
6 Grand unification

One of the troubling features of the Standard Model is the plethora of coupling constants;
overall there are 18, counting θ . It seems puzzling that a theory which purports to be
a fundamental theory should have so many parameters. Another is the puzzle of charge
quantization: why are the hypercharges all rational multiplets of one another (and, as a
result, the electric charges rational multiples of one another)? Finally, the gauge group
itself is rather puzzling. Why is it semi-simple rather than simple?

Georgi and Glashow put forward the grand unification proposal which answers some of
these questions. They suggested that the underlying gauge symmetry of nature is a simple
group, broken at some high-energy scale down to the gauge group of the Standard Model.
The Standard Model gauge group has rank 4 (there are four commuting generators); SU(N)
groups have rank N − 1. So the simplest group among the SU(N) groups which might
incorporate the Standard Model is SU(5). Without any fancy group theory, it is easy to see
how to embed SU(3) × SU(2) × U(1) in SU(5). Consider the gauge bosons. These are in
the adjoint representation of the group. Written as matrices, under infinitesimal space–time
independent gauge transformations we have

δAμ = iωa[T a, Aμ]. (6.1)

The Tas are 5 × 5 traceless Hermitian matrices; altogether, there are 24 of them. We can
then break up the gauge generators in the following way. Writing indices on T a as (T a)

j
i ,

the T as act on the fundamental five-dimensional representation (“the 5”) as

(T a)
j
i 5j. (6.2)

So, if we think of the 5 as

5 =

⎛⎜⎜⎜⎜⎜⎝
q1
q2
q3
L1
L2

⎞⎟⎟⎟⎟⎟⎠ (6.3)

then the T as can be broken up into a set of SU(3) generators and a set of SU(2) generators:

T a =
(
λa/2 0

0 0

)
, T i =

(
0 0
0 σ i/2

)
. (6.4)

Here the λas are Gell-Mann’s SU(3) matrices and the σ is are the Pauli matrices. There are
three commuting matrices among these. The remaining, diagonal, matrix can be taken to be
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107 Grand unification

Ỹ = 1√
60

⎛⎜⎜⎜⎜⎜⎝
−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 3 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎟⎠. (6.5)

Finally, there are 12 off-diagonal matrices:(
X i

a
)b

j = δi
jδ

b
a (6.6)

where a, b = 1, 2, 3; i, j = 1, 2. These are not Hermitian; they are analogous to the raising
and lowering operators in SU(2). One can readily form Hermitian linear combinations.
The associated vector mesons must be very heavy; they mediate B-violating processes, as
in Fig. 6.1. These can lead, for example, to p → π0e+.

We want to claim that Ỹ is proportional to the ordinary hypercharge and determine
the proportionality constant. To do this, we consider, not the 5 but the 5̄ and make the
identification

5̄ =

⎛⎜⎜⎜⎜⎜⎝
d̄1
d̄2
d̄3
L1
L2

⎞⎟⎟⎟⎟⎟⎠. (6.7)

Now, the generators of SU(5) acting on the 5̄ are −T aT. So we can read off immediately
that Y = √

60Ỹ/3. Since the gauge groups are unified in a single group, the gauge couplings
are all the same, so we can compute the Weinberg angle. Calling g the SU(5) coupling,

gỸ = g ′

2
Y, (6.8)

where g ′ is the hypercharge coupling of the Standard Model. From this, g2 = (5/3)g ′2.
The Weinberg angle is given by

sin2 θW = g ′2

g2 + g ′2 = 3
8

. (6.9)

d

L*

X

Q

u

Fig. 6.1 The exchange of heavy vector particles in GUTs violates B and L. It can lead to processes such as p → π 0e+.
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108 Grand unification

So we have two dramatic predictions, if we assume that the Standard Model is unified in
this way:

1. the SU(3) and SU(2) gauge couplings are equal;
2. the Weinberg angle satisfies sin2 θW = 3/8.

Before assessing these predictions, let us first figure out where we would put the rest
of the quarks and leptons. In a single generation of the Standard Model, there are 15
fields. The group SU(5) has a ten-dimensional representation, the antisymmetric product
of two 5s. It can be written as an antisymmetric matrix, 10ij. If i and j are both SU(3)
indices, we obtain a (3̄, 1)−4/3 of SU(3). If one is an SU(3) and one an SU(2) index, we
obtain a (3, 2)1/3. If both are SU(2) indices, we obtain a (1, 1)2. Here the subscripts denote
the ordinary hypercharge, related to Ỹ as above. These are just the quantum numbers of the
quark doublet Q, of ū and of ē. As a matrix,

10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 ū3 −ū2 Q1
1 Q2

1

−ū3 0 ū1 Q1
2 Q2

2

ū2 −ū1 0 Q1
3 Q2

3

−Q1
1 −Q1

2 −Q1
3 0 ē

−Q2
1 −Q2

2 −Q2
3 −ē 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.10)

So, a single generation of quarks and leptons fits neatly into a 5̄ and 10 of SU(5).

6.1 Cancelation of anomalies

An anomaly in a gauge symmetry would represent a breakdown of gauge invariance.
The consistency of gauge symmetries rests, however, on gauge invariance. For example,
to demonstrate that such theories are both unitary and Lorentz invariant we have used
different gauges. The cancelation of anomalies is crucial, and the absence of anomalies in
the Standard Model is surely no accident.

It is not hard to check that in SU(5) the anomaly of the 5̄ cancels that of the 10. In
general, the anomalies in a gauge theory are proportional to dabc, where

{Ta, Tb} = dabcTc. (6.11)

One can organize the anticommutator above in terms of the various types of generator, for
example SU(3), SU(2), U(1), and the off-diagonal generators, which transform as (3, 2) of
SU(3)× SU(2), and then check each class. We leave the details for the exercises.

6.2 Renormalization of couplings

If we are going to describe the Standard Model, SU(5) must break at some high-energy
scale to SU(3) × SU(2) × U(1). Above this scale, the full SU(5) symmetry holds to a
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109 6.3 Breaking to SU(3) × SU(2) × U(1)

good approximation, and all couplings renormalize in the same way. Below this scale the
couplings renormalize differently. We can write down the equations for the renormalization
of the three separate couplings:

α−1
i (μ) = α−1

gut(Mgut)+ bi
0

4π
ln

μ

Mgut
. (6.12)

We can calculate the beta functions at one loop starting with the usual formula:

b0 = 11
3

CA − 4
3

c(i)f N(i)f − 1
3

c(i)φ N(i)φ , (6.13)

where N(i)f is the number of fermions in the ith representation; N(i)φ is the number of
scalars. For SU(N) CA = N and, for fermions or scalars in the fundamental representation,
cf = cφ = 1/2.

For the SU(3) and SU(2) couplings the beta function coefficients bi
0 are readily

computed. For U(1), we need to remember the relative normalization computed above:

b2
0 = 181

6
, b3

0 = 7, b1
0 = 61

15
. (6.14)

We can run these equations backwards. The SU(2) and U(1) couplings are the best
measured, so it makes sense to start with these and run them up to the unification scale.
This determines αgut and Mgut. We can then predict the value of the SU(3) coupling at,
say, MZ. One finds that the unification scale, Mgut, is about 1015 GeV and that α3 is off
by about seven standard deviations. In the exercises you will have the opportunity to
perform this calculation in detail. We will see later that low-energy supersymmetry greatly
improves this.

6.3 Breaking to SU(3)× SU(2)× U(1)

In SU(5), it is relatively easy to introduce a set of Higgs fields which break the gauge
symmetry down to SU(3) × SU(2) × U(1). Consider a Hermitian scalar field � in the
adjoint representation. Writing � as a matrix, we have the transformation law

δ� = ωa[T a,�]. (6.15)

Suppose that the minimum of the � potential lies at a point where

� = vỸ. (6.16)

Then the SU(3), SU(2) and U(1) generators all commute with 〈�〉, but those for the X
bosons do not.

Consider the most general SU(5)-invariant potential:

V = −m2 Tr�2 + λ

4
Tr�4 + λ′

4
(Tr�2)2. (6.17)
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110 Grand unification

One can find the minimum of this potential by first using an SU(5) transformation to
diagonalize �, obtaining

� = diag(a1, a2, a3, a4, a5). (6.18)

The potential is a function of the ais, which one wants to minimize subject to the constraint
of vanishing trace. This can be done by using a Lagrange multiplier.

To establish that one has a local minimum of the form Eq. (6.16), one can proceed more
simply. Write the potential as a function of v:

V = −1
2

m2v2 + aλ
4

+ bλ′

4
v4, (6.19)

where a = 7/120, b = 1/4. Then the extremum with respect to v occurs for

v = μ√
aλ+ bλ′ . (6.20)

To establish that this is a local minimum, we need to show that the eigenvalues of the
scalar mass-squared matrix are all positive. We can investigate this by considering small
fluctuations about the stationary point. This point preserves SU(3)×SU(2)×U(1). Writing
� = 〈�〉 + δ�, δ� can be decomposed under SU(3)× SU(2)× U(1) as follows:

δ� = (1, 1)+ (8, 1)+ (1, 3)+ (3, 2)+ (3̄, 2). (6.21)

The point (6.20) is certainly stationary; because of the symmetry, only the (1, 1) term can
appear linearly in the potential, and it is this piece whose minimum we have just found.
To establish that the point (6.20) is in fact a local minimum, one needs to show that the
quadratic terms in the fluctuations are all positive. This is done in the exercises.

6.4 SU(2)× U(1) breaking

In addition to the adjoint, it is necessary to include a 5 representations of the Higgs H in
order to break SU(2) × U(1) down to the U(1) of electromagnetism and to give mass to
the quarks and leptons. The Higgs has the form

H =
(

Hc
Hd

)
, (6.22)

where Hc is a color triplet of scalars and Hd is the ordinary Higgs doublet. For H one might
have been tempted to write a potential of the form

V(H) = −μ2|H|2 + λ

4
|H|4. (6.23)

However, this would lead to a number of difficulties. Perhaps the most important is
that, when included in the larger theory with the adjoint field �, this potential has too
much symmetry; there is an extra SU(5) which would lead to an assortment of unwanted
Goldstone bosons. At the same time the scale μ must be of order the scale of electroweak
symmetry breaking (as long as λ is not too much larger than unity). So, the Higgs triplets
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111 6.5 Charge quantization and magnetic monopoles

will have masses of order the weak scale. But if the doublet couples to quarks and leptons,
the triplet will have baryon- and lepton-number-violating couplings to the quarks and
leptons. So the triplet must be very massive.

Both problems can be solved if we couple � to H. The allowed couplings include:

V�H = �H∗�H + λ′H∗H Tr�2 + λ′′H∗�2H. (6.24)

If we carefully adjust the constants �, λ′, λ′′ and μ2, we can arrange that the doublets
are light and the triplets are heavy. For example, if we choose λ = λ′ = 0 and μ2 =
−3(�/

√
60)v − ε then the Higgs doublets have mass-squared −ε in the Lagrangian, while

the triplets have mass of order Mgut. This tuning of parameters, which must be performed in
each order of perturbation theory, provides an explicit realization of the hierarchy problem.

Turning to the fermion masses, we are led to an interesting realization: not only does
grand unification make predictions for the gauge couplings, it can predict relations among
fermion masses as well. The gange group SU(5) permits the following couplings:

Ly = y1εijklmH i10 jk10 lm + y2H ∗
i 5̄j10ij. (6.25)

Here the ys are matrices in the space of generations. When H acquires an expectation
value, it gives mass to the quarks and leptons. The first coupling gives mass to the up-type
quarks. The second coupling gives mass to both the down-type quarks and the leptons. If
we consider only the heaviest generation, we then have the tree level prediction

mb = mτ . (6.26)

This prediction is off by a factor 3 but, like the prediction of the coupling constant, it can
be corrected by renormalization to roughly the observed amount. For the lightest quarks
and leptons the prediction fails. However, unlike the unification of gauge couplings, such
predictions can be modified if there are additional Higgs fields in other representations. In
addition, for the lightest fermions, higher-dimensional operators, suppressed by powers of
the Planck mass, can make significant contributions to masses. In supersymmetric grand
unified theories, the ratio of the GUT scale to the Planck scale is about 10−2, whereas the
lightest quarks and leptons have masses four orders of magnitude below the weak scale. We
will postpone a numerical study of these corrections since the simplest SU(5) theory does
not correctly predict the values of the coupling constants, and will return to this subject
when we discuss supersymmetric grand unified theories, which do successfully predict the
observed values of the couplings.

6.5 Charge quantization and magnetic monopoles

While we must postpone success with the calculation of the unified couplings to our
chapters on supersymmetry, we should pause and note two triumphs. First, we have
a possible explanation for one of physics’ greatest mysteries: why is electric charge
quantized? Here it is automatic; electric charge, an SU(5) generator, is quantized, just as
color and isospin are quantized.
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112 Grand unification

However, Dirac long ago offered another explanation of electric charge quantization:
magnetic monopoles. He realized that the consistency of quantum mechanics demands
that if even a single monopole exists in the universe, electric charges must all be integer
multiples of a fundamental charge. So we might suspect that magnetic monopoles are
hidden somewhere in this story. Indeed they are; this are discussed in Chapter 7.

6.6 Proton decay

We have discussed the dimension-six operators which can arise in the Standard Model and
violate baryon number. Exchanges of the X bosons generate operators such as

g 2

M 2
X

Qσμū∗Qσμē∗. (6.27)

This leads to the decay p → π0e+. In this model, one predicts a proton lifetime of order
1028 years if Mgut ≈ 1015 GeV. The current limit on this decay mode is 5 × 1033 years. We
will discuss the situation for supersymmetric models later.

The realization that baryon-number violation is likely in any more fundamental theory
opens up a vista on a fundamental question about nature: why is there more matter than
antimatter in the universe? If, at some very early time, there were equal amounts of matter
and antimatter then, if baryon number is violated, one has the possibility of producing an
excess. Other conditions must be satisfied as well; we will describe this in the chapter on
cosmology.

6.7 Other groups

While SU(5) may in some respects be the simplest group for unification, once one has set
off in this direction there are many possibilities. Perhaps the next simplest is unification in
the group O(10). As O(10) has rank 5, there is one extra commuting generator; presumably
this symmetry must be broken at some scale. More interesting, though, is the fact that a
single generation fits neatly into an irreducible representation: the 16. The group O(10)
has an SU(5) subgroup, under which the 16 decomposes as a 10 + 5̄ + 1. The singlet
has precisely the right Standard Model quantum numbers – none – to play the role of the
right-handed neutrino in the seesaw mechanism; see below Eq. (4.17).

We will not review the group theory of O groups in detail, but we can describe some of
the important features. We will focus specifically on O(10), but much of the discussion here
is easily generalized to other groups. The generators of O(10) are 10 × 10 antisymmetric
matrices. There are 45 of these. We are particularly interested in how they transform under
the Standard Model group. The embedding of the Standard Model in SU(5), as we have
learned, is very simple, so a useful way to proceed to understand O(10) is to find its SU(5)
subgroup.
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113 6.7 Other groups

One way to think of O(10) is as the group of rotations of ten-dimensional vectors.
Call the components of such a vector xA, A = 1, . . . , 10. Transformations in SU(5) are
“rotations” of complex five-dimensional vectors zi. So, we define

z1 = x1 + ix2, z2 = x3 + ix4, z3 = x5 + ix6 (6.28)

and so on. With this correspondence it is easy to see that there is a subgroup of O(10)
transformations that preserves the product z · z′∗. This is the SU(5) subgroup of O(10).

From our construction, it follows that the 10 of O(10) transforms as a 5 + 5̄ of SU(5).
We can determine the decomposition of the adjoint by writing

AAB = Aiī + Aij + Aī j̄. (6.29)

The labeling here is meant to indicate the types of complex index that the matrix A can
carry. The first term is just the 24-dimensional representation of SU(5), plus an additional
singlet. This singlet is associated with a U(1) subgroup of O(10), which rotates all the
objects with i-type indices by one phase and all those with ī type indices by the opposite
phase. Note that Aij is antisymmetric in its indices; in our study of SU(5) we learned that
this is the 10 representation. We can take it to carry charge 2 under the U(1) subgroup.
Then Aī j̄ corresponds to the 10 representation, with charge −2. This accounts for all 45
fields.

But where is the 16-dimensional representation? We are familiar, from our experience
with ordinary rotations in three and (Euclidean four) dimensions as well as from the
Lorentz group, with the fact that O groups may have spinor representations. To construct
these we need to introduce the equivalent of the Dirac gamma matrices �, satisfying

{�I,�J} = 2δIJ. (6.30)

It is not hard to construct explicit matrices which satisfy these anticommutation relations
but there is a simpler approach, which also makes the SU(5) embedding clear. The
anticommutation relations are similar to the relations for fermion creation and annihilation
operators. So, define

a1 = 1
2
(�1 + i�2), a2 = 1

2
(�3 + i�4) (6.31)

and so on, and similarly for their complex conjugates. Note that the ais form a 5 of SU(5),
with charge +1 under the U(1). These operators satisfy the algebra

{ai, a j̄} = δij̄. (6.32)

These are the anticommutation relations for five pairs of fermion creation–annihilation
operators. We know how to construct the corresponding “states”, i.e. the representations of
the algebra. We define a state |0〉 annihilated by the ais. Then there are five states created
by the action of aī on this state:

5̄−1 = aī|0〉. (6.33)

The main symbol 5̄ indicates the SU(5) representation and the subscript indicates the U(1)
charge. We could now construct the states obtained with two creation operators, but let us
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114 Grand unification

construct the states built using an odd number:

10−3 = aīa j̄ak̄|0〉, 1−5 = a1̄a2̄a3̄a4̄a5̄|0〉. (6.34)

We have indicated that the first representation transforms like a 10 of SU(5), while the
second transforms like a singlet.

The states which involve even numbers of creation operators transform like a 5, a 10, and
a singlet. Why do we distinguish these two sets? Remember, the goal of this construction
is to obtain irreducible representations of the group O(10). As in the Dirac theory, we can
construct the symmetry generators from the Dirac matrices,

S IJ = i
4
[�I,�J]. (6.35)

These, too, can be decomposed on a complex basis, like AIJ. But, as for the usual
Dirac matrices, there is another � matrix that we can construct, which is the analog of
�5: �11. This matrix anticommutes with all the �s, and so with the ais. Thus the states
with even numbers of creation operators are eigenstates with eigenvalue +1 under �11,
while those with odd numbers are eigenstates with eigenvalue −1. Since �11 commutes
with the symmetry generators, these two representations are irreducible.

A similar construction works for other groups. When we come to discuss string theories
in ten dimensions, we will be especially interested in the representations of O(8). Here the
same construction yields two eight-dimensional representations, denoted 8 and 8′.

The embedding of the states of the Standard Model in O(10) is clear, since we already
know how to embed them in a 5̄+10 of SU(5). But what of the other state in the 16? This is
a Standard Model singlet. We do not yet have a candidate in the particle data book for this.
However, there are two observations we can make. First, the symmetries of the Standard
Model do not forbid a mass for this particle. What does forbid a mass is the extra U(1). So,
if this symmetry is broken at very high energies, perhaps with the initial breaking of the
gauge symmetry, this particle can gain a large mass. We will not explore the possible Higgs
fields in O(10) but, as in SU(5), there are many possibilities and the U(1) can readily be
broken. Second, this particle has the right quantum numbers to couple to the left-handed
neutrino of the Standard Model. So this particle can naturally lead to a “seesaw” neutrino
mass. This mass might be expected to be of order some typical Yukawa coupling squared
divided by the unification scale. It is also possible that this extra U(1) is broken at some
lower scale, yielding a larger value for the neutrino mass.

Suggested reading

There is any number of good books and reviews on the subject of grand unification. The
books by Ross (1984), Mohapatra (2003) and Ramond (1999) all treat the topics introduced
in this chapter in great detail. The reader will find his or her interest in this topic increases
after studying some aspects of supersymmetry.
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Exercises

(1) Verify the cancelation of anomalies between the 5̄ and 10 representations of SU(5).
(2) Establish the conditions for the solution of Eq. (6.16) to be a local minimum of the

potential.
(3) Perform the calculation of coupling unification in the SU(5) model. Verify Eqs. (6.14)

for the SU(3), SU(2) and U(1) beta functions. Start with the measured values of the
SU(2) and U(1) couplings, being careful about the differing normalizations in the
Standard Model and in SU(5). Compute the value of the unification scale (the point
where these two couplings are equal); then determine the value of α3 at MZ. Compare
with the value given by the Particle Data Group. You need only study the equations
to one-loop order. In practice, two-loop corrections, as well as threshold effects and
higher-order corrections to the beta function, are often included.

(4) Add to the Higgs sector of the SU(5) theory a set of scalars in the 45 representation.
Show that in this case all the quark masses are free parameters.
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