Canad. J. Math. Vol. 52 (5), 2000 pp. 1085-1100

Complex Monge-Ampère Measures of Plurisubharmonic Functions with Bounded Values Near the Boundary

Yang Xing

Abstract. We give a characterization of bounded plurisubharmonic functions by using their complex Monge-Ampère measures. This implies a both necessary and sufficient condition for a positive measure to be complex Monge-Ampère measure of some bounded plurisubharmonic function.

0 Introduction

We denote by $PSH(\Omega)$ the set of all plurisubharmonic (psh) functions in a bounded, strictly pseudoconvex subset Ω of \mathbb{C}^n . We use the notations $d = \partial + \bar{\partial}$ and $d^c = i(\bar{\partial} - \partial)$. The complex Monge-Ampère operator $(dd^c)^n$ is well defined for all locally bounded psh functions, see [B-T2], and it plays a great role in pluripotential theory as the Laplace operator in classical potential theory. However, unlike the Laplace operator, the complex Monge-Ampère operator is nonlinear and cannot be defined without problem for all unbounded psh functions, see [K]. Several authors have therefore extended the domain of definition of the complex Monge-Ampère operator to some important classes of unbounded psh functions, see [B], [D], [C1], [C2] and [S]. Among these results, we like to mention that $(dd^c u)^n$ will be a positive Borel measure if the function $u \in PSH(\Omega)$ is bounded near the boundary $\partial\Omega$.

In this paper we study characterization of Monge-Ampère measures of bounded psh functions in Ω . To handle this problem we consider the class \mathcal{B} of psh functions u, which are bounded near the boundary and $(dd^c u)^n$ are absolutely continuous with respect to the capacity C_n introduced by Bedford and Taylor in [B-T2]. In Section 1 we obtain a comparison theorem for functions in \mathcal{B} . This theorem serves as a main tool in the proofs of this paper. In fact, the class \mathcal{B} is natural in the sense that the proofs of comparison theorems in [B-T2] and [X] work without practically any change for functions in \mathcal{B} . In Section 2 we prove that any positive measure can be written as a Monge-Ampère measure of some functions in \mathcal{B} . In Section 3 we characterize bounded psh functions by using their Monge-Ampère measures. As an application we prove a characterization of bounded radial psh functions given in [P]. Finally, in Section 4 we give a both necessary and sufficient condition for a positive measure to be complex Monge-Ampère measure of some bounded psh function. This implies a characterization of the positive measure μ such that each positive measure f $d\mu$ with $\int_{\Omega} f^p d\mu \leq 1$ and p > 1 can be written as a complex Monge-Ampère measure of

Received by the editors October 22, 1998; revised November 6, 1999.

AMS subject classification: Primary: 32F07; secondary: 32F05.

[©]Canadian Mathematical Society 2000.

some bounded psh function, whose supremum norm is uniformly bounded by a constant depending on *p*.

The author would like to thank Urban Cegrell, Christer O. Kiselman and Norman Levenberg for helpful comments.

1 Continuity of $(dd^c)^n$ and a Comparison Theorem

We begin by studying continuity of the complex Monge-Ampère operator. Let C_n be the inner capacity given by Bedford and Taylor in [B-T2], as defined by $C_n(E) = C_n(E, \Omega) = \sup\{\int_E (dd^e u)^n ; u \in PSH(\Omega), 0 < u < 1\}$ for any Borel subset E of Ω . A sequence of functions u_j is said to converge to a function u in C_n -capacity on a set E if for each constant $\delta > 0$ we have $C_n\{z \in E ; |u_j(z) - u(z)| > \delta\} \to 0$ as $j \to \infty$. In [X] we obtain that if locally uniformly bounded psh functions u_j converge to a psh function u in C_n -capacity on each $E \subset \subset \Omega$, then $(dd^e u_j)^n \to (dd^e u)^n$ weakly in Ω . We generalize now this result to psh functions which are bounded near the boundary $\partial\Omega$ and whose Monge-Ampère measures have small mass on any set of small C_n -capacity. Recall that positive measures μ_j are said to be *uniformly absolutely continuous* with respect to C_n in a set E if for any constant $\varepsilon > 0$ there exists a constant $\delta > 0$ such that for each Borel subset $E' \subset E$ with $C_n(E') < \delta$ the inequality $\mu_j(E') < \varepsilon$ holds for all j. Now we can prove

Theorem 1 Let $u \in PSH(\Omega)$. Suppose that there exists a sequence of bounded psh functions u_j in Ω such that u_j are uniformly bounded near $\partial\Omega$ for all j, $(dd^c u_j)^n \ll C_n$ uniformly on each subset $E \subset \subset \Omega$ and $u_j \to u$ in C_n on each $E \subset \subset \Omega$. Then $(dd^c u_j)^n$ is weakly convergent to $(dd^c u)^n$ in Ω and $(dd^c u)^n \ll C_n$ on each $E \subset \subset \Omega$.

Proof Since functions u_j are uniformly bounded near $\partial\Omega$ for all j then the limit function u is bounded near $\partial\Omega$ and hence $(dd^c u)^n$ is well defined as a positive Borel measure, see [B]. To see that $(dd^c u_j)^n \rightarrow (dd^c u)^n$ weakly in Ω , for a given smooth function ϕ with compact support in Ω , we write

$$\begin{split} \int_{\Omega} \phi[(dd^{c}u_{j})^{n} - (dd^{c}u)^{n}] &= \int_{\Omega} \phi[(dd^{c}u_{j})^{n} - \left(dd^{c}\max(u_{j}, -c)\right)^{n}] \\ &+ \int_{\Omega} \phi[\left(dd^{c}\max(u_{j}, -c)\right)^{n} - \left(dd^{c}\max(u, -c)\right)^{n}] \\ &+ \int_{\Omega} \phi[\left(dd^{c}\max(u, -c)\right)^{n} - \left(dd^{c}u\right)^{n}] \\ &\stackrel{\text{def}}{=} A_{1} + A_{2} + A_{3}. \end{split}$$

It turns out from Proposition 4.2 in [B-T3] that for each sufficiently large constant c > 0

$$|A_1| = \left| \int_{u_j \le -c} \phi \left[(dd^c u_j)^n - (dd^c \max(u_j, -c))^n \right] \right|$$

$$\le \max_{\Omega} |\phi| \left(\int_{u_j \le -c} (dd^c u_j)^n + \int_{u_j \le -c} (dd^c \max(u_j, -c))^n \right).$$

Using Lemma 1 in [X] we have

$$\begin{split} \int_{u_j \le -c} \left(dd^c \max(u_j, -c) \right)^n &\le \int_{u_j \le -c} \left(-1 - \frac{2u_j}{c} \right)^n \left(dd^c \max(u_j, -c) \right)^n \\ &\le 2^n \int_{u_j < -c/2} \left(-\frac{c}{2} - u_j \right)^n \left(dd^c \max\left(\frac{u_j}{c}, -1 \right) \right)^n \\ &\le 2^n (n!)^2 \int_{u_j < -c/2} (dd^c u_j)^n. \end{split}$$

Hence for each *c* large enough and all *j* we have proved the following estimation

$$|A_1| \leq (1 + 2^n (n!)^2) \max_{\Omega} |\phi| \int_{u_j < -c/2} (dd^c u_j)^n.$$

Since $C_n\{u < -c/2\} \to 0$ as $c \to \infty$ and $u_j \to u$ in C_n we have that $C_n\{u_j < -c/2\}$ uniformly converge to zero for all j as $c \to \infty$. Hence the uniformly absolute continuity of $(dd^c u_j)^n$ implies that the last integral converges to zero uniformly for all j as $c \to \infty$. Thus, for any $\varepsilon > 0$ we can take a constant $c \ge 0$ such that $|A_1| \le \varepsilon$ for all j, and by Corollary 2.3 in [D] we can also require that $|A_3| \le \varepsilon$. However, for such a fixed constant cthe convergence assumption implies that functions $\max(u_j, -c)$ converge to $\max(u, -c)$ in C_n on each $E \subset \subset \Omega$ as $j \to \infty$ and hence we conclude by Theorem 1 in [X] that $A_2 \to 0$ as $j \to \infty$. Therefore, we have shown that $(dd^c u_j)^n$ converges weakly to $(dd^c u)^n$.

It remains to show $(dd^c u)^n \ll C_n$ on any open set $E \subset \subset \Omega$. For any $\varepsilon > 0$ we choose $\delta > 0$ such that inequalities $(dd^c u_j)^n(E') \leq \varepsilon$ hold for all j and all Borel sets $E' \subset E$ with $C_n(E') < \delta$. For such a subset E' we take an open set G with $E' \subset G \subset E$ and $C_n(G) < \delta$ and then choose a sequence of non-negative smooth functions ψ_k , which increase to the characteristic function of G in Ω . Then $\int_{E'} (dd^c u)^n \leq \int_G (dd^c u)^n = \lim_{k\to\infty} \int_{\Omega} \psi_k (dd^c u)^n \leq \lim_{j\to\infty} \int_G (dd^c u_j)^n \leq \varepsilon$. Hence $(dd^c u)^n \ll C_n$ on E and we have completed the proof of Theorem 1.

In this paper we denote by \mathcal{B} the class of all psh functions u in Ω , which are bounded near the boundary $\partial\Omega$ and have absolutely continuous Monge-Ampère measures with respect to C_n on each $E \subset \subset \Omega$. The class \mathcal{B} includes all limit functions u of Theorem 1. On the other hand, each function u in \mathcal{B} is a decreasing limit of bounded functions $u_j = \max(u, -j)$. Applying the quasicontinuity of psh functions with respect to C_n , see [B-T2], and Dini's theorem, we obtain that $u_j \to u$ in C_n on each $E \subset \subset \Omega$. Hence the class \mathcal{B} consists precisely of all functions u given in Theorem 1 as shown by the weak convergence $(dd^c u_j)^n \to (dd^c u)^n$ and the following fact.

Lemma 1 Suppose that a sequence of bounded psh functions u_j in Ω decreases to a psh function u, which is bounded near the boundary $\partial \Omega$. If $(dd^c u)^n \ll C_n$ on any relatively compact subset of Ω then we have $(dd^c u_j)^n \ll C_n$ uniformly for all j on each $E \subset \subset \Omega$.

Proof By the proof of Theorem 2.7 in [D] we have that $v(dd^c u_j)^n \rightarrow v(dd^c u)^n$ weakly in Ω for any locally bounded psh function v on Ω . Thus, Lemma 1 follows directly from Theorem 3.2 in [B-T3].

Bedford and Taylor in [B-T2] proved the comparison theorem for bounded psh function, which has wide application on the Dirichlet problem. In [X] we have obtained a stronger inequality than the comparison theorem. Now we generalize it to functions in B.

Lemma 2 If $u, v \in \mathcal{B}$ satisfy $\underline{\lim}_{z \to \partial \Omega} (u(z) - v(z)) \ge 0$, then for any constant $r \ge 1$ and all $w_j \in PSH(\Omega)$ with $0 \le w_j \le 1$, j = 1, 2, ..., n, we have

$$\frac{1}{(n!)^2} \int_{u < v} (v - u)^n \, dd^c w_1 \wedge \cdots \wedge dd^c w_n + \int_{u < v} (r - w_1) (dd^c v)^n \leq \int_{u < v} (r - w_1) (dd^c u)^n.$$

Therefore, under the additional assumption $(dd^cv)^n \ge (dd^cu)^n$ in Ω , we obtain that the set $\{u < v\}$ is empty.

Proof We may assume that there exists a subset $E \subset \Omega$ such that $\{u < v\} \subset E$. Otherwise, replace u by $u + 2\delta$ and then let $\delta \searrow 0$. Write $u_k = \max(u, -k)$ and $v_j = \max(v, -j)$. Then $\{u_k < v_j\} \subset E$ for sufficiently large k and j. By Lemma 1 in [X] we have that for any constant $r \ge 1$ and all $w_j \in PSH(\Omega)$ with $0 \le w_j \le 1, j = 1, 2, ..., n$

$$\frac{1}{(n!)^2} \int_{u_k < v_j} (v_j - u_k)^n \, dd^c w_1 \wedge \dots \wedge dd^c w_n + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \leq \int_{u_k < v_j} (r - w_1) (dd^c u_k)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c u_k)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n \, dd^c w_j + \int_{u_k < v_j} (r - w_1) (dd^c v_j)^n$$

where *k* and *j* are large enough. Since $u_k \searrow u$ then $(dd^c u_k)^n \rightarrow (dd^c u)^n$ weakly and by Lemma 1 we have that $(dd^c u_k)^n \ll C_n$ uniformly for all *k* in the set *E*. Similarly, $(dd^c v_j)^n \ll C_n$ uniformly for all *j* in *E*. Letting $j \rightarrow \infty$ and then $k \rightarrow \infty$, we can easily get the required inequality by the same argument as in the proof of Lemma 1 of [X]. Thus the proof is complete.

2 Range of $(dd^c)^n$

Now we begin to discuss the range of the complex Monge-Ampère operator. We need a lemma.

Lemma 3 If $v \in \mathbb{B}$ and f is a non-negative continuous function with compact support in Ω , then there exists a function u in \mathbb{B} such that $(dd^c u)^n = f(dd^c v)^n$ and $\lim_{z\to\partial\Omega} u(z) = 0$.

Proof Suppose that $\rho(z)$ be a defining function of Ω and that $|\nu(z)| \le a$ in a neighborhood of $\Omega \setminus \Omega'$, where supp $f \subset \subset \Omega' \subset \subset \Omega$. For a sufficiently large constant *b* we define

$$ar{v}(z) = egin{cases} \maxig(v(z)-a-1,b
ho(z)ig) & ext{in }\Omega\setminus\Omega'\ ; \ v(z)-a-1 & ext{in }\Omega'. \end{cases}$$

Then it is easy to see that $\bar{v} \in \mathcal{B}$, $\lim_{z\to\partial\Omega} \bar{v}(z) = 0$ and $f(dd^c \bar{v})^n = f(dd^c v)^n$. So without loss of generality we may assume that $\lim_{z\to\partial\Omega} v(z) = 0$ and $0 \leq f \leq 1$. Choose a decreasing sequence of smooth psh functions v_j which vanish on $\partial\Omega$ and decrease to the v in Ω . So $f(dd^c v_j)^n \to f(dd^c v)^n$ weakly and $v_j \to v$ in C_n on any relatively compact subset of Ω , see [B-T2]. Since every $f(dd^c v_j)^n$ can be considered as a bounded continuous function

times Lebesgue measure in Ω it follows from [B-T1] that there exists $u_j \in PSH(\Omega) \cap C(\overline{\Omega})$ such that $(dd^c u_j)^n = f(dd^c v_j)^n$, and $u_j(z) = 0$ on $\partial\Omega$. Since the comparison theorem in [B-T2] gives the inequality $0 \ge u_j \ge v_j \ge v$ with v(z) = 0 on $\partial\Omega$, then by passing to a subsequence we may assume that u_j converge to a psh function u in Ω almost everywhere with respect to Lebesgue measure, where u vanishes on $\partial\Omega$. On the other hand, $(dd^c u_j)^n \to f(dd^c v)^n$ weakly and by Lemma 1 we have that $(dd^c u_j)^n \ll C_n$ uniformly for all j on any relatively compact subset of Ω . Therefore, to see $(dd^c u)^n = f(dd^c v)^n$ it is enough to show that $u_j \to u$ in C_n on Ω . Now for any given $\delta > 0$ we choose a strictly pseudoconvex set E with supp $f \subset C \in C \subset \Omega$ such that $|u(z) - u_j(z)| < \delta$ for all $z \in \Omega \setminus E$ and all j. It follows from the quasi-continuity of psh functions, see [B-T2] that for each positive constant $\varepsilon < \delta$ there exists an open set $U \subset E$ with $C_n(U) < \varepsilon$ such that both uand v are continuous in $E \setminus U$ and hence they are bounded, say u > -c and v > -c on $E \setminus U$. Since $u = (\overline{\lim_{j\to\infty} u_j})^*$, it turns out from Hartog's Lemma that

$$u(z) + \delta > u(z) + \varepsilon \ge u_i(z)$$

holds for all $z \in E \setminus U$ and $j \ge j_0$. So for such $j \ge j_0$ we have

$$C_{n} \{z \in \Omega ; |u(z) - u_{j}(z)| > 4\delta \}$$

$$\leq C_{n} \{z \in E ; |u(z) + \delta - u_{j}(z)| > 3\delta \}$$

$$\leq C_{n} \{z \in E ; u(z) + \delta - u_{j}(z) > 3\delta \} + C_{n}(U)$$

$$\leq \sup \left\{ \int_{u-u_{j}>2\delta} \left(\frac{u-u_{j}-\delta}{\delta} \right)^{n} (dd^{c}w)^{n} ; w \in PSH(\Omega), 0 < w < 1 \right\} + \varepsilon$$

$$\leq \sup \left\{ \frac{1}{\delta^{n}} \int_{u>u_{j}+\delta} (u-u_{j}-\delta)^{n} (dd^{c}w)^{n} ; w \in PSH(\Omega), 0 < w < 1 \right\} + \varepsilon$$

$$\leq \sup \left\{ \frac{1}{\delta^{n}} \lim_{k \to \infty} \int_{\max(u,-k)>u_{j}+\delta} (\max(u,-k) - u_{j}-\delta)^{n} (dd^{c}w)^{n} ; w \in PSH(\Omega), 0 < w < 1 \right\} + \varepsilon$$

$$+ \varepsilon.$$

The last inequality follows from Fatou Lemma. Hence, by Lemma 2 we have

$$\begin{split} C_n\{z\in\Omega\;;\;|u(z)-u_j(z)|>4\delta\} &\leq \frac{(n!)^2}{\delta^n} \lim_{k\to\infty} \int_{\max(u,-k)>u_j+\delta} (dd^c u_j)^n + \varepsilon \\ &= \frac{(n!)^2}{\delta^n} \int_{u>u_j+\delta} (dd^c u_j)^n + \varepsilon \\ &\leq \frac{(n!)^2}{\delta^{n+1}} \int_{\{u>u_j+\delta\}\setminus U} (u-u_j) f(dd^c v_j)^n + O\Big(\int_U (dd^c u_j)^n\Big) + \varepsilon \\ &\leq \frac{(n!)^2}{\delta^{n+1}} \int_{\{u>u_j+\delta\}\setminus U} (\varepsilon+u-u_j) f(dd^c v_j)^n \\ &\quad + O\Big(\int_U (dd^c v_j)^n\Big) + \varepsilon. \end{split}$$

Let $\rho_1(z)$ be a defining function of the strictly pseudoconvex set *E*. We define $\bar{u} = \max(u, a\rho_1(z))$ and $\bar{u}_j = \max(u_j, a\rho_1(z))$ in a neighborhood *E'* of *E*, which contains the set $\{u > u_j + \delta\}$. Since u > -c and $u_j \ge v_j \ge v > -c$ on $E \setminus U$, then for sufficiently large constant *a* we have (i) $\bar{u}_j = u_j$ and $\bar{u} = u$ on an open neighborhood of supp *f* but outside *U*; (ii) all $\bar{u}_j = \bar{u} = a\rho_1(z)$ in $E' \setminus E$; (iii) $\{\bar{u}_j\}$ is uniformly bounded in *E'*; (iv) $\bar{u}_j \to \bar{u}$ in L(E'). Since the uniformly bounded functions \bar{u}_j converge to \bar{u} in L(E') and $(dd^c v_j)^n \ll C_n$ uniformly for all *j* on *E'*, it follows from Hartog's Lemma that there exits a subset U_1 of *E* and an integer $j_1 \ge j_0$ such that $\int_{U_1} |\varepsilon + \bar{u} - \bar{u}_j| (dd^c v_j)^n < \varepsilon$ and $\bar{u} + \varepsilon > \bar{u}_j$ on $E \setminus U_1$ for $j \ge j_1$. Hence for $j \ge j_1$ the last sum does not exceed the following

$$\begin{split} \frac{(n!)^2}{\delta^{n+1}} \int_{\{u > u_j + \delta\} \setminus U_1} (\varepsilon + \bar{u} - \bar{u}_j) (dd^c v_j)^n + O\Big(\int_U (dd^c v_j)^n + \varepsilon\Big) \\ &\leq \frac{(n!)^2}{\delta^{n+1}} \int_{E \setminus U_1} (\varepsilon + \bar{u} - \bar{u}_j) (dd^c v_j)^n + O\Big(\int_U (dd^c v_j)^n + \varepsilon\Big) \\ &= \frac{(n!)^2}{\delta^{n+1}} \int_E (\bar{u} - \bar{u}_j) (dd^c v_j)^n + O\Big(\int_U (dd^c v_j)^n + \varepsilon\Big). \end{split}$$

By Proposition 4.2 in [B-T3] for each constant d > 0 and any integer k > 0 we have

$$\begin{split} \int_{E} (\bar{u} - \bar{u}_{j}) (dd^{c} v_{k})^{n} &= \int_{E \cap \{v_{k} > -d\}} (\bar{u} - \bar{u}_{j}) (dd^{c} \max(v_{k}, -d))^{n} \\ &+ \int_{E \cap \{v_{k} \leq -d\}} (\bar{u} - \bar{u}_{j}) (dd^{c} v_{k})^{n} \\ &= \int_{E} (\bar{u} - \bar{u}_{j}) (dd^{c} \max(v_{k}, -d))^{n} \\ &- \int_{E \cap \{v_{k} \leq -d\}} (\bar{u} - \bar{u}_{j}) (dd^{c} \max(v_{k}, -d))^{n} \\ &+ \int_{E \cap \{v_{k} \leq -d\}} (\bar{u} - \bar{u}_{j}) (dd^{c} v_{k})^{n}. \end{split}$$

Applying the uniformly absolute continuity of $(dd^c v_k)^n$ on *E* and the proof of Theorem 1, the last two integrals converge to zero uniformly for all *j* and *k* as $d \to \infty$. Hence

$$\int_{E} (\bar{u} - \bar{u}_{j}) (dd^{c} v_{k})^{n} = \int_{E} (\bar{u} - \bar{u}_{j}) (dd^{c} \max(v_{k}, -d))^{n} + o(1)$$

uniformly for all *j* and *k* as $d \to \infty$. Therefore, we get

$$C_n\{z \in \Omega ; |u(z) - u_j(z)| > 4\delta\}$$

$$\leq \frac{(n!)^2}{\delta^{n+1}} \int_E (\bar{u} - \bar{u}_j) (dd^c \max(v_j, -d))^n + O\left(\int_U (dd^c v_j)^n + \varepsilon\right)$$

$$= \frac{(n!)^2}{\delta^{n+1}} \int_E (\bar{u} - \bar{u}_j) \left[\left(dd^c \max(v_j, -d) \right)^n - \left(dd^c \max(v_k, -d) \right)^n \right] \\ + \frac{(n!)^2}{\delta^{n+1}} \int_E (\bar{u} - \bar{u}_j) (dd^c v_k)^n + O\left(\int_U (dd^c v_j)^n + \varepsilon \right) \\ = A_1 + A_2 + O\left(\int_U (dd^c v_j)^n + \varepsilon \right)$$

uniformly for all $j \ge j_1$ and all k as $d \to \infty$. Using an integration by parts we have

$$A_{1} = \frac{(n!)^{2}}{\delta^{n+1}} \int_{E'} \left(\max(v_{j}, -d) - \max(v_{k}, -d) \right) (dd^{c}\bar{u} - dd^{c}\bar{u}_{j}) \\ \wedge \sum_{l=0}^{n-1} \left(dd^{c} \max(v_{j}, -d) \right)^{n-1-l} \wedge \left(dd^{c} \max(v_{k}, -d) \right)^{l},$$

where for each fixed *d* the measure has a relatively compact support in *E'* and is absolutely continuous with respect to C_n , and the integrand $\max(v_j, -d) - \max(v_k, -d) \rightarrow 0$ in C_n on each relatively compact subset of *E'* as $j, k \rightarrow \infty$. Hence $A_1 \rightarrow 0$ as $j, k \rightarrow \infty$. On the other hand, it follows from $\bar{u}_j \rightarrow \bar{u}$ in L(E') that for any fixed *k* we have $A_2 \rightarrow 0$ as $j \rightarrow \infty$. Finally, letting $\varepsilon \rightarrow 0$ and applying the fact that $(dd^c v_j)^n \ll C_n$ uniformly on *E* we conclude that $u_j \rightarrow u$ in C_n on Ω and thus the proof of Lemma 3 is complete.

Theorem 2 If $v \in \mathbb{B}$ and a positive measure $\mu \leq (dd^c v)^n$ on Ω , then there exists a function u in \mathbb{B} such that $(dd^c u)^n = \mu$ in Ω . Furthermore, if $\lim_{z\to\partial\Omega} v(z) = 0$ then there exists a unique function u in \mathbb{B} such that $(dd^c u)^n = \mu$ and $\lim_{z\to\partial\Omega} u(z) = 0$.

Proof By Lebesgue-Radon-Nikodym theorem we can write $\mu = f(dd^cv)^n$, where $0 \le f \le 1$ in Ω . Choose a sequence of non-negative, bounded functions f_k with compact support in Ω which increase to f in Ω . Then for each f_k there exists a sequence of continuous functions $f_{k,j}$ such that $0 \le f_{k,j} \le g_k$ and

$$\int_{\Omega} |f_{k,j} - f_k| (dd^c v)^n \to 0 \quad \text{as } j \to \infty,$$

where g_k is a non-negative, bounded function with compact support in Ω . Therefore, by Lemma 3 there exist functions $u_{k,j}$ in \mathcal{B} with $(dd^c u_{k,j})^n = f_{k,j}(dd^c v)^n$ and $\lim_{z\to\partial\Omega} u_{k,j}(z) =$ 0. Take a function $v_k \in \mathcal{B}$ such that $\lim_{z\to\partial\Omega} v_k(z) = 0$ and $g_k(dd^c v_k)^n = g_k(dd^c v)^n \ge (dd^c u_{k,j})^n$. Then by Lemma 2 we have $(\sup_{\Omega} g_k)^{1/n} v_k \le u_{k,j} \le 0$ in Ω for all j. Now applying Lemma 2 and repeating the proof of Theorem 4 in [X] we can find functions $u_k \in \mathcal{B}$ such that $(dd^c u_k)^n = f_k(dd^c v)^n$ and $\lim_{z\to\partial\Omega} u_k(z) = 0$. Therefore, Lemma 2 yields that u_k decrease to a psh function u in Ω which is clearly the desired function in \mathcal{B} . If the v = 0 on $\partial\Omega$, by Lemma 2 we have that $0 \ge u_k \ge v$ in Ω for all k. Hence the u vanishes on $\partial\Omega$. The uniqueness of such a solution u follows directly from Lemma 2. So the proof of Theorem 2 is complete.

As a consequence of Theorem 2 and Lemma 2 we obtain the following result in [KO1].

Corollary 1 Assume that a positive measure $\mu \leq (dd^cv)^n$ on Ω , where v is a bounded psh function in Ω . Then there exists a bounded psh function u in Ω such that $(dd^cu)^n = \mu$.

It is probably worth remarking that for a bounded psh function v in Ω the proof of Lemma 3 can be simplicized. This gives a simple proof of Corollary 1. On the other hand, the assumption $\mu \leq (dd^c v)^n$ in Theorem 2 can not be weaken by $\mu \ll (dd^c v)^n$, as shown by the following example.

Example 1 Let $\{z_j\}$ be a sequence of distinguished points which converges to a point $\zeta \in \partial \Omega$. By Theorem 8 in [C-P], for each z_j there exists a function $f_{j,r} \in \text{PSH}(\Omega) \cap C(\overline{\Omega})$ which vanishes on the boundary $\partial \Omega$ and satisfies $(dd^c f_{j,r})^n = d_n^{-1}r^{-2n}j^{-2}\chi_{B(z_j,r)} d\lambda$, where the constant d_n denotes the volume of the unit ball in \mathbb{C}^n , λ is the Lebesgue measure and $\chi_{B(z_j,r)}$ is the characteristic function of the open ball $B(z_j,r) = \{z \in \mathbb{C}^n ; |z - z_j| < r\}$. It then follows from the definition of C_n -capacity that

$$\frac{1}{j^2} = \int_{\Omega} (dd^c f_{j,r})^n = \int_{B(z_j,r)} (dd^c f_{j,r})^n \le C_n \big(B(z_j,r), B(z_j,k) \big) \max_{z \in B(z_j,k)} \big(-f_{j,r}(z) \big)^n,$$

where the constant k > r > 0. Since for each fixed k > 0 we have that the relative capacity $C_n(B(z_j, r), B(z_j, k)) \to 0$ as $r \to 0$, then $\max_{z \in B(z_j, k)} (-f_{j,r}(z)) \to \infty$ as $r \to 0$. Take two sequences $\{k_j\}$ and $\{r_j\}$ such that $B(z_j, k_j)$ for j = 1, 2, ... are pairwise disjoint balls in Ω and $\max_{z \in B(z_j, k_j)} (-f_{j,r_j}(z)) \to \infty$ as $j \to \infty$. Hence the locally bounded function $f \stackrel{\text{def}}{=} \sum_{j=1}^{\infty} d_n^{-1} r_j^{-2n} j^{-2} \chi_{B(z_j, r_j)}$ is integrable in Ω with respect to the Lebesgue measure λ . It is now easy to see that there exists no function $u \in \text{PSH}(\Omega)$ which is bounded near $\partial\Omega$ and satisfies $(dd^c u)^n = f d\lambda$. In fact, if there exists such a function u, by subtracting a constant if necessary, we may assume u < -1 in Ω . So for every j we have that $u \leq f_{j,r_j}$ near the boundary $\partial\Omega$ and $(dd^c u)^n = f d\lambda \ge (dd^c f_{j,r_j})^n$. Hence Lemma 2 yields $u(z) \le f_{j,r_j}(z)$ for all $z \in \Omega$. In particular, we get $\max_{z \in B(z_j,k_j)} (-u(z)) \ge \max_{z \in B(z_j,k_j)} (-f_{j,r_j}(z)) \to \infty$ as $j \to \infty$, which contradicts that u is bounded near $\partial\Omega$ and satisfies $(dd^c u)^n = f d\lambda$.

3 Bounded Plurisubharmonic Functions

In this section we discuss characterization of bounded psh functions in terms of Monge-Ampère measures.

Theorem 3 Suppose that u is a psh function in Ω and satisfies $u(z) \ge B$ near the boundary $\partial \Omega$, where B is a constant. Then u is bounded below in the whole domain Ω if and only if there exists a constant $A_u > 0$ such that for any constant k < B with $C_n(u < k) \neq 0$ we can find an increasing sequence $k \le k_1 < \cdots < k_{s-1} < k_s = B$ with $k_1 < k + 1$ and

$$\sum_{j=2}^{s} \left(\frac{\|(dd^{c}u)^{n}\|_{\{u < k_{j}\}}}{C_{n}(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} < A_{u},$$

where $C_n(u < k_{j-1} + 0) = \lim_{k \to k_{j-1} + 0} C_n(u < k)$.

Proof The necessity is trivial because for each bounded function *u*, with u > B near $\partial \Omega$, one can choose two constants $k_1 < k_2 = B$ such that the condition $C_n(u < k) \neq 0$ implies

 $k_1 < k + 1$. To see the sufficiency, we assume that $C_n(u < k) \neq 0$ for all k < B. Otherwise, we have $u \ge k$ for some constant k and the proof is finished. We notice that the assumption of Theorem 3 gives

$$\frac{\|(dd^{c}u)^{n}\|_{\{u < k\}}}{C_{n}(u < k+1)} \leq \frac{\|(dd^{c}u)^{n}\|_{\{u < k_{2}\}}}{C_{n}(u < k_{1}+0)} \leq A_{u}^{n}.$$

So

$$\|(dd^c u)^n\|_{\{u < k\}} \to 0 \quad \text{as } k \to -\infty,$$

and together with the inequality

$$\|(dd^{c}u)^{n}\|_{E} \leq \|(dd^{c}u)^{n}\|_{\{u \leq k\}} + \|(dd^{c}\max(u,k))^{n}\|_{E}$$

for each subset $E \subset \Omega$ we get that $(dd^c u)^n$ is absolutely continuous with respect to C_n . Hence $u \in \mathcal{B}$ and it then follows from Lemma 2 that for all $k < k_j$ and each $w \in PSH(\Omega)$ with 0 < w < 1 we have

$$(k_j - k)^n \int_{u < k} (dd^c w)^n \le \int_{u < k_j} (k_j - u)^n (dd^c w)^n \le \int_{u < k_j} (1 - w) (dd^c u)^n$$

Let $k \rightarrow k_{i-1} + 0$ and we have

$$(k_j - k_{j-1})^n C_n(u < k_{j-1} + 0) \le ||(dd^c u)^n||_{\{u < k_j\}}$$

Therefore

$$0 < B - 1 - k < k_s - k_1 = \sum_{j=2}^{s} (k_j - k_{j-1}) \le \sum_{j=2}^{s} \left(\frac{\|(dd^c u)^n\|_{\{u < k_j\}}}{C_n(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} < A_u.$$

This implies $C_n\{u < B-1-A_u\} = 0$ which contradicts the assumption that $C_n(u < k) \neq 0$ for all k < B. The proof of Theorem 3 is complete.

As a consequence we have

Corollary 2 Let $u \in PSH(\Omega)$ be bounded near the boundary $\partial\Omega$. If there exist constants $\delta > 1$ and A > 0 such that the inequality

$$\|(dd^{c}u)^{n}\|_{\{u < k\}} \leq A(C_{n}(u < k))^{o}$$

holds for any constant k < 0, then u is bounded in Ω .

Proof We assume without loss of generality that u > -1 near $\partial \Omega$. For each k < -1 with $C_n\{u < k\} \neq 0$ it is clear that there exists at most a finite numbers of constants $k = k_1 < k_2 < \cdots < k_s = -1$ such that

$$k_j = \inf\left\{r; F(k_{j-1}+0) < \frac{1}{2}F(r)\right\}$$
 for $j = 2, 3, \dots, s-1$, and $\frac{1}{2}F(k_s) \le F(k_{s-1}+0)$,

where the function $F(r) = ||(dd^c u)^n||_{\{u < r\}}$ is nondecreasing and left continuous for $r \le 1$, and $F(r + 0) = \lim_{t \to r+0} F(t)$. Hence we have

$$\frac{1}{2}F(k_j) \le F(k_{j-1}+0) < \frac{1}{2}F(k_{j+1}) \quad \text{for } j = 2, 3, \dots, s-1,$$

and

$$\begin{split} \sum_{j=2}^{s} \left(\frac{\|(dd^{c}u)^{n}\|_{\{u < k_{j}\}}}{C_{n}(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} &\leq \sum_{j=2}^{s} \left(\frac{2F(k_{j-1} + 0)}{C_{n}(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} \leq \sum_{j=2}^{s} \left(2A^{\frac{1}{\delta}}F(k_{j-1} + 0)^{\frac{\delta-1}{\delta}} \right)^{\frac{1}{n}} \\ &\leq 2^{\frac{1}{n}}A^{\frac{1}{\delta n}} \sum_{j=2}^{s-1} \left(\frac{F(-1)}{2^{\frac{s-j-1}{2}}} \right)^{\frac{\delta-1}{\delta n}} \leq 2^{\frac{1}{n}}A^{\frac{1}{\delta n}}F(-1)^{\frac{\delta-1}{\delta n}} \sum_{j=0}^{\infty} 2^{\frac{(1-\delta)j}{2\delta n}} < \infty. \end{split}$$

Therefore, an application of Theorem 3 completes the proof.

By the definition of C_n -capacity we know that the Monge-Ampère measure of a bounded psh function is dominated by a constant multiple of C_n -capacity. However, we can not expect that the Monge-Ampère measure of a bounded psh function is always controlled by C_n -capacity with some power $\delta > 1$, as be shown in the following example.

Example 2 We construct a bounded subharmonic function

$$u(z) = \sum_{k=2}^{\infty} \frac{1}{k^2 2^k} \max\left(-\sqrt{-\ln|z|}, -2^k\right)$$

in the ball B(0, 1/2) of \mathbb{C} . For any small r > 0 we take an integer j_0 such that $2^{j_0-2} \le \sqrt{-\ln r} < 2^{j_0-1}$. Since the inequality $j^2 2^j < 100\sqrt{-\ln |z|} \ln^2(-\ln |z|)$ holds for all $z \in E_j = \{2^{j-1} \le \sqrt{-\ln |z|} < 2^j\}$, we have

$$\begin{split} \|dd^{c}u\|_{B(0,r)} &\geq \sum_{j=j_{0}}^{\infty} \|dd^{c}u\|_{E_{j}} \geq \sum_{j=j_{0}}^{\infty} \frac{1}{j^{2}2^{j}} \|dd^{c}\max\left(-\sqrt{-\ln|z|}, -2^{j}\right)\|_{E_{j}} \\ &= \sum_{j=j_{0}}^{\infty} \frac{1}{j^{2}2^{j}} \|dd^{c}\sqrt{-\ln|z|}\|_{E_{j}} \geq \frac{1}{400} \sum_{j=j_{0}}^{\infty} \left\|\frac{dz \wedge d^{c}z}{|z|^{2}\ln^{2}(-\ln|z|)}\right\|_{E_{j}} \\ &\geq \frac{1}{400} \left\|\frac{dz \wedge d^{c}z}{|z|^{2}\ln^{2}(-\ln|z|)}\right\|_{\{r^{8} \leq |z| < r^{4}\}} \\ &\geq \frac{1}{400\ln^{2}(-8\ln r)} \left\|\frac{dz \wedge d^{c}z}{|z|^{2}\ln^{2}|z|}\right\|_{\{r^{8} \leq |z| < r^{4}\}} \\ &\geq A\ln^{-2}(-8\ln r)C_{1}(B(0,r)), \end{split}$$

where the last inequality follows from $C_1\{B(0, r)\} = 2\pi/(-\ln 2 - \ln r)$ and the constant *A* is independent of *r*. Hence for any $\delta > 1$ there is no constant $A_1 > 0$ such that $||dd^c u||_E \le A_1(C_1(E))^{\delta}$ for all subsets *E* of B(0, 1/2).

Example 2 gives that the inequality assumption of Corollary 2 is not necessary condition. On the other hand, we have a local estimation for the Monge-Ampère measure, see [B-T4, Corollary 2.3] for the case n = 1.

Theorem 4 If the psh function u is bounded in Ω then for each $z_0 \in \Omega$

$$\|(dd^{c}u)^{n}\|_{B(z_{0},r)} = o(C_{n}\{B(z_{0},r)\}) \text{ as } r \to 0,$$

where $B(z_0, r)$ denotes the ball with center at z_0 and radius r > 0.

Proof Take a positive constant $r_0 < 1$ which satisfies $B(z_0, r_0) \subset \subset \Omega$. By Lemma 2 we have

$$\begin{split} &\int_{B(z_0,r_0)} (\ln r_0 - \ln |z - z_0|)^n (dd^c u)^n \\ &= (\max_{\Omega} |u|)^n \lim_{k \to \infty} \int_{\max(\ln |z - z_0|, -k) < \ln r_0} \left(\ln r_0 - \max(\ln |z - z_0|, -k) \right)^n \left(dd^c \frac{u}{\max_{\Omega} |u|} \right)^n \\ &\leq (n!)^2 (\max_{\Omega} |u|)^n \lim_{k \to \infty} \int_{\max(\ln |z - z_0|, -k) < \ln r_0} \left(dd^c \max(\ln |z - z_0|, -k) \right)^n \\ &= (n!)^2 (2\pi \max_{\Omega} |u|)^n < \infty. \end{split}$$

So the function $(\ln r_0 - \ln |z - z_0|)^n$ is integrable in $B(z_0, r_0)$ with respect to the measure $(dd^c u)^n$, and it then follows from $||(dd^c u)^n||_{B(z_0,r)} = O(C_n\{B(z_0,r)\}) = o(1)$ as $r \to 0$ that

$$(\ln r_0 - \ln r)^n \| (dd^c u)^n \|_{B(z_0, r)} \le \int_{B(z_0, r)} (\ln r_0 - \ln |z - z_0|)^n (dd^c u)^n \to 0 \quad \text{as } r \to 0$$

which implies the conclusion of Theorem 4 because $(\frac{1}{-\ln r})^n = O(C_n\{B(z_0, r)\}).$

It is now natural to ask whether or not the inequality assumption in Corollary 2 can be replaced by the weaker condition $\|(dd^c u)^n\|_{\{u < k\}} = o(C_n(u < k))$ as $k \to -\infty$ or $\|(dd^c u)^n\|_{B(z_0,r)} = o(C_n\{B(z_0,r)\})$ as $r \to 0$ for all points $z_0 \in \Omega$. The answer is negative, as the following example shows.

Example 3 Let n = 1. Since $\phi(x) = -\ln(\ln(-x))$ is increasing and convex for x < -1, the unbounded function $u(z) = \phi(\ln |z|) = -\ln(\ln(-\ln |z|))$ is subharmonic in the ball B(0, 1/3) and bounded near the sphere |z| = 1/3. We claim that the measure $dd^c u$ puts no mass at the origin. To see this we assume that ψ is a nonnegative C^{∞} function with compact support in B(0, 1/3) and satisfies $\psi(0) = 1$. By Stokes' theorem we have

$$\int_{B(0,\frac{1}{3})} \psi \, dd^c u = \int_{B(0,\frac{1}{3})} u \, dd^c \psi = \lim_{\varepsilon \to 0} \int_{\varepsilon < |z| < \frac{1}{3}} u \, dd^c \psi$$
$$= \lim_{\varepsilon \to 0} \left\{ \int_{\varepsilon < |z| < \frac{1}{3}} \psi \, dd^c u + \int_{|z| = \varepsilon} u \, d^c \psi - \psi \, d^c u \right\}$$
$$= \int_{0 < |z| < \frac{1}{3}} \psi \, dd^c u + \lim_{\varepsilon \to 0} \int_{|z| = \varepsilon} u \, d^c \psi - \psi \, d^c u,$$

Yang Xing

where the last term vanishes because

$$\int_{|z|=\varepsilon} u \, d^{\varepsilon} \psi - \psi \, d^{\varepsilon} u = O\Big(\varepsilon \ln\big(\ln(-\ln\varepsilon)\big)\Big) + O\Big(\frac{1}{-\ln\varepsilon\ln(-\ln\varepsilon)}\Big) \quad \text{as } \varepsilon \to 0.$$

Hence $\|dd^{c}u\|_{\{0\}} = 0$. On the other hand, a direct calculation gives

$$dd^{c}u = \frac{1 + \ln(-\ln|z|)}{4|z|^{2}\ln^{2}|z|\ln^{2}(-\ln|z|)} dz \wedge d^{c}z \quad \text{for } z \neq 0.$$

Then

$$\begin{split} \int_{B(0,r)} dd^{c} u &\leq \int_{0 < |z| < r} \frac{1}{2|z|^{2} \ln^{2} |z| \ln(-\ln|z|)} \, dz \wedge d^{c} z \\ &\leq \frac{1}{2 \ln(-\ln r)} \int_{B(0,r)} \frac{1}{|z|^{2} \ln^{2} |z|} \, dz \wedge d^{c} z = o\Big(C_{1}\{B(0,r)\}\Big) \quad \text{as } r \to 0, \end{split}$$

which implies obviously that both $\|(dd^c u)^n\|_{\{u < k\}} = o(C_1(u < k))$ as $k \to -\infty$ and $\|(dd^c u)^n\|_{B(z_0,r)} = o(C_1\{B(z_0,r)\})$ as $r \to 0$ for all points z_0 in B(0, 1/3).

Now we give a positive result on this direction.

Theorem 5 Suppose that $u \in \mathbb{B}$ satisfies $u(z) \ge k_2$ for all z near the boundary $\partial \Omega$. If there exist constants $k_0 < k_1 \le k_2$ and $A_0 < (k_1 - k_0)^n$ such that

$$||(dd^{c}u)^{n}||_{\{u < k_{1}\}} = A_{0}C_{n}(u < k_{0}),$$

then $u \geq k_0$ in Ω .

Proof It follows from Lemma 2 that for each $w \in PSH(\Omega)$ with 0 < w < 1

$$(k_1 - k_0)^n \int_{u < k_0} (dd^c w)^n \le \int_{u < k_0} (k_1 - u)^n (dd^c w)^n \le \int_{u < k_1} (k_1 - u)^n (dd^c w)^n \le \int_{u < k_1} (dd^c u)^n = A_0 C_n (u < k_0)$$

which implies the inequality $(k_1 - k_0)^n C_n (u < k_0) \le A_0 C_n (u < k_0)$, and it then turns out from $A_0 < (k_1 - k_0)^n$ that $C_n (u < k_0) = 0$. Thus $u \ge k_0$ in Ω and the proof of Theorem 5 is complete.

To end this section we prefer to show another application of Theorem 3, which uses a simple integral to characterize bounded radial psh functions, see Corollary 3.4 in [P].

Corollary 3 Suppose that $\phi(t)$ is increasing and convex on $[-\infty, 0)$, and $\lim_{t\to 0^-} \phi(t) = 0$. Then the psh function $u(z) = \phi(\ln |z|)$ is bounded on the unit ball B(0, 1) if and only if there exists a constant $D_u > 0$ such that for any k < -1/2 with $C_n(u < k) \neq 0$ we can find a constant k_1 with $k_1 - 1 < k \le k_1$ and

$$\int_{r_1}^{\frac{1}{2}} \frac{1}{r} \left(\| (dd^c u)^n \|_{B(0,r)} \right)^{\frac{1}{n}} dr < D_u,$$

where r_1 denotes the radius of the ball $\{u < k_1\}$.

Proof We first show the "only if" part. Since the *u* is bounded, for any constant k < -1/2 with $C_n(u < k) \neq 0$ there exists a sequence $k_1 - 1 < k \le k_1 < \cdots < k_s = -1/2$ such that the inequality in Theorem 3 holds. Denote by $B(0, r_j)$ the ball $\{u < k_j\}$ for $j = 1, 2, \ldots, s$. It then follows from $C_n(u < k_{j-1} + 0) = (\frac{2\pi}{-\ln r_{j-1}})^n$ that

$$\begin{split} A_{u} &> \sum_{j=2}^{s} \left(\frac{\|(dd^{c}u)^{n}\|_{\{u < k_{j}\}}}{C_{n}(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} = \frac{1}{2\pi} \sum_{j=2}^{s} \left(\|(dd^{c}u)^{n}\|_{\{u < k_{j}\}} \right)^{\frac{1}{n}} \ln \frac{1}{r_{j-1}} \\ &\geq \frac{1}{2\pi} \sum_{j=2}^{s} \int_{r_{j-1}}^{r_{j}} \frac{1}{r} \left(\|(dd^{c}u)^{n}\|_{B(0,r)} \right)^{\frac{1}{n}} dr \\ &= \frac{1}{2\pi} \int_{r_{1}}^{r_{s}} \frac{1}{r} \left(\|(dd^{c}u)^{n}\|_{B(0,r)} \right)^{\frac{1}{n}} dr, \end{split}$$

which completes the proof of the "only if" part.

To prove the "if" part, for any constant k < -1/2 with $C_n(u < k) \neq 0$ and each constant k_1 with $k_1 - 1 < k \leq k_1$, we choose a sequence $k_1 < k_2 < \cdots < k_s < k_{s+1}$ such that $k_{s-1} < -1/2 = k_s$ and $r_j = \sqrt{r_{j-1}}$ for $j = 2, 3, \ldots, s - 1, s + 1$, where the constants r_j denote radii of balls $B(0, r_j) = \{u < k_j\}$. Hence we have

$$\begin{split} \int_{r_1}^{r_{s+1}} \frac{1}{r} \big(\| (dd^c u)^n \|_{B(0,r)} \big)^{\frac{1}{n}} \, dr &\geq \sum_{j=3}^{s+1} \int_{r_{j-1}}^{r_j} \frac{1}{r} \big(\| (dd^c u)^n \|_{B(0,r)} \big)^{\frac{1}{n}} \, dr \\ &\geq \sum_{j=3}^{s+1} \big(\| (dd^c u)^n \|_{B(0,r_{j-1})} \big)^{\frac{1}{n}} \int_{r_{j-1}}^{r_j} \frac{1}{r} \, dr \\ &= \frac{\pi}{2} \sum_{j=2}^s \Big(\frac{\| (dd^c u)^n \|_{\{u < k_j\}}}{C_n (u < k_{j-1} + 0)} \Big)^{\frac{1}{n}}. \end{split}$$

It then follows from the assumption and Theorem 3 that the u is bounded in B(0, 1), and the proof of Corollary 3 is complete.

4 Monge-Ampère Measures of Bounded Plurisubharmonic Functions

The complex Monge-Ampère measure of a bounded psh function vanishes on any pluripolar set. So vanishing on all pluripolar sets is a necessary condition for a positive measure to be complex Monge-Ampère measure of some bounded psh function. However, this condition is not sufficient, see Example 3. In the following we prove a characterization of complex Monge-Ampère measures of bounded psh functions.

Theorem 6 Suppose that μ is a positive measure vanishing on each pluripolar set of Ω . Then $\mu = (dd^c v)^n$ for some bounded psh function v in Ω if and only if there exists positive constants A and D such that for any negative $u \in PSH(\Omega)$, which satisfies $(dd^c u)^n \leq \mu$ and $u(z) \geq -1$ near the boundary $\partial\Omega$, and for each constant k < -1 with $C_n(u < k) \neq 0$ we can find a

Yang Xing

sequence
$$k \leq k_1 < \cdots < k_{s-1} < k_s = -1$$
 satisfying $k_1 < k + D$ and

$$\sum_{j=2}^{s} \left(\frac{\mu(u < k_j)}{C_n(u < k_{j-1} + 0)} \right)^{\frac{1}{n}} < A.$$

Proof To show the "only if" part, by Lemma 2 any function u in PSH (Ω) with $(dd^c u)^n \leq \mu = (dd^c v)^n$ and $u(z) \geq -1 \geq v(z) - \sup_{\Omega} |v| - 1$ near the boundary $\partial\Omega$ satisfies the inequality $u(z) \geq v(z) - \sup_{\Omega} |v| - 1 \geq -D$ for all $z \in \Omega$, where we take $D = \sup_{\Omega} |v| - \inf_{\Omega} |v| + 1$. So for any constant k < -1 with $C_n(u < k) \neq 0$ we have that $k \geq -D$. Take a sequence $k \leq k_1 < k_2 = -1$ such that the inequality $C_n(u < k_2) \leq 2C_n(u < k_1 + 0)$ holds. Hence we obtain the inequality

$$\left(\frac{\mu(u < k_2)}{C_n(u < k_1 + 0)}\right)^{\frac{1}{n}} < A_1$$

where the constant $A = 1 + 2^{\frac{1}{n}} \sup_{\Omega} |v|$. This completes the proof of the "only if" part.

For the proof of "if" part, we assume first that the measure μ has a compact support in Ω . Since μ vanishes on all pluripolar sets, by Theorem 6.3 in [C2] there exists a decreasing sequence of psh functions u_k vanishing on $\partial\Omega$ such that $(dd^c u_k)^n$ increase to μ . It then follows from the assumption on μ and the proof of Theorem 3 that all functions $u_k \geq -A - D - 1$, which gives that the psh function $v = \lim_{k\to\infty} u_k$ is bounded on Ω and by the monotone convergence theorem in [B-T2] we get that $(dd^c u_k)^n \to (dd^c v)^n$. Thus $\mu = (dd^c v)^n$ and we have proved the "if" part for any measure μ with compact support in Ω . In general case, we take a sequence of measures μ_l with compact support which increase to μ as $l \nearrow \infty$. By the above proof there exist psh functions v_l such that $0 \geq v_l \geq -A - D - 1$ and $(dd^c v_l)^n = \mu_l$ for all l. Modifying v_l near the $\partial\Omega$, we can assume that $v_l = 1$ on $\partial\Omega$ and $(dd^c v_l)^n \geq \mu_l$. So it follows from Theorem 2 that $\mu_l = (dd^c v_l^*)^n$ for some bounded psh function v_l^* with $v_l^* = 0$ on $\partial\Omega$. Since $\mu \geq \mu_l$ for all l, the functions v_l^* are uniformly bounded in Ω and hence the monotone limit $v^* = \lim_{l\to\infty} v_l^*$ is bounded and satisfies $(dd^c v^*)^n = \mu$. The proof of Theorem 6 is complete.

Theorem 6 implies that if μ is a Monge-Ampère measure of some bounded psh function in Ω then any positive measure $\mu_1 \leq \mu$ is also a Monge-Ampère measure of bounded psh function in Ω . However, there exists a positive measure $\mu \leq C_n$ which is not a Monge-Ampère measure of some bounded psh function, see [KO2]. In [KO3] and [KO4], by using a stronger condition Kolodziej obtained a positive result for some classes of measures. Now we have

Corollary 4 Suppose that μ is a positive measure in Ω and suppose that $\varepsilon > 0$ and $F(x) = x(\ln(1+1/x))^{-n-\varepsilon}$. If the inequality $\mu(E) \leq F(C_n(E))$ holds for any set $E \subset \Omega$, then there exists a bounded psh function v in Ω such that $\mu = (dd^c v)^n$.

Proof Repeating the proof of Corollary 2, we get that the measure μ satisfies the inequality assumption in Theorem 6. Hence, it is a Monge-Ampère measure of some bounded psh function in Ω and the proof is complete.

We also record another consequence of Theorem 6.

Corollary 5 Suppose that μ is a positive measure in Ω and that p > 1 and 1/p + 1/q = 1.

If there exists $A_p > 0$ such that $\mu(E) \leq A_p [C_n(E)]^p$ for all $E \subset \subset \Omega$, then for any $q_1 > q$ and any nonnegative function f in $L^{q_1}(\Omega)$ we can find a bounded psh function v in Ω such that $(dd^c v)^n = f d\mu$ and the supremum norm $\sup_{\Omega} |v|$ are uniformly bounded for all functions fwith $||f||_{L^{q_1}(\Omega)} \leq 1$.

Conversely, if for any nonnegative function f in $L^q_{\mu}(\Omega)$ we can find a bounded psh function v in Ω such that $(dd^c v)^n = f d\mu$ and $\sup_{\Omega} |v|$ are uniformly bounded for all functions f with $||f||_{L^q_u(\Omega)} \leq 1$, then there exists $A_p > 0$ such that $\mu(E) \leq A_p [C_n(E)]^p$ for all $E \subset \subset \Omega$.

Proof Assume that $f \in L^{q_1}_{\mu}(\Omega)$ be a nonnegative function in Ω . For all $E \subset \Omega$, by Hölder inequality, we have

$$\int_{E} f \, d\mu \leq \|f\|_{L^{q_1}_{\mu}(\Omega)} \mu(E)^{1-1/q_1} \leq \|f\|_{L^{q_1}_{\mu}(\Omega)} A_p^{1-1/q_1} C_n(E)^{1+p/q-p/q_1},$$

where the exponent $1 + p/q - p/q_1 > 1$. By a similar proof of Corollary 2 we obtain that the positive measure $f d\mu$ satisfies the condition in Theorem 6 and hence there exists a bounded psh function v in Ω such that $(dd^c v)^n = f d\mu$, where $\sup_{\Omega} |v|$ are uniformly bounded for all functions f with $||f||_{L^{q_1}_u(\Omega)} \leq 1$.

To prove the converse assertion, we set $f_E = \chi_E / \mu(E)^{\frac{1}{q}}$ for each $E \subset \subset \Omega$, where χ_E denotes the characteristic function of the set *E*. Then $\|f_E\|_{L^q_u(\Omega)} = 1$ and

$$\mu(E)^{\frac{1}{p}} = \int_E f_E d\mu = \int_E (dd^c v_E)^n \le (\sup_{\Omega} |v_E|)^n C_n(E),$$

where, by the assumption, the constants $(\sup_{\Omega} |\nu_E|)^n$ are uniformly bounded for all subsets $E \subset \subset \Omega$. Hence there exists $A_p > 0$ such that $\mu(E) \leq A_p [C_n(E)]^p$ for all $E \subset \subset \Omega$. The proof of Corollary 5 is complete.

In [KO3] Kolodziej proved that any positive measure $f d\lambda$, where $f \in L^p_{\lambda}(\Omega)$, p > 1 and λ denotes the Lebesgue measure, is the complex Monge-Ampère measure of some bounded psh function. Corollary 5 implies directly

Corollary 6 Let μ be a positive measure in Ω . Then for any $\delta > 1$ there exists $A_{\delta} > 0$ such that $\mu(E) \leq A_{\delta} [C_n(E)]^{\delta}$ for all $E \subset \subset \Omega$ if and only if for any p > 1 there exists $B_p > 0$ such that for all nonnegative functions f in $L^p_{\mu}(\Omega)$ with $||f||_{L^p_{\mu}(\Omega)} \leq 1$ we can find a bounded psh function v in Ω such that $(dd^c v)^n = f d\mu$ and $\sup_{\Omega} |v| \leq B_p$.

References

- [B] E. Bedford, Survey of pluri-potential theory. Several Complex Variables: Proceedings of the Mittag-Leffler Inst. 1987–1988, (ed. John Erik Fornaess), Math. Notes 38, Princeton Univ. Press, 1993.
- [B-T1] E. Bedford and B. A. Taylor, *The Dirichlet problem for the complex Monge-Ampère operator*. Invent. Math. **37**(1976), 1–44.
- [B-T2] _____, A new capacity for plurisubharmonic functions. Acta Math. 149(1982), 1–40.

Yang Xing

- [B-T3] , Fine topology, Šilov boundary and $(dd^c)^n$. J. Funct. Anal. 72(1987), 225–251.
- [B-T4] _____, *Plurisubharmonic functions with logarithmic singularities*. Ann. Inst. Fourier (Grenoble) (4) **38**(1988), 133–171.
- [C1] U. Cegrell, Sums of continuous plurisubharmonic functions and the complex Monge–Ampère operator. Math. Z. **193**(1986), 373-380.
- [C2] _____, Pluricomplex energy. Acta Math. 180(1998), 187–217.
- [C-P] U. Cegrell and L. Persson, The Dirichlet problem for the complex Monge-Ampère operator: stability in L². Michigan Math. J. 39(1992), 145–151.
- [D] J.-P. Demailly, *Monge-Ampère operators, Lelong numbers and intersection theory.* In: Complex Analysis and Geometry, Univ. Ser. Math., Plenum, New York, 1993, 115–193.
- [K] C. O. Kiselman, Sur la definition de l'opérateur de Monge-Ampère complexe. Analyse Complexe: Proceedings, Toulouse (1983), 139–150, Lecture Notes in Math. 1094, Springer-Verleg.
- [KO1] S. Kolodziej, The range of the complex Monge-Ampère operator, II. Indiana Univ. Math. J. 44(1995), 765– 782.
- [KO2] ______, The range of the complex Monge-Ampère operator. Indiana Univ. Math. J. 43(1994), 1321–1338.
 [KO3] ______, Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator. Ann. Polon. Math. 65(1996), 11–21.
- [KO4] _____, The complex Monge-Ampère equation. Acta Math. 180(1998), 69–117.
- [P] L. Persson, On the Dirichlet problem for the complex Monge-Ampère operator. Thesis, Umeå, 1992.
- [S] N. Sibony, Quelques problémes de prolongement de courants en analyse complexe. Duke Math. J. 52(1985), 157–197.
- [X] Y. Xing, Continuity of the complex Monge-Ampère operator. Proc. Amer. Math. Soc. 124(1996), 457–467.

Department of Mathematics University of Umeå S-901 87 Umeå Sweden e-mail address: Yang.Xing@mathdept.umu.se