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A TECHNIQUE TO GENERATE m-ARY FREE
LATTICES FROM FINITARY ONES

GEORGE GRATZER AND DAVID KELLY

Introduction. Let m be an infinite regular cardinal. A poset L is called
an m-lattice if and only if for all X € L satisfying 0 < [X| < m, /A X and
V X exist.

This paper is a part of a sequence of papers, [5], [6], [7], [8], developing
the theory of m-lattices. For a survey of some of these results, see [9].

The m-lattice D(m) is described in [6]; y denotes the zero and y’ the unit
of D(m). In particular, formulas for m-joins and meets are given. (We
repeat the essentials of this description in Section 4.)

In [6] we proved the theorem stated below. Our proof was based on
characterization of F, (P) (the free m-lattice on P) due to [1]; as a result,
our proof was very computational.

In this paper, we shall present a non-computational proof. This proof
relies on the description of D(m) borrowed from [6], and on the finitary
case: the description of the free lattice on H from [10]. (The proof in [6]
does not rely on the finitary case.)

THEOREM. The m-lattice D(m) — {y, Y’} is the free m-lattice on H.

The universal algebraic background of the present proof is given in
Section 1. Next, in Section 2, we generalize the concept of partial lattices
to m-lattices. Some immediate applications of these results are presented
in Section 3; these are applied in Section 5. D (i) is described in Section 4.
The proof of the theorem is given in Section 5.

1. Some universal algebraic lemmas. We recall some concepts from [3].
Let K be a variety (equational class) of algebras of some finitary or
infinitary type. For 4 = (4; F) € K and H S A, we define a relative
algebra = (H; F) of U as follows: if f € F, ay, a,,... € H and f(a,,
ay,...) =a € Hin ¥, then (and only then) f(ay, a,, . . . ) is defined on H
and equals a. A partial K-algebra is defined as a relative algebra of some
A € K. Let K(7) be the class of all algebras of type 7. Then a partial
algebra of type 7 is a partial K(7)-algebra, and vice versa.

If 8 = (B; F) is a partial algebra with the same type as that of K, then
F(*B) denotes the free K-algebra generated by 8. The canonical map of 8
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into F(*B) is not necessarily one-to-one; if it is one-to-one, then it is an
embedding of B into F(B). It is an isomorphism if and. only if B is a
partial K-algebra; in this case, B is isomorphic to the relative algebra of
F(*B) on the image of B. The following lemma is obvious.

LEMMA 1. Let B be a relative K-algebra, B € F(8),and B € C S F(B).
Let © be the relative algebra of F(B) on C. If € is generated by B, then
F(B) = F(Q) in the natural way.

Let 8 = (B; F) be a partial algebra, f € F, q;,... € B such that
f(ag, . ..) is not defined in ®B. We define a one-point extension 8" of ‘B as
follows: B> = B U {p}; all partial operations are the same on 8 and %"
except that we add (ay, ... ) to the domain of f, and f(q, ...) = p.

The next lemma is again trivial.

LEMMA 2. Let B be a partial K-algebra and let B* be a one-point
extension of B. Then F(B) = F(¥’) in the natural way.

Note that, as a rule, B is not a partial K-algebra.

Generalizing this construction, we can define B” for a set of points P
and for each p € P,fp, and &,... € B.

An immediate consequence of Lemma 2 is the following:

LEMMA 3. Assume that there is an A € K and a homomorphism ¢ of B’
into A such that for all a € B, p|, p, € P, p, # p,, we have

ap #* pe, I = 1,2 and P19 * Pro.
Then F(B) = F(%P) in the natural way.

Now let % and 9, be partial K-algebras, 4, N 4, = A, such that %, as
a relative algebra of 9 is the same as 2, as a relative algebra of ;. We
shall say that %, and A, can be strongly amalgamated over U,, if there is
an algebra %; € K of which both %, and A, are relative algebras and
Ay N A, = A, in U,

LEMMA 4. Let A be a partial K-algebra, let A” S A, and let )’ be the
corresponding relative algebra of N. If A and F(W') can be strongly
amalgamated over W', then the subalgebra [A’] of F(N) generated by A’ is
naturally isomorphic to F(U).

Proof. Let A” € K strongly amalgamate ¥ and F(’). Let ¢ be the
extension of the identity map on A to a homomorphism of F() into A”.
Obviously, ¢ maps [4’] onto F(A’'). We get an inverse map by the freeness
of F(A), and hence the isomorphism.

2. Partial m-lattices. It is clear that we can define a type of algebras
such that m-lattices can be regarded as algebras of this type.
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Let L be an m-lattice, Q € L, Q # @, and we restrict the V and N of L
to Q as follows: if X € Q,0 < |X| < mnt,and x = A X (formed in L) is in
O, then A\ X is defined in Q and A\ X = x in Q; otherwise, A\ X is not
defined; V X is defined similarly. Then Q with A and V is called a partial
m-lattice; Q is a relative m-sublattice of L. (For m = 8, see [4] for a
detailed discussion of partial lattices.)

The partial m-lattice Q is an example of an m-structure defined as
follows. Given a partially ordered set P, we can make P into an (infinitary)
partial algebra of the type of partial m-lattices as follows: we designate
two families of subsets of P:It and J; if X € M, then 0 < |X| < m and
inf X exists in P; if X € , then 0 < [X| < mt and sup X exists in P. We
define V and A on P as follows:

A X = xifand only if X € I and x = inf X
V X = x if and only if X €  and x = sup X.

We denote this partial algebra by (P, M, ¥) and call it an m-structure.
Note that for the same poset P, there are many m-structures on P.

Given an m-structure (P, M, ) and I € P, we call I an ideal if and
onlyifx,y € P,x =y,andy € [ imply thatx € I;and X € J, X € /
imply that sup X € 1. For X < P, let (X]y denote the ideal generated by
X;if X = {x} we write (x]y for ( {x} ]x.

Observe that every partial m-lattice P is an m-structure, (P, I, J), in
the natural way. The corresponding ideal concept is called m-ideal. The
m-ideal generated by X will be denoted by (X],; if X = {x}, we write

(x], for ({x}1, If |X] < m, then the m-ideal (X], is called
m-generated.

LEMMA 5. An m-structure (P, M, I) is a partial m-lattice if and only if
the following conditions are satisfied:

(i) For every u, v € P, if u = v, then {u, v} € M and {u,v} € J;

(i) For X € P, 0 < |X| < m, if(X]?5 = (x]y. then X € J; and dually
for M.

The proof of this lemma is analogous to the proof in the finitary case
due to N. Funayama [2], see also Theorem 1.5.20 in [4]. The present
formulation seems to be new even in the finitary case.

LEMMA 6. For any m-structure (P, I, X), there exists a smallest partial
m-lattice {P; /\, V) containing (P, M, J) in the obvious sense.

Proof. This is clear from Lemma 35; first, we add to I and ¥ the
singletons and doubletons needed in (i) containing I, and 3J,. Then we
add to Mty and ¥ all subsets of P required by (ii), obtaining M, J,. Now
(i) will have to be applied again to augment M, J,. After at most |P|™
steps we obtain I, ¥ satisfying (i) and (ii), hence (P, M, ) is the smallest
partial m-lattice containing (P, M, J).
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The next lemma follows from Lemmas 5 and 6.

LEMMA 7. The free m-lattice generated by the m-structure (P, M, J)
is isomorphic to the free m-lattice generated by the smallest partial m-lattice
containing {(P. M, ).

Finally. we observe that when generating the free m-lattice, we can first
generate the free lattice. Let 9 be a partial lattice and F (%) the free lattice
generated by 2. We make F() into an m-structure {F(2A), M, J) as
follows: MM and ¥ both consist of the nonempty finite subsets of F ().

LEMMA 8. The free m-lattice generated by A and by (F(A), M, ) are
naturally isomorphic.

In other words, we can form first finitary meets and joins freely, before
we have to worry about infinitary meets and joins. The proof is obvious.

For a partial m-lattice A or an m-structure ¥ = (P, M, J), the free
m-lattice on A will be denoted by F, (A). For a poset P, there is a smallest
partial m-lattice ‘B = (P, M, J); let F (B) denote the free m-lattice
generated by it. Obviously, F,,(*B) is the same as F (P).

3. Chains and linear sums. Let Q be a chain. As the simplest application
of the results of Sections 1 and 2, we determine the free m-lattice on Q.
Observe that the finitary case is trivial.

Let 0 = Q U I U D, where I is the set of nonprincipal m-gener-
ated ideals of Q ordered by C D, is the set of nonprincipal m-generated
dual ideals of Q ordered by 2. We define the partial order on Q in the
obvious way:

leta € Qand b € I, a = b means that a € b, and b = a means that b
< (al:

let a € Q and b € D; we use the dual definition;

leta € Iandb € D;a < bif and only if x < yin Q for all x € I and
y € D,

b<aifandonlyifa N b # 8.

LEMMA 9. Q is an m-chain.

Proof.Let X € Q0,0 < |X| < m. We show that V X exists in Q. We can
assume that X € Q,or X € I,or X € D.If X C Q, then let a = (X]. We
show that ¢ = V X in Q. Indeed, if b is an upper bound of X in 0, and
be QU I thena = bisobvious:if b € D, b =[Y),0 < |Y] < m, in
Q,then x < yforall x € Xandy € Y, hence, a < y forall y € Y,
implying that a << b.

If X € I thena = U (x| x € I)is an m-generated ideal by the
regularity of m. If ¢ is nonprincipal, then @ € I and a is obviously the least
upper bound of X. If a is principal, a = (qy], a; € Q. and q is the
least upper bound of X.

https://doi.org/10.4153/CJM-1985-020-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-020-4

328 G. GRATZER AND D. KELLY

If X € D, we can assume that X has no largest element and X is
well- ordered X ={d;|i <n}, wheren <mandd, <d(ie.d; > d) for
i < j. Foreachi <n,choose a; € d; — d; . The 1deal aof Q generated
by the a;, i < n, is m-generated, hence a € Q. Itis easily seen that a is the
least upper bound of X in Q.

By duality, A X also exists, hence Q is an m-chain.
LEMMA 10. O is the free m-lattice on Q.

Proof. Let us define an m-structure on Q: let both ¥ and 9 consist of
all subsets X of Q0 with 0 < |X| < m. This makes Q into an m-structure
generated by Q as discussed in Lemma 2. The free m-lattice on Q is the
same as the free m-lattice on this partial m-lattice on Q. However, the
computations of Lemma 9 show that the smallest partial m-lattice on this
me-structure is the m-chain 0. So we can apply Lemmas 7 and 8 to
conclude that the m-chain Q is the free m-lattice on Q.

A similar application is to linear sums. Let Q be a chain and let P,, i €
Q. be posets. Let Q denote the free m-lattice (chain) on Q. We now
describe the free m-lattice on the linear sum P of the P,, i € Q.

LEMMA 11. For i € Q, let us define the poset Q;:
Qi = m(P)fOI'l < Q
Q, is a singleton fori € 0 — Q.

Then F,(P) is the linear sum of the Q.. i € Q.

Proof. Let P stand for the linear sum of the Q,, i € Q. Then P C P.
Let P* be the linear sum of the P, for i € Q and the singleton Q,; for
i € 0 — Q. We can argue as in Lemmas 9 and 10 (the special case that all
|P;| = 1), that the free m-lattice on P and P are the same.

For each i € I, we can use Lemma 4 to show that, in P, we can replace
P; with F, (P;). The resulting m-structure ‘3 has P as the underlylng poset;
3 and I consist of all subsets X € P satisfying 0 < |X| < m,and X € O
or X & F,(P;,) for some i. However, the smallest partial m-lattice
containing ‘R is the m-lattice P. We apply again Lemmas 7 and 8 to
conclude that P = F, (P).

4. The m-lattice D(m). Let m be a regular cardinal, m > N,. In this
section, we sketch the definition of the complete lattice D(m). For a more
detailed description, see [6].

First, let C(m) be the lattice of Figure 1.

For every successor ordinal ; << m, there is a lower j-th level of 6
elements L = {a bj, < d €, f-}, and for every limit ordinal i < m
(including 1 = 0), there isa lower i-th level of 7 elements L; = {a;, b;, ¢;, d;,

e,/ g} These elements are ordered as shown in Figure 1. There is also an
upper i-th level U, for each i << m, defined dually and denoted by the same
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$80=Y
The m-lattice C(m)
Figure 1
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(1/8, 1) Q

(3/4.1) O

(3/4.7/85Q

(172, 1y Q

(5/8, 3/4) 3

(1/2.3/4YQ

(1/2.5/8)Q

(0, 1>Q

(3/8.1/2)Q

(1/4,1/2) Q

(174, 3/8%Q

(0, 1/25

(178, 1/4) 3

(0, 17450

(0, 1/85Q

The lattice A
Figure 2
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letters with primes. For convenience. we also label 6 elements of C(m)
with Greek letters: & = ay, o' = aj, B = by, 8’ = by, vy = 8. Y = &

C(m) — {v, Y’} is m-generated by «a, o, 8, B

The second building block of D(m) is the lattice 4 of Figure 2. first
described in [10]. Let J be the set of dyadic rationals r that satisfy 0 = r
= 1. Every r € J, r # 0, has a unique representation, the normal form,
r = a-2 " where a is an odd integer; n is the order or r: in notation,
n = ord(r). By convention, ord(0) = 0.

We define 4 as a subposet of J? with the product order:

A={{r,s)|lr<sands — r = 2" n =2 max {ord(r), ord(s) }.

For ¢t € J, let us call the set of a € A of the form (z, s) the x = 1 line in
A, and define the y = 1 line similarly. {r, r + 2701y s the largest
element on the x = r line, and (s — 2 °%) 5 is the smallest element on
the vy = s line.

Each a € A has a right upper cover a*:

(r.sy* = ((r + 5)/2.5).

Similarly, the left upper cover *(r. s) exists and equals (r. s + 2~ °4¢))
when ord(r) < ord(s).

Let @ and b be incomparable elements of A, with a to the left of b. The
join of a and b is the least element on the y-line through a that is greater
than b.

Finally, we define

B = {{(r,s)|{(s,ry € 4},

a subposet of J% Clearly, B is a lattice and its diagram is obtained by
reflecting Figure 2 about a vertical line.

Let I be the real interval [0, 1], and recall that J denotes the subset of /
consisting of dyadic rationals. For each ¢ € J, we take a copy C, of C(m),
with bounds vy, and v}, and generators a,, a;, 8,, 8;. For each ¢t € I which is
not a dyadic rational, C, = {,, v;} is the two-element chain with y, < y;.
We define C as the linear sum of the C,, + € I. Since I is complete and
each C, is complete, C is a complete lattice.

We define D(m) = A U B U C, partially ordered as follows (see
Figures 3 and 4): Let

(r.s) € A,{t,uy € B.ve l.peC,;
{r, sy < {t,uy if and only if s < u;
{r, sy > (t, uy if and only if r > 1;

(r.sY < pif and only if s < v holds, or s = v and «, = p hold:
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J real nondydadic

(172, 0)

(1, 0)

(1,1/2)

i dyadic

The m-lattice D(m)
Figure 3

r,s)y >pitand only it r > v holds, orr = v and a, = old;
(r, s) > pif and only if hold d a, = p hold
t,uy < pitandonly if 1t < v holds, orz = v an L= ola;
(t, uy < p if and only if hold d B, = p hold
t,uy > pif and only if ¥ > v holds, or u = v an = old.
(t, uy > p if and only if hold d B, = p hold

1s easily seen that D(m) is a poset.

is not difficult to show that D(m) is a lattice, and that each of 4, B,
C is a sublattice of D(m). For (r,s) € A, {t, u) € B, v € I, and
C,. we give the formulas for joining pairs:
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x=r line in 4

Vi
I (s.r) B
Y4

/‘ 'l
o ;
&r B, r<t<s
r. s dvadic
1 real nondyadic

Details of D(m)
Figure 4

y=s line in A4

(a) (r,s) Vpis

(1) a, V p € C, where the join is formed in C, if s = v;

@) {r,s),if r >v,orr =vandp = a,in C;

(iii) the least (w, s) such thatw > v, if r = v < sandp £ o in C,:

(iv) the least (w, s) such thatw = v, if r = v <sandp = «a] in C;

(b) {r,s) V{1, u) is

1)t uy, if s < u;

@) {r.sy. if t < r;

(iii) the least (w, s) on the y = s line in A4 such that w > 1, if s > 1:

(iv) the least (z, w) on the x = ¢ line in B such that w > s.if s > 1

(v) o, V B, if s = ¢, where the join is formed in C,.

To show that D(m) is a complete lattice, it suffices to find V X for a
nonempty subset X of A. (The formula is similar for B and we alreadv
know that C is complete.) Let X, and X, be the first and the second
projections of X, and formu =V X, andv =V X, in I.
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Ifu <v, thenv € J, and V X is the least element of 4 on the y = v line
whose first coordinate i1s = u.
If u =v, then

Yy, fu=vandu & X;;
VA= {auifu:vanduEXz.

D(m) — {yy, v}} 1s m-generated by a,, B,. (0, 1). (1, 0), &}, B].

5. D(m) as an m-structure. Let P = D(m) — {v,, v|} be the partially
ordered set underlying D(m) — {v,, v1}.

For a dyadic rational 7, 0 = i = 1, let Cfm be the 16 element sublat-
tice C(N;) of C(m). Let

Py=AUBUC™

where €™ is the union of all Cfi” where i is a dyadic rational, 0 =i = 1.
We know that P is a sublattice of D(m). By [10], P is the free lattice
generated by

H = {ay. By af, B, (1. 0). €0, 1) }.

By Lemma 7, FL,(H) is isomorphic to the free m-lattice generated by
{Py. Fin, Fin), where Fin is the family of finite nonempty subsets of P,

Let P, be an extension of P in the style of Lemma 3: We add to P, all
a;, B, o, B, i € J; we define a; as the m-join of the y = i line in 4; o}, B;,
B/ are defined analogously. To apply Lemma 3 we have to find an m-lattice
where all these elements are distinct; of course, D(m) does the trick.

Now we apply Lemma 4 to P, and C. By Lemma 4, P = P, U C as an
m-structure (P, I, X) generates the same free m-lattice as H. (P, Wi, J) is
defined as follows:

1. All finite nonempty subsets of P, are in ¢ and 3J.

2. The y = iline in 4 is in ¥ (and analogously for 9¢).

3. All subsets X of C are in § and I provided that 0 < |X| < m.
Now the crucial statement is:

LEMMA 12. The smallest partial m-lattice containing (P, I, X) is the
m-lattice: D(m) — {y,y, Y1}

It is clear, by Lemma 8, that Lemma 12 implies the theorem since the
free m-lattice generated by an m-lattice is an m-lattice.

Proof of Lemma 12. By duality and Lemma 3, it is sufficient to prove the
following statement:
For every subset X of P with 0 < |X| < m and a = sup X, we have

(X1, = (a].
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A, B, A U B. and C are sublattices of P since all finite sets are in W¢ and
3. Thus, it is sufficient to verify the above statement in the following
cases:

1. X = {x,, x,}, and x,, x, are incomparable:

(a) x; € 4. x, € C;

(b) x, € B. x, € C.

2. X is an infinite chain:

(a) X € 4.

(b) X € B;

(c) X € C.

By the symmetry of D(m), it is enough to consider (la), (2a). and (2c). Of
these, (2¢) is trivial, since all such X are in 9t and .

Case (la). Let x; = (r, s) and x, = p be given as in Section 4 in the
description of the join in D(m). We proceed by subcases (i)-(iv)
corresponding to part (a) of the join definition.

(1) In this case, s = v. Let

{rysy = ({r, 8) < (ry, sy <...
be the y = s line in 4. We prove by induction that

(rosy € ({(ros).p}ly = 1.

This holds for i = 1 by definition. For i = 2. observe that r; < r, <,
hence a,, < p. and all {x, r)) < «, ; thus all (x, r,) &€ I. Choose x so that
rp < x <ryand (x, r,y € A. Then

(ri, sy V{(x,ry) = (ry.s) and
{(ri,s), (x,ry) } €3,

hence, (r,, s) € I. The induction step is similar. By the definition of J
(clause 2), and since { (r;, sy | i = 1, 2,...} is cofinite with the y = s
line,

V({rosyli=1,2,...) = a,
hence
1 = (aS \/pj\"\’

as required.

(i1) does not define incomparable pairs of elements.

(iii) and (iv) are similar to (i) except we prove (r;, s) € I only up to the
first i such that r; > v, while in (iv) up to the first i with r; = v.

Case (2a). Since A4 is a countable sublattice, we can assume that X is an
« chain:

(Faw Sa) < dresy)) < oo.<<dras,) < ...
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If there is an n. such thats = 5, = 5,,, = ..., then obviously,
(X] = (a];.

If there is no such n, then set s = V 5. For every u < s, u dyadic, there is
an i such that u < r;, hence y, € (X]. By the definition of J (clause 3),

Vi, lu<s) € (X]

hence y, € (X]. This proves that (X] = (y,].
This completes the proof of Lemma 12.
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