F(t, x, 0) = 0, and, lira F(t, x, A{)/|A£ | = FJt, x, i)

uniformly on compact subsets of [0, (] x IR x (Rk. Then, F x is uniformly continuous and
homogeneous in u, while G^F — F^ is continuous and sublinear in u. Both functions
vanish when u = 0. We further assume that F is uniformly Lipschitzian in u.

We denote by (t,Xt(t,x)) the flow of the ith characteristic vector field dt + Xl(t,x)dx.
Thus

d.X^t, x) = A,(t, X,(t, x)), X,(0, x) = x.

Then ti—•(t,^i(t,x)) is the ith characteristic through (0,x). We let r\(t, x) be the foot of
the ith characteristic through t,x so

Xi(t,rfi(t,x)) = x.

Given a compact space interval /, | / | # 0 , and T > 0 we denote by R the domain of
determinacy of {T}xl. R is bounded on the left by the Xk characteristic through (T,
inf/), and on the right by the lx characteristic through (T.sup/). We denote by R, the
x-cross-section of R at time t, that is the interval of x such that (t, x) e R.

The solutions, u, are viewed as functions of t e [0, T] whose value at time t is a Borel
measure on Rt.

Convention. M{R,: Uk) denotes the space of finite Uk valued Borel measures on Rt.
With the total variation norm, it is the set of all continuous maps from C(/?,:R) to R\
M(/?l:R*)i(t denotes the same space endowed with the associated weak star topology.

Example. u(t) = <5(x — t) solves (d, + dx)u = 0 and is discontinuous with values in M
and continuous with values in M^.

If J is a compact interval and u is a continuous function on [0, T] with values in
^, then, the uniform boundedness principle implies that

sup |j«(t)|t
<e[0,r]
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C([0, T~\: M(J) J is a Banach space in that norm, but, the functions u(t) and
ut(t) == je(x) *x u(t) are not close in that topology. For us a weak topology on
C([0, Ty.MJ will be more important.

There are (at least) two natural weak topologies on C([0, T\:M(J)J. The smaller of
the two is defined by the seminorms

sup |<u(t),*>|, <t>eC{J).

relO.T]

The larger is defined by seminorms for which the test function may depend on time,

sup |<u(t),Wt,-)>|, ^eC([0,T]xJ) . (1.2)

Note that <M(£). \j/{t, •)> is a continuous function of time.
On subsets of C([0, T]:M#) which are bounded in L°°([0, T]:M), the two topologies

agree. Our applications will involve such bounded sets.

Convention. The topology on C([0, T~\:M( J)J will be that defined by the seminorms
(1.2).

Convergence in this topology is a stronger conclusion than convergence in the smaller
topology.

Mollification in x shows that C([0, T]:C°°(J)) is dense in C([0, T\:M{J)^).
The solutions, u, are functions of t e [0, T] whose value at time t is a measure on R,.

As u(t) is defined on a time dependent domain, Rt, the definition of the basic spaces of
distributions is slightly awkward. All of our solutions will at least lie in C~i(R:Uk) the
dual of C1(R:Uk). Choose

a Cl diffeomorphism such that x preserves the lines t = constant. Then x ' s given by
t' = t, x' = x'(t,x). Note that since the characteristics need only be C1, we cannot expect
to find a more regular x-

Definition. The spaces L1 ([0, T]:M(i?,)), C([0,T]: M(£,)„),..., etc. are defined by
transforming to [0, T] x/ . For example, ueC([0, T]: M(R,:K*)#) if and only if

H/MR11) and

Remarks. 1. u o x~x is automatically in C"1 ([0, T] x /: R*).
2. Having chosen the weak topology on C([0, T]:Af(/)^) as defined by test functions

\l>(t,x), it is easy to show that the spaces and the topologies induced by different maps x
are the same.

3. The norms ||U(0||M(R-n*) and ||woz"1(t)||M(/Rl<) a r e uniformly equivalent for
te[0 ,T] .
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Following [1] and [2,4], the map u\->F(t,x,u) yields a well-defined globally
Lipschitzian map of Ll(,[0,T~\:M(Rt:M

k)) to itself. In the definition, t is a parameter.
First F is split into homogeneous and sublinear parts,

F(t, x, u(t)) = Fa (t, x, u(t)) + G(t, x, u(t)).

G(t,x,u(t)) is defined to be equal to G(t,x,g(t,x))dx where u(t)=g(t,x)dx + u(t)sing is the
Lebesgue decomposition. Fx(t,x,u(t)) is defined by choosing veM(R,:U) with |u(0 |«v

then

= F(t,x,du(t)/dV)v.

The map is globally Lipschitzian in the sense that if

\F(t, x, {) - F(t, x, r,)\ ^ A | £ - 1 , | Vt, x, {, i,

then

\\(F(t,x,u)-F(t,x,v))(t)\\M(Rt:Kk)

^||Vxz"1||L-||Vxz||t-A||«(t)-i;(t)||M(K«:R*) a.e. t.

That this definition is natural is best seen by showing that F(t, x, u) = lim F(t, x, uE) where
ue are suitable regularizations of u. Mollifying in x is the most obvious choice but there
are problems at dRt. To overcome this we write u first as a sum of two terms each
vanishing near one of the boundaries of R,. Toward this end choose <j>-eC"(R.) with
0 ^ $ _ ^ l , 4>- identically one near the left hand boundary of R, and, identically zero
near the right hand boundary. Let 0+ = l — (f>_ and u± = <p±u. Choose j+eCo(U),
J+^0, J"y+ = 1 and suppy+c[0,l] . Let j~(s)±j+(-s), j^(s) = £-1j±(s). Then for
e < dist(supp <() _, r.h. dR),

"£ = Je+*x"- + 77*x« + - (1-3)

Then (see [3]), in M(R,:R%,

F(t,x,Me(t))-F(t,x,u(t)) a.e. t.

2. Existence, uniqueness, and continuity for the norm topology

Theorem 2.1. (a) For £eL1([0,T]:M(K,:[R*)) and n0 in M(R0:U
k) there is one and

only one solution ueL1^, T ] : M(Rt: Uk)) to (1.1) with u(0) = /io.

(b) This solution lies in C([0, T] : M{R,: Uk)m).

(c) The map g, fi0 \-*u is uniformly Lipschitzian and even more, there is a constant c such
that for any two such solutions ul,u2 and any te [0, T] ,
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Hu^t) - « a « |UIJt., ̂  c | Utt'co) - M

The proof of this result uses two lemmas concerning the initial value problem for the
linear operator d, + Adx = L.

Lemma 2.2. / / ueL1([0,T]:M(Rt)'] and LueL1([0,T]:M(K,)) then
«eC([0,T]:C-1(lU).

Proof. In the coordinates so that R = [0, T] x /, we have

]:C-1(/)). •

Remark. This shows that if ueL1([0,T]:M(H,)) satisfies (1.1) then
ueC([0, T]:C~'(/?,)) and it makes sense to speak of the Cauchy data, w(0).

Lemma 2.3. For any l^j^k, voeM(R0) and geL}([0, T\:M{Rt)) there is one and
only one veLl([0, T]: M(R,)) satisfying

(d, + Xjdx)v=gin C^lntR), u(t,) = u0.

This v lies in C([0, T~\:M(Rt)^) and there is a c>0 independent of t^t^O, g, u0 so that

Proof. A C1 change of coordinates t' — t, x'=x'(t,x) converts dt + kdx to d,.. The
partial differential equation becomes the trivial equation d,-v=g. •

Proof of Theorem 2.1. Choose a U e Cl (R: GL(Uk)) so that U~1AU =
diag(A1,A2,...,AJt) then u = U~lu must satisfy

t,x,u)=g, u(0,) = uo (2.2)

where

g=U~1g, uo = U-1uo (2.3)

1 u. (2.4)
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In this way we may replace the original problem with one where A = diag(A,). We drop
the tildes and suppose that v4 = diag(Aj).

The solution is the limit as n-*co of Picard iterates u" defined by u"(0,- ) = u0 and

(dt + kidx)u?=gi forn=0

(5, + Al3x)«? + F,(t,x,«"-1)=ft forn^l .

Lemma 2.3 shows that u"eC([0, T]:M(R,),) and that for nt 1

If

K = J ll
0

we prove inductively, using (2.1), that

This suffices to show the convergence of u" in C([0, T]:M(/?,)#) to a solution.
For the continuous dependence, suppose that w1 and u2 are two solutions. Then

( u l - u f ) ( 0 , ) = 0.

The estimate from Lemma 2.3 yields

||«1W-«2(0|U,l.,,^cJ||«1(s)-U2(s)||J1#(w + ||g1(s)-
0

Gronwall's inequality yields the inequality of part (c). •

3. Formulas for the singular and absolutely continuous parts of u

We work in coordinates for Uk which diagonalize A. As before we drop the tildes so
the system takes the form
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(d, + X,dx)ut + F,(t,x,u)=gt.

One of the striking results in [6] is that if F = B(t, x)u + sublinear with B a k x k matrix
there is a sort of superposition principle. The part of u singular with respect to Lebesgue
measure satisfies a linear equation even though the overall dynamics is nonlinear.
Precisely, if D(t,x) is the diagonal part of B, the singular part satisfies

We begin by defining analogues of the diagonal and off diagonal parts of B.

Definition. The diagonal part, D, of F is defined by D =(Dlt...,Dk) where

The off diagonal part E is defined to be F — D.

Let L = dt+(dingJL,)dx.

Theorem 3.1. Suppose that u is the solution u from part (a) of Theorem 2.1. and that
u(t)s + u(t)a.c is the Lebesgue decomposition ofu(t) with respect to dx. Then,

(a) us = r , the unique C([0, T]:M(/?t) J solution to:

LT+ D(t, x,D = 0, r(s) = /is (3.1)

where ns + nac is the Lebesgue decomposition of fi0.
(b) um = v is the unique C([0, T]:M(/?,)i)r) solution to

Lv + F(t, x, v) =g + E(t, x, T), B(0) = fiac.

uacliesinC{W,T\.L\Rt)).

This result asserts that the components of the singular part satisfy simple uncoupled
equations

(d, + A,d>i + (FJiit, x, 0,..., 0, «„ 0,..., 0) = 0.

In [6] the singular part satisfied a linear equation. A similar result can also be proved
here.

For l g i ^ l t w e define

dHt,x)=±(Fao)i{t,x,0,...,0,±l,0,,...,0)

where the +1 goes in the ith slot. Then since Fx is positively homogeneous of degree
one,
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sd? if s^O
f if s<0.

Corollary 3.2. Let F± eC([0, T~\:M(R,)J be the unique solutions of linear initial value
problems

Then T = F+ +F~ is the Jordan decomposition of F(t) in part (a) of Theorem 3.1.

Proof of Corollary. Since r;+(s)±ry (s) and (5f + Ai5jri
± +dfT? =0 we see that for

all t, F* 1 r,~. It follows from the definition of homogeneous functions of measures that
(see [2, ex. 1.2])

Thus

proving the corollary. •

Proof of Theorem. Define T as in the corollary, and define D6C([0,T]:M(i?,)J to
be the unique solution of

Lv + F(t,x,v)=g-E(t,x,r), O(0)=(AIO)«. (3.2)

We know that F(t) 1 dx for all t so if we can show that v(t)«dx for all t we would have
u and therefore from the definition of the measure F(/i) (see [1], [3]), F(v + T) =

(») + Fa,(r).Thus,

=te-F(«o-E(r))-D(r)+(F(»)+Feo(r))

=8-

so D + T solves the initial value problem defining u and c i r so v and F give the

https://doi.org/10.1017/S0013091500004855 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500004855


452 F. DEMENGEL AND J. RAUCH

Lebesgue decomposition of u. Thus, to complete the proof of both parts of Theorem 3.1
it is sufficient to show that t>eC([0,T]:!/(/?,)). Define CeC([0,T]:M(R,)J by

), C(s)=O.

The crucial step in the proof is to show that CeC([0, T] :L>(R,)).

Claim 3.3. C e C ^ T ] : / , 1 (/?,)).

Assuming the claim, we complete the proof of Theorem 3.1. Define w to be the unique
C([0, Ty.L1 (R,)) solution to

Then, w + £ lies in C([0,T]:L1(/?,)) and satisfies (3.2). By unicity v = w +
CeC(iO,r\-Ll(R,)).

It remains to prove Claim 3.3. The key step is the following claim.

Claim 3.4. For almost all te[0, T] the measures r 1( t) , r2( t) , . . , r k( t) are mutually
singular.

Assuming Claim 3.4, we have

£.(r)=ZE£,(o,...,rjt,o,...,o).
± J

Let c^=£1(0,...,0, + l,...,0) s o e | =0. Then

so,

That each summand lies in C([0,T]:L1 (/?,)) is not difficult to prove (see [6, p. 163]).
This is the conclusion of Claim 3.3.

To complete the proof of the theorem, it remains to prove Claim 3.4.

Proof of Claim 3.4. From the formula in Corollary 3.2, we see that for all j ,
r j t«(F})± where F is the solution to LF'=0, r'(0)=(/io)s. Thus, replacing T by T' it is
sufficient to prove the lemma when D = 0.

Fix i^j. Define x'(t,x) by
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(3, + A,(t,x)3»)x' = 0, x'(0,x) = x.

Then the change of variables t' = t, x' = x'(t,x) transforms d, + Xidx to dt-.
We suppose that the reductions of the previous paragraphs have been performed, and,

we drop the primes. Then D=0, and F^r) s F;(0). Choose a Lebesgue null set N such
that |r,(0)|(IR\A0=0. Recall that (t,Xj(t,x)) is the yth characteristic through (0,x),
hence, transverse to the x-axis. To show that F, _L rf a.e. t, it suffices to show for
Lebesgue almost all te[0,T], that \rt{0)\(Xj{t,N))=0. By Fubini's Theorem it suffices
to show that (|r,(0)| x dt)(N) = 0 where

N = {(t,Xj(t,x)):xeN}

has Xj(t, N) as cross-section at height t.
Extend Xj(t,x) to be a C1 function on R2 with

0 < inf | kj | g sup \Xj\ < oo.

For xeU define a diffeomorphism from {0}xR to Rx {x} sending (0,x) to the unique
intersection point of the yth characteristic through (0,x) with the vertical line x = x. The
image of N under this map is a Lebesgue null set in {x = x}. However, the image of N is
exactly the cross-section f}x, so dt(iVs) = O for all xeU. Fubini's Theorem implies that
(|r,(0)| xdt)(N) = 0. This completes the proof of Claim 3.4 and therefore the proof of
Theorem 3.1. •

4. Continuous dependence for some weakly convergent data

A singular measure cannot be approximated in norm by absolutely continuous
measures. In particular, if noeM(Ro:U

k), supp/i0cInt Ro, is not absolutely continuous
then the standard regularizations je*fi0 converge weakly to n0 but not in norm. To
show that the notion of solution studied in Section 2 is natural, it is desirable that the
solution u' with initial data je*fi0 converges to the solution u with data fi0. The next
theorem implies that result.

Theorem 4.1. Suppose that geL1([0,T]:M(K,)), L = a( + diag(A,(t,x))ajt, and n"->H in
M(R0)t have Lebesgue decompositions h"dx + n" and hdx + fi, respectively. Let u", u be the
solutions of 1.1 with initial data if,fi. Then, u" converges to u in C([0, T]:M(/?t)J
provided that

(i) h"-*h in measure, and

(ii) for each j=l,2,...,k, foj)*-»(M,)* in M(R0),.

Remarks. (1) The conditions (i), (ii) of this theorem are necessary and sufficient in
order that 9{ft")-*<t>(n,) in Mm for every asymptotically homogeneous function <DeC(R)
of a single variable. They do not imply that F(fi")-*F(fi) for asymptotically homo-
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geneous functions FeC(Uk) (see [3]). The fact that F(n") need not converge to F(/i)
renders somewhat surprising the fact that u"-m.

(2) The hypothesis (/*") * -*(fij) * is made in coordinates for Uk in which the coefficient
matrix A is diagonal. In general coordinates the condition is expressed as follows. Let
b(t,x) be a C1 eigenbasis of Uk associated with A(t,x). Define scalar valued /i" by
Hn = Ydli

njbJ(t,x). The condition is then (/x") *->(/i,) * in M(K0),.

(3) If fic=M(R0) and /i" are constructed by mollifying as in (1.3), then it is not hard to
show that the hypotheses of Theorems 4.1, 4.2 are satisfied (see [4, ex. 1.27 and ex. 2.6]).
Thus, the desired continuity described in the first paragraph of this section is valid.

(4) Two examples showing that hypotheses (i), (ii) cannot be much relaxed are
presented at the end of this section.

Theorem 4.1 is an immediate consequence of the next result which provides more
detailed information.

Theorem 4.2. With the notation of Theorem 4.1 define u",rneC([0,T]:M(^()]|t) by

Lrn + D(rn) = 0, rn(0,-)=ti
n

s + (h"-h)dx, (4.1)

Lvn + F(vn)=g-E(rn), vn(0,) = hn. (4.2)

Let F(i) + t>(t) be the Lebesgue decomposition of u(t) described in Theorem 3.1. Then
t/1eC([0,T]:L1(R1)) and

if->vinC([O,r\:L1(R,)),and

u"-vn-rn^>0 in C([0,71]:L1(Kf)).

Proof. The equation for F" yields for 1 ^ j ^ k

Subtracting the equation for F^ in Corollary 3.2 yields the linear initial problem,

The hypotheses (i) and (ii) imply that F"(0) * — Fj(0) * converges to zero in M(Ro) m

(direct proof or see Proposition 3.3 of [3]). It follows that (F")1—F* tends to zero in.

Since n"s is singular and h"->h in measure, the explicitly solvable initial value problem
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for (r j)1 shows that r;(t)-»0 in measure uniformly for O^t^T, where rjj + P; is the
Lebesgue decomposition of F"(t).

To prove that i)"eC([O,T~\:Ll(R,)), decompose £ into homogeneous and sublinear
parts, E = Ea> + e. Then,

Then

6 C([0, T]: L1 (/?,)), »-(0, •) e L1 (

The proof that uneC([0, T]:LX (/?,)) is then exactly like the proof of Theorem 3.2(b).
The next, and crucial, step is to show that the family {vn} is precompact in

C([0,Ty.Ll(Rt)). To do this, the crux is to analyze the effect of the source term £(1"").
Let (", (eC([0, T]:M(/?,)it) be defined as solutions of the linear initial value problems

Un=-E{T"), C(0,) = h
U=-E{T), C(O,) = h.

As in the last paragraph, C"eC([0, T]:LJ (/?,)). We turn next to the proof that

C"-C in C{lO,T]:Ll{R,)). (4.3)

The T(t) are singular so £(r(t)) = £oo(r(t)). For t outside a Lebesgue null set, the
measures rj(t),.. . ,r t(t) are mutually singular so

a.e.

the r,(t) appearing in the jth slot. The key to estimating vn — v is that £(F") can be
replaced by J]£0O(r") with small error.

Claim 4.4. For Lebesgue almost all t e [0, T]

^( t ) ) - I £(Pj) -»0. (4.5)
j = l M(R.)

To prove the claim we use the fact that for almost all te[0,T], P}, n , . . . , T J are
separated according to the following definition.

Definition. Suppose X is a compact Hausdorff space. The sequences u",vneM(X:Uk)
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are separated if and only if for any <5 > 0 there is Borel function 0 ̂  4> ̂  1 and N so that
for all n>N, (1 — <j>)n" a (j>vn have norm less than 3.

Examples. 1. If in M^ (^?)±-*(^,)±, (v?)±->(v)±, and, / i l v then ^n,v" are separated.
(Hint: choose <f>eC(x), O g ^ g l with | |(1-0)^| | + ||^v||<5.)

2. The converse is not true even for non-negative measures ft", v". For example

In this case the limits are not mutually singular but the sequences are separated as one
sees upon taking </>,=Zon[o.i] a n d 02 = X[o.u\o-

Lemma 4.3. Suppose that X is compact Hausdorff and that H e C(X x Uk) is positively
homogeneous and uniformly Lipschitzian with respect to the second variable. Suppose that
fi",v"eM(X: Uk) are separated. Then, as n->oo

Proof. Let A be a Lipschitz constant for H. For any <5>0 choose 0, N(8) as in the
definition of separated. Let a" = H(n" + V) - H(n") - H(v"). Then

Thus for n>N(6),

|||| | | | | •
From Claim 3.4 we see that there is a Lebesgue null set JV <= [0, T] so that for t $ JT

and i#y the sequence r((t) _L Fj-(t). Then for t$Jf, the sequences F"(t) and F"(t) are
separated. A simple induction using Lemma 4.3 yields (4.4) for t$Jf, completing the
proof of Claim 4.3.

We return to the proof of (4.3). Since ||rn(t)||M(J,t) is bounded independent of n and
te[0, T], it follows from Theorem 2.1(b), Lemma 4.3, and Lebesgue's dominated
Convergence Theorem that

sup *0.
M(R,)

Thus to prove that £"->£, it suffices to prove that for lgjg/c, L
Since the F"->0 in measure uniformly and e is sublinear we have e(F")-»0 in
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C([0, 7]:L1 (/?,)) (see [6 pp. 159-160]). Thus it remains to study L'lEx(T
n^). Consider-

ing the ith component, we find

=(d,+x,dx)

Note that eu = 0 so these expressions integrate ef\ ((F")±) along characteristics transverse
to those along which F" propagates. It follows as on p. 163 of [6] that the boundedness
of (FJ)±(O,) in M(R0) implies the precompactness of (C")* in C([0, T^-.L^R,)). The
convergence (C")±-fC± in C([0, T]:M(/?t)](t), is an immediate consequence of the
convergence (F")±->r± in C([0, T]:M(i?,)](1) and the continuity of (d, + Xdx)~

l from
C([0,T"\:M(R,)+) to itself. Together with precompactness, this implies that (C")±->C± in
C([0,Ty.Ll(R,)), proving (4.3).

We next prove that if->v in C([0, T]:Ll(R,)). Towards that end, note that

Define ^n = i)"-Cn, and, >76C([0,r]:L1(^()) the solution of

Then rj + £ satisfies the same initial value problem as v so we must have u = f/ + C- In
addition,

Since C"-C^O in C([0,T~\:Ll(R,)) and (^"-^)(0,-) = 0, Theorem 2.1(b) together with
Gronwall's inequality imply that r\"-ti^>Q in C([0, T~\:Ll(Rt)). Thus

= » in

To complete the proof of Theorem 4.2 it remains to show that un — vn — rn-*0 in
C([0,T]:L1 (/?,)). Subtracting the sum of 4.1 and 4.2 from Lu" + F(u'')=g yields for
v = un-if-T",

Lv" = F(v") + F{rn) - F(v" + vn + rn). (4.6)
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Let n(r) + rn
s(t) be the Lebesgue decomposition of rn(t). Write

F(v«+vn+rn)=F( vn+vn+rn) - F{v-+rn)+F(if+rn
tt

and

Thus, Lv" is equal to

F(vn)+F(r$ - (F( vn+vn+rn) - F(vn+r-)) - F(vn+rn
a).

Estimate the term in parentheses by A|v"| and then apply the estimate from Lemma 2.3
to find

\\V(t)\\M(Rt^c]\\v"(s)\\mRt)ds
. 0

(4.7)

Gronwall's inequality implies that to complete the proof it suffices to show the second
integral in 4.7 converges to zero uniformly for O^t^T. Now, replacing v" by v in two
occurrences in the second integral changes the value of the integrand by at most
2A||D" — U||L>(JI,) where A is a Lipschitz constant for F. Since this norm tends to zero
uniformly for t e [0, T] it suffices to show that

J ||F(i; + F2) - F(v) - F(r*a)\\MiRM) ds^O (4.8)

as n—>oo.
At the very beginning to the proof we observed that rn(t), and therefore T"(t),

converge to zero in measure uniformly for te[0, T]. Write F = FK + G with G sublinear.
Then as on pp. 159-160 of [6] we have

:)-C(B)inC([0,T]:L1(U,))

0 in C([0,Tl.Ll(R,))

so the contribution of the sublinear part of 4.8 tends to zero.
A key ingredient in the proof for the Fx part is the following lemma.

Lemma 4.4. Suppose that X is a compact Hausdorff space, dx is a Radon measure on
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X and that H e C{X x Uk) is positively homogeneous and uniformly Lipschitzian with
respect to the second variable. If <xeLl(X,dx) and /?„ is a sequence of measurable
functions tending to zero in dx measure then

tends to zero strongly in L1 (X, dx).

Proof of Lemma 4.4. For 8 > 0 define

G"t = {xeX:\P(x)\>5/meas(X)}.

For any 5 choose 51((5) so that if A is a Borel set with measure less than 5l then
|J^adx|<5. Choose N = N(8) so that for n>N, m e a s ^ * ) ^ .

On G* write

|ff (a + ft,) - //(a) - ff (ft,)| g |ff (a + /?„) - H(ftj\ + \H{a)\ g 2A|a|

and the integral over G3
n is then dominated by 2A<5.

On X\G* write

|ff (a + ft,) - ff (a) - H(ftm)\ ^ |ff (a + ft,) - ff(«)|

whose integral is at most 2A<5. Thus for n>N(5),

As a corollary of the proof we have:

Lemma 4.5. Suppose that X, dx are as above and H e C([0, T~\xX x Uk) is positively
homogeneous and uniformly Lipschitzian with respect to the third variable. If
OLeC([O,Ty.Li(X:Uk,dx)) and f}" is a sequence of measurable functions with /?"(£) tending
to zero in dx measure uniformly for te [0, T], then

)-ff(a)-ff(/S")

tends to zero in C([0,T]:L1(A',dx)).

Applying this lemma with a = v, fln = Tn
a shows that the F^ contribution to the

integrand of (4.8) tends uniformly to zero. It follows that (4.8) is true and the proof of
Theorem 4.2 is complete. •

The hypotheses (i), (ii) of Theorems 4.1, 4.2 are stronger than fi"->n in Mm. The next
examples show that //->/* in M^ is insufficient and that neither (i) nor (ii) can be
appreciably weakened.

Example 4.9. Consider the initial value problem
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Then u"(0, )-»0 in Mm but «n(0,•)± does not converge to 0 so hypothesis (ii) is violated.
The solution is

W(t)-*(e'-e-')dx

which is different from zero, the solution with data 0 = Mm—limu"(0,-).

Example 4.10. Let F(s) = min(s2,1) so F is a sublinear and consider the initial value
problems

d,un = F(un), u"(0,-)=gndx

Then in M # , u"(0, )->X[o,i)dx=g but g" does not converge to x[Oi t] in measure so (i) is
violated. Note that F(g") does not converge to F(g) in M+. The solutions are given by

"

so u"(t ,•)- j-(l+f/2)x[o,i]^ which is different from u = ( l + t)x[ 0 1 )dx, the solution of the
limit problem d,u = F(u), u(0,)=gdx.
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