
Canad. J. Math. Vol. 52 (5), 2000 pp. 1085–1100

Complex Monge-Ampère Measures of
Plurisubharmonic Functions
with Bounded Values Near the Boundary
Yang Xing

Abstract. We give a characterization of bounded plurisubharmonic functions by using their complex Monge-
Ampère measures. This implies a both necessary and sufficient condition for a positive measure to be complex
Monge-Ampère measure of some bounded plurisubharmonic function.

0 Introduction

We denote by PSH(Ω) the set of all plurisubharmonic (psh) functions in a bounded, strictly
pseudoconvex subset Ω of Cn. We use the notations d = ∂ + ∂̄ and dc = i(∂̄ − ∂). The
complex Monge-Ampère operator (ddc)n is well defined for all locally bounded psh func-
tions, see [B-T2], and it plays a great role in pluripotential theory as the Laplace operator
in classical potential theory. However, unlike the Laplace operator, the complex Monge-
Ampère operator is nonlinear and cannot be defined without problem for all unbounded
psh functions, see [K]. Several authors have therefore extended the domain of definition of
the complex Monge-Ampère operator to some important classes of unbounded psh func-
tions, see [B], [D], [C1], [C2] and [S]. Among these results, we like to mention that (ddcu)n

will be a positive Borel measure if the function u ∈ PSH(Ω) is bounded near the boundary
∂Ω.

In this paper we study characterization of Monge-Ampère measures of bounded psh
functions in Ω. To handle this problem we consider the class B of psh functions u, which
are bounded near the boundary and (ddcu)n are absolutely continuous with respect to the
capacity Cn introduced by Bedford and Taylor in [B-T2]. In Section 1 we obtain a compar-
ison theorem for functions in B. This theorem serves as a main tool in the proofs of this
paper. In fact, the class B is natural in the sense that the proofs of comparison theorems
in [B-T2] and [X] work without practically any change for functions in B. In Section 2 we
prove that any positive measure can be written as a Monge-Ampère measure of some func-
tion in B provided the measure is dominated by a Monge-Ampère measure of functions
in B. In Section 3 we characterize bounded psh functions by using their Monge-Ampère
measures. As an application we prove a characterization of bounded radial psh functions
given in [P]. Finally, in Section 4 we give a both necessary and sufficient condition for a
positive measure to be complex Monge-Ampère measure of some bounded psh function.
This implies a characterization of the positive measure µ such that each positive measure
f dµ with

∫
Ω

f p dµ ≤ 1 and p > 1 can be written as a complex Monge-Ampère measure of
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some bounded psh function, whose supremum norm is uniformly bounded by a constant
depending on p.

The author would like to thank Urban Cegrell, Christer O. Kiselman and Norman Lev-
enberg for helpful comments.

1 Continuity of (ddc)n and a Comparison Theorem

We begin by studying continuity of the complex Monge-Ampère operator. Let Cn be the
inner capacity given by Bedford and Taylor in [B-T2], as defined by Cn(E) = Cn(E,Ω) =
sup{
∫

E(ddcu)n ; u ∈ PSH(Ω), 0 < u < 1} for any Borel subset E of Ω. A sequence of
functions u j is said to converge to a function u in Cn-capacity on a set E if for each constant
δ > 0 we have Cn{z ∈ E ; |u j(z) − u(z)| > δ} → 0 as j → ∞. In [X] we obtain that if
locally uniformly bounded psh functions u j converge to a psh function u in Cn-capacity on
each E ⊂⊂ Ω, then (ddcu j)n → (ddcu)n weakly in Ω. We generalize now this result to psh
functions which are bounded near the boundary ∂Ω and whose Monge-Ampère measures
have small mass on any set of small Cn-capacity. Recall that positive measures µ j are said
to be uniformly absolutely continuous with respect to Cn in a set E if for any constant ε > 0
there exists a constant δ > 0 such that for each Borel subset E ′ ⊂ E with Cn(E ′) < δ the
inequality µ j(E ′) < ε holds for all j. Now we can prove

Theorem 1 Let u ∈ PSH(Ω). Suppose that there exists a sequence of bounded psh functions
u j in Ω such that u j are uniformly bounded near ∂Ω for all j, (ddcu j)n 
 Cn uniformly on
each subset E ⊂⊂ Ω and u j → u in Cn on each E ⊂⊂ Ω. Then (ddcu j)n is weakly convergent
to (ddcu)n in Ω and (ddcu)n 
 Cn on each E ⊂⊂ Ω.

Proof Since functions u j are uniformly bounded near ∂Ω for all j then the limit function
u is bounded near ∂Ω and hence (ddcu)n is well defined as a positive Borel measure, see [B].
To see that (ddcu j)n → (ddcu)n weakly in Ω, for a given smooth function φ with compact
support in Ω, we write∫

Ω

φ[(ddcu j)
n − (ddcu)n] =

∫
Ω

φ
[
(ddcu j)

n −
(
ddc max(u j ,−c)

)n]

+

∫
Ω

φ
[(

ddc max(u j ,−c)
)n
−
(
ddc max(u,−c)

)n]

+

∫
Ω

φ
[(

ddc max(u,−c)
)n
− (ddcu)n

]
def
== A1 + A2 + A3.

It turns out from Proposition 4.2 in [B-T3] that for each sufficiently large constant c > 0

|A1| =
∣∣∣∫

u j≤−c
φ
[
(ddcu j)

n −
(
ddc max(u j ,−c)

)n]∣∣∣
≤ max

Ω
|φ|
(∫

u j≤−c
(ddcu j)

n +

∫
u j≤−c

(
ddc max(u j ,−c)

)n
)
.
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Using Lemma 1 in [X] we have∫
u j≤−c

(
ddc max(u j ,−c)

)n
≤

∫
u j≤−c

(
−1−

2u j

c

)n(
ddc max(u j ,−c)

)n

≤ 2n

∫
u j<−c/2

(
−

c

2
− u j

)n
(

ddc max
(u j

c
,−1
))n

≤ 2n(n!)2

∫
u j<−c/2

(ddcu j)
n.

Hence for each c large enough and all j we have proved the following estimation

|A1| ≤
(
1 + 2n(n!)2

)
max
Ω
|φ|

∫
u j<−c/2

(ddcu j)
n.

Since Cn{u < −c/2} → 0 as c → ∞ and u j → u in Cn we have that Cn{u j < −c/2}
uniformly converge to zero for all j as c → ∞. Hence the uniformly absolute continuity
of (ddcu j)n implies that the last integral converges to zero uniformly for all j as c → ∞.
Thus, for any ε > 0 we can take a constant c ≥ 0 such that |A1| ≤ ε for all j, and by
Corollary 2.3 in [D] we can also require that |A3| ≤ ε. However, for such a fixed constant c
the convergence assumption implies that functions max(u j ,−c) converge to max(u,−c) in
Cn on each E ⊂⊂ Ω as j → ∞ and hence we conclude by Theorem 1 in [X] that A2 → 0
as j →∞. Therefore, we have shown that (ddcu j)n converges weakly to (ddcu)n.

It remains to show (ddcu)n 
 Cn on any open set E ⊂⊂ Ω. For any ε > 0 we
choose δ > 0 such that inequalities (ddcu j)n(E ′) ≤ ε hold for all j and all Borel sets
E ′ ⊂ E with Cn(E ′) < δ. For such a subset E ′ we take an open set G with E ′ ⊂ G ⊂
E and Cn(G) < δ and then choose a sequence of non-negative smooth functions ψk,
which increase to the characteristic function of G in Ω. Then

∫
E ′(ddcu)n ≤

∫
G(ddcu)n =

limk→∞

∫
Ω
ψk(ddcu)n = limk→∞ lim j→∞

∫
Ω
ψk(ddcu j)n ≤ lim j→∞

∫
G(ddcu j)n ≤ ε.

Hence (ddcu)n 
 Cn on E and we have completed the proof of Theorem 1.
In this paper we denote by B the class of all psh functions u in Ω, which are bounded

near the boundary ∂Ω and have absolutely continuous Monge-Ampère measures with
respect to Cn on each E ⊂⊂ Ω. The class B includes all limit functions u of Theo-
rem 1. On the other hand, each function u in B is a decreasing limit of bounded func-
tions u j = max(u,− j). Applying the quasicontinuity of psh functions with respect to Cn,
see [B-T2], and Dini’s theorem, we obtain that u j → u in Cn on each E ⊂⊂ Ω. Hence
the class B consists precisely of all functions u given in Theorem 1 as shown by the weak
convergence (ddcu j)n → (ddcu)n and the following fact.

Lemma 1 Suppose that a sequence of bounded psh functions u j in Ω decreases to a psh
function u, which is bounded near the boundary ∂Ω. If (ddcu)n 
 Cn on any relatively
compact subset of Ω then we have (ddcu j)n 
 Cn uniformly for all j on each E ⊂⊂ Ω.

Proof By the proof of Theorem 2.7 in [D] we have that v(ddcu j)n → v(ddcu)n weakly in
Ω for any locally bounded psh function v on Ω. Thus, Lemma 1 follows directly from
Theorem 3.2 in [B-T3].
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Bedford and Taylor in [B-T2] proved the comparison theorem for bounded psh func-
tion, which has wide application on the Dirichlet problem. In [X] we have obtained a
stronger inequality than the comparison theorem. Now we generalize it to functions in B.

Lemma 2 If u, v ∈ B satisfy limz→∂Ω

(
u(z)− v(z)

)
≥ 0, then for any constant r ≥ 1 and all

w j ∈ PSH(Ω) with 0 ≤ w j ≤ 1, j = 1, 2, . . . , n, we have

1

(n!)2

∫
u<v

(v − u)n ddcw1 ∧ · · · ∧ ddcwn +

∫
u<v

(r − w1)(ddcv)n ≤

∫
u<v

(r − w1)(ddcu)n.

Therefore, under the additional assumption (ddcv)n ≥ (ddcu)n in Ω, we obtain that the set
{u < v} is empty.

Proof We may assume that there exists a subset E ⊂⊂ Ω such that {u < v} ⊂ E. Other-
wise, replace u by u + 2δ and then let δ ↘ 0. Write uk = max(u,−k) and v j = max(v,− j).
Then {uk < v j} ⊂ E for sufficiently large k and j. By Lemma 1 in [X] we have that for any
constant r ≥ 1 and all w j ∈ PSH(Ω) with 0 ≤ w j ≤ 1, j = 1, 2, . . . , n

1

(n!)2

∫
uk<v j

(v j−uk)n ddcw1∧· · ·∧ddcwn +

∫
uk<v j

(r−w1)(ddcv j)
n ≤

∫
uk<v j

(r−w1)(ddcuk)n,

where k and j are large enough. Since uk ↘ u then (ddcuk)n → (ddcu)n weakly and by
Lemma 1 we have that (ddcuk)n 
 Cn uniformly for all k in the set E. Similarly, (ddcv j)n 

Cn uniformly for all j in E. Letting j →∞ and then k→∞, we can easily get the required
inequality by the same argument as in the proof of Lemma 1 of [X]. Thus the proof is
complete.

2 Range of (ddc)n

Now we begin to discuss the range of the complex Monge-Ampère operator. We need a
lemma.

Lemma 3 If v ∈ B and f is a non-negative continuous function with compact support in Ω,
then there exists a function u in B such that (ddcu)n = f (ddcv)n and limz→∂Ω u(z) = 0.

Proof Suppose that ρ(z) be a defining function ofΩ and that |v(z)| ≤ a in a neighborhood
of Ω \ Ω ′, where supp f ⊂⊂ Ω ′ ⊂⊂ Ω. For a sufficiently large constant b we define

v̄(z) =

{
max
(
v(z)− a− 1, bρ(z)

)
in Ω \ Ω ′ ;

v(z)− a− 1 in Ω ′.

Then it is easy to see that v̄ ∈ B, limz→∂Ω v̄(z) = 0 and f (ddcv̄)n = f (ddcv)n. So without
loss of generality we may assume that limz→∂Ω v(z) = 0 and 0 ≤ f ≤ 1. Choose a de-
creasing sequence of smooth psh functions v j which vanish on ∂Ω and decrease to the v in
Ω. So f (ddcv j)n → f (ddcv)n weakly and v j → v in Cn on any relatively compact subset of
Ω, see [B-T2]. Since every f (ddcv j)n can be considered as a bounded continuous function
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times Lebesgue measure in Ω it follows from [B-T1] that there exists u j ∈ PSH(Ω)∩C(Ω̄)
such that (ddcu j)n = f (ddcv j)n, and u j(z) = 0 on ∂Ω. Since the comparison theorem
in [B-T2] gives the inequality 0 ≥ u j ≥ v j ≥ v with v(z) = 0 on ∂Ω, then by passing
to a subsequence we may assume that u j converge to a psh function u in Ω almost every-
where with respect to Lebesgue measure, where u vanishes on ∂Ω. On the other hand,
(ddcu j)n → f (ddcv)n weakly and by Lemma 1 we have that (ddcu j)n 
 Cn uniformly
for all j on any relatively compact subset of Ω. Therefore, to see (ddcu)n = f (ddcv)n it is
enough to show that u j → u in Cn on Ω. Now for any given δ > 0 we choose a strictly
pseudoconvex set E with supp f ⊂⊂ E ⊂⊂ Ω such that |u(z)− u j (z)| < δ for all z ∈ Ω \E
and all j. It follows from the quasi-continuity of psh functions, see [B-T2] that for each
positive constant ε < δ there exists an open set U ⊂ E with Cn(U ) < ε such that both u
and v are continuous in E \ U and hence they are bounded, say u > −c and v > −c on
E \U . Since u =

(
lim j→∞ u j)∗, it turns out from Hartog’s Lemma that

u(z) + δ > u(z) + ε ≥ u j(z)

holds for all z ∈ E \U and j ≥ j0. So for such j ≥ j0 we have

Cn{z ∈ Ω ; |u(z)− u j(z)| > 4δ}

≤ Cn{z ∈ E ; |u(z) + δ − u j(z)| > 3δ}

≤ Cn{z ∈ E ; u(z) + δ − u j(z) > 3δ} + Cn(U )

≤ sup
{∫

u−u j>2δ

(u− u j − δ

δ

)n
(ddcw)n ; w ∈ PSH(Ω), 0 < w < 1

}
+ ε

≤ sup
{ 1

δn

∫
u>u j +δ

(u− u j − δ)n(ddcw)n ; w ∈ PSH(Ω), 0 < w < 1
}

+ ε

≤ sup
{ 1

δn
lim

k→∞

∫
max(u,−k)>u j +δ

(
max(u,−k)− u j − δ

)n
(ddcw)n ; w ∈ PSH(Ω), 0 < w < 1

}

+ ε.

The last inequality follows from Fatou Lemma. Hence, by Lemma 2 we have

Cn{z ∈ Ω ; |u(z)− u j(z)| > 4δ} ≤
(n!)2

δn
lim

k→∞

∫
max(u,−k)>u j +δ

(ddcu j)
n + ε

=
(n!)2

δn

∫
u>u j +δ

(ddcu j)
n + ε

≤
(n!)2

δn+1

∫
{u>u j +δ}\U

(u− u j) f (ddcv j)
n + O

(∫
U

(ddcu j)
n
)

+ ε

≤
(n!)2

δn+1

∫
{u>u j +δ}\U

(ε + u− u j) f (ddcv j)
n

+ O
(∫

U
(ddcv j)

n
)

+ ε.
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Let ρ1(z) be a defining function of the strictly pseudoconvex set E. We define ū =
max
(

u, aρ1(z)
)

and ū j = max
(
u j , aρ1(z)

)
in a neighborhood E ′ of E, which contains the

set {u > u j + δ}. Since u > −c and u j ≥ v j ≥ v > −c on E \U , then for sufficiently large
constant a we have (i) ū j = u j and ū = u on an open neighborhood of supp f but outside
U ; (ii) all ū j = ū = aρ1(z) in E ′ \E; (iii) {ū j} is uniformly bounded in E ′; (iv) ū j → ū in
L(E ′). Since the uniformly bounded functions ū j converge to ū in L(E ′) and (ddcv j)n 
 Cn

uniformly for all j on E ′, it follows from Hartog’s Lemma that there exits a subset U1 of E
and an integer j1 ≥ j0 such that

∫
U1
|ε + ū− ū j |(ddcv j)n < ε and ū + ε > ū j on E \U1 for

j ≥ j1. Hence for j ≥ j1 the last sum does not exceed the following

(n!)2

δn+1

∫
{u>u j +δ}\U1

(ε + ū− ū j)(ddcv j)
n + O

(∫
U

(ddcv j)
n + ε
)

≤
(n!)2

δn+1

∫
E\U1

(ε + ū− ū j)(ddcv j)
n + O

(∫
U

(ddcv j)
n + ε
)

=
(n!)2

δn+1

∫
E
(ū− ū j)(ddcv j)

n + O
(∫

U
(ddcv j)

n + ε
)
.

By Proposition 4.2 in [B-T3] for each constant d > 0 and any integer k > 0 we have

∫
E
(ū− ū j)(ddcvk)n =

∫
E∩{vk>−d}

(ū− ū j)
(

ddc max(vk,−d)
)n

+

∫
E∩{vk≤−d}

(ū− ū j)(ddcvk)n

=

∫
E
(ū− ū j)

(
ddc max(vk,−d)

)n

−

∫
E∩{vk≤−d}

(ū− ū j)
(

ddc max(vk,−d)
)n

+

∫
E∩{vk≤−d}

(ū− ū j)(ddcvk)n.

Applying the uniformly absolute continuity of (ddcvk)n on E and the proof of Theorem 1,
the last two integrals converge to zero uniformly for all j and k as d→∞. Hence

∫
E
(ū− ū j)(ddcvk)n =

∫
E
(ū− ū j)

(
ddc max(vk,−d)

)n
+ o(1)

uniformly for all j and k as d→∞. Therefore, we get

Cn{z ∈ Ω ; |u(z)− u j(z)| > 4δ}

≤
(n!)2

δn+1

∫
E
(ū− ū j)

(
ddc max(v j ,−d)

)n
+ O
(∫

U
(ddcv j)

n + ε
)
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=
(n!)2

δn+1

∫
E
(ū− ū j)

[(
ddc max(v j ,−d)

)n
−
(

ddc max(vk,−d)
)n]

+
(n!)2

δn+1

∫
E
(ū− ū j)(ddcvk)n + O

(∫
U

(ddcv j)
n + ε
)

= A1 + A2 + O
(∫

U
(ddcv j)

n + ε
)

uniformly for all j ≥ j1 and all k as d→∞. Using an integration by parts we have

A1 =
(n!)2

δn+1

∫
E ′

(
max(v j ,−d)−max(vk,−d)

)
(ddcū− ddcū j)

∧
n−1∑
l=0

(
ddc max(v j ,−d)

)n−1−l
∧
(
ddc max(vk,−d)

)l
,

where for each fixed d the measure has a relatively compact support in E ′ and is absolutely
continuous with respect to Cn, and the integrand max(v j ,−d) − max(vk,−d) → 0 in Cn

on each relatively compact subset of E ′ as j, k → ∞. Hence A1 → 0 as j, k → ∞. On
the other hand, it follows from ū j → ū in L(E ′) that for any fixed k we have A2 → 0 as
j →∞. Finally, letting ε→ 0 and applying the fact that (ddcv j)n 
 Cn uniformly on E we
conclude that u j → u in Cn on Ω and thus the proof of Lemma 3 is complete.

Theorem 2 If v ∈ B and a positive measure µ ≤ (ddcv)n on Ω, then there exists a function
u in B such that (ddcu)n = µ in Ω. Furthermore, if limz→∂Ω v(z) = 0 then there exists a
unique function u in B such that (ddcu)n = µ and limz→∂Ω u(z) = 0.

Proof By Lebesgue-Radon-Nikodym theorem we can write µ = f (ddcv)n, where 0 ≤ f ≤
1 inΩ. Choose a sequence of non-negative, bounded functions fk with compact support in
Ωwhich increase to f inΩ. Then for each fk there exists a sequence of continuous functions
fk, j such that 0 ≤ fk, j ≤ gk and∫

Ω

| fk, j − fk|(ddcv)n → 0 as j →∞,

where gk is a non-negative, bounded function with compact support in Ω. Therefore, by
Lemma 3 there exist functions uk, j in B with (ddcuk, j)n = fk, j (ddcv)n and limz→∂Ω uk, j (z) =
0. Take a function vk ∈ B such that limz→∂Ω vk(z) = 0 and gk(ddcvk)n = gk(ddcv)n ≥
(ddcuk, j )n. Then by Lemma 2 we have (supΩ gk)1/nvk ≤ uk, j ≤ 0 in Ω for all j. Now apply-
ing Lemma 2 and repeating the proof of Theorem 4 in [X] we can find functions uk ∈ B

such that (ddcuk)n = fk(ddcv)n and limz→∂Ω uk(z) = 0. Therefore, Lemma 2 yields that uk

decrease to a psh function u in Ω which is clearly the desired function in B. If the v = 0 on
∂Ω, by Lemma 2 we have that 0 ≥ uk ≥ v in Ω for all k. Hence the u vanishes on ∂Ω. The
uniqueness of such a solution u follows directly from Lemma 2. So the proof of Theorem 2
is complete.

As a consequence of Theorem 2 and Lemma 2 we obtain the following result in [KO1].

Corollary 1 Assume that a positive measure µ ≤ (ddcv)n on Ω, where v is a bounded psh
function in Ω. Then there exists a bounded psh function u in Ω such that (ddcu)n = µ.
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It is probably worth remarking that for a bounded psh function v in Ω the proof of
Lemma 3 can be simplicized. This gives a simple proof of Corollary 1. On the other hand,
the assumption µ ≤ (ddcv)n in Theorem 2 can not be weaken by µ 
 (ddcv)n, as shown
by the following example.

Example 1 Let {z j} be a sequence of distinguished points which converges to a point
ζ ∈ ∂Ω. By Theorem 8 in [C-P], for each z j there exists a function f j,r ∈ PSH(Ω) ∩C(Ω̄)
which vanishes on the boundary ∂Ω and satisfies (ddc f j,r)n = d−1

n r−2n j−2χB(z j ,r) dλ, where
the constant dn denotes the volume of the unit ball in Cn, λ is the Lebesgue measure and
χB(z j ,r) is the characteristic function of the open ball B(z j , r) = {z ∈ Cn ; |z − z j | < r}. It
then follows from the definition of Cn-capacity that

1

j2
=

∫
Ω

(ddc f j,r)
n =

∫
B(z j ,r)

(ddc f j,r)
n ≤ Cn

(
B(z j , r),B(z j , k)

)
max

z∈B(z j ,k)

(
− f j,r(z)

)n
,

where the constant k > r > 0. Since for each fixed k > 0 we have that the relative capacity
Cn

(
B(z j , r),B(z j , k)

)
→ 0 as r → 0, then maxz∈B(z j ,k)

(
− f j,r(z)

)
→ ∞ as r → 0. Take

two sequences {k j} and {r j} such that B(z j , k j) for j = 1, 2, . . . are pairwise disjoint balls
in Ω and maxz∈B(z j ,k j )

(
− f j,r j (z)

)
→ ∞ as j → ∞. Hence the locally bounded function

f
def
==
∑∞

j=1 d−1
n r−2n

j j−2χB(z j ,r j ) is integrable in Ω with respect to the Lebesgue measure
λ. It is now easy to see that there exists no function u ∈ PSH(Ω) which is bounded near
∂Ω and satisfies (ddcu)n = f dλ. In fact, if there exists such a function u, by subtracting a
constant if necessary, we may assume u < −1 inΩ. So for every j we have that u ≤ f j,r j near
the boundary ∂Ω and (ddcu)n = f dλ ≥ (ddc f j,r j )

n. Hence Lemma 2 yields u(z) ≤ f j,r j (z)
for all z ∈ Ω. In particular, we get maxz∈B(z j ,k j )

(
−u(z)

)
≥ maxz∈B(z j ,k j )

(
− f j,r j (z)

)
→∞ as

j →∞, which contradicts that u is bounded near ∂Ω. Therefore, we have proved that there
exists no function u ∈ PSH(Ω), which is bounded near ∂Ω and satisfies (ddcu)n = f dλ.

3 Bounded Plurisubharmonic Functions

In this section we discuss characterization of bounded psh functions in terms of Monge-
Ampère measures.

Theorem 3 Suppose that u is a psh function in Ω and satisfies u(z) ≥ B near the boundary
∂Ω, where B is a constant. Then u is bounded below in the whole domainΩ if and only if there
exists a constant Au > 0 such that for any constant k < B with Cn(u < k) �= 0 we can find an
increasing sequence k ≤ k1 < · · · < ks−1 < ks = B with k1 < k + 1 and

s∑
j=2

(
‖(ddcu)n‖{u<k j}

Cn(u < k j−1 + 0)

) 1
n

< Au,

where Cn(u < k j−1 + 0) = limk→k j−1+0 Cn(u < k).

Proof The necessity is trivial because for each bounded function u, with u > B near ∂Ω,
one can choose two constants k1 < k2 = B such that the condition Cn(u < k) �= 0 implies
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k1 < k + 1. To see the sufficiency, we assume that Cn(u < k) �= 0 for all k < B. Otherwise,
we have u ≥ k for some constant k and the proof is finished. We notice that the assumption
of Theorem 3 gives

‖(ddcu)n‖{u<k}

Cn(u < k + 1)
≤
‖(ddcu)n‖{u<k2}

Cn(u < k1 + 0)
≤ An

u.

So
‖(ddcu)n‖{u<k} → 0 as k→ −∞,

and together with the inequality

‖(ddcu)n‖E ≤ ‖(ddcu)n‖{u≤k} + ‖
(

ddc max(u, k)
)n
‖E

for each subset E ⊂⊂ Ω we get that (ddcu)n is absolutely continuous with respect to Cn.
Hence u ∈ B and it then follows from Lemma 2 that for all k < k j and each w ∈ PSH(Ω)
with 0 < w < 1 we have

(k j − k)n

∫
u<k

(ddcw)n ≤

∫
u<k j

(k j − u)n(ddcw)n ≤

∫
u<k j

(1− w)(ddcu)n.

Let k→ k j−1 + 0 and we have

(k j − k j−1)nCn(u < k j−1 + 0) ≤ ‖(ddcu)n‖{u<k j}.

Therefore

0 < B− 1− k < ks − k1 =
s∑

j=2

(k j − k j−1) ≤
s∑

j=2

(
‖(ddcu)n‖{u<k j}

Cn(u < k j−1 + 0)

) 1
n

< Au.

This implies Cn{u < B−1−Au} = 0 which contradicts the assumption that Cn(u < k) �= 0
for all k < B. The proof of Theorem 3 is complete.

As a consequence we have

Corollary 2 Let u ∈ PSH(Ω) be bounded near the boundary ∂Ω. If there exist constants
δ > 1 and A > 0 such that the inequality

‖(ddcu)n‖{u<k} ≤ A
(
Cn(u < k)

)δ
holds for any constant k < 0, then u is bounded in Ω.

Proof We assume without loss of generality that u > −1 near ∂Ω. For each k < −1
with Cn{u < k} �= 0 it is clear that there exists at most a finite numbers of constants
k = k1 < k2 < · · · < ks = −1 such that

k j = inf
{

r ; F(k j−1 + 0) <
1

2
F(r)
}

for j = 2, 3, . . . , s− 1, and
1

2
F(ks) ≤ F(ks−1 + 0),
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where the function F(r) = ‖(ddcu)n‖{u<r} is nondecreasing and left continuous for r ≤ 1,
and F(r + 0) = limt→r+0 F(t). Hence we have

1

2
F(k j) ≤ F(k j−1 + 0) <

1

2
F(k j+1) for j = 2, 3, . . . , s− 1,

and

s∑
j=2

(
‖(ddcu)n‖{u<k j}

Cn(u < k j−1 + 0)

) 1
n

≤
s∑

j=2

(
2F(k j−1 + 0)

Cn(u < k j−1 + 0)

) 1
n

≤
s∑

j=2

(
2A

1
δ F(k j−1 + 0)

δ−1
δ

) 1
n

≤ 2
1
n A

1
δn

s−1∑
j=2

(
F(−1)

2
s− j−1

2

) δ−1
δn

≤ 2
1
n A

1
δn F(−1)

δ−1
δn

∞∑
j=0

2
(1−δ) j

2δn <∞.

Therefore, an application of Theorem 3 completes the proof.
By the definition of Cn-capacity we know that the Monge-Ampère measure of a bounded

psh function is dominated by a constant multiple of Cn-capacity. However, we can not
expect that the Monge-Ampère measure of a bounded psh function is always controlled by
Cn-capacity with some power δ > 1, as be shown in the following example.

Example 2 We construct a bounded subharmonic function

u(z) =
∞∑

k=2

1

k22k
max
(
−
√
− ln |z|,−2k

)

in the ball B(0, 1/2) of C. For any small r > 0 we take an integer j0 such that 2 j0−2 ≤√
− ln r < 2 j0−1. Since the inequality j22 j < 100

√
− ln |z| ln2(− ln |z|) holds for all z ∈

E j = {2 j−1 ≤
√
− ln |z| < 2 j}, we have

‖ddcu‖B(0,r) ≥
∞∑

j= j0

‖ddcu‖E j ≥
∞∑

j= j0

1

j22 j
‖ddc max

(
−
√
− ln |z|,−2 j

)
‖E j

=

∞∑
j= j0

1

j22 j
‖ddc
√
− ln |z|‖E j

≥
1

400

∞∑
j= j0

∥∥∥∥ dz ∧ dcz

|z|2 ln2 |z| ln2(− ln |z|)

∥∥∥∥
E j

≥
1

400

∥∥∥∥ dz ∧ dcz

|z|2 ln2 |z| ln2(− ln |z|)

∥∥∥∥
{r8≤|z|<r4}

≥
1

400 ln2(−8 ln r)

∥∥∥∥ dz ∧ dcz

|z|2 ln2 |z|

∥∥∥∥
{r8≤|z|<r4}

≥ A ln−2(−8 ln r)C1

(
B(0, r)

)
,

where the last inequality follows from C1{B(0, r)} = 2π/(− ln 2− ln r) and the constant A
is independent of r. Hence for any δ > 1 there is no constant A1 > 0 such that ‖ddcu‖E ≤

A1

(
C1(E)

)δ
for all subsets E of B(0, 1/2).
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Example 2 gives that the inequality assumption of Corollary 2 is not necessary condition.
On the other hand, we have a local estimation for the Monge-Ampère measure, see [B-T4,
Corollary 2.3] for the case n = 1.

Theorem 4 If the psh function u is bounded in Ω then for each z0 ∈ Ω

‖(ddcu)n‖B(z0,r) = o
(
Cn{B(z0, r)}

)
as r → 0,

where B(z0, r) denotes the ball with center at z0 and radius r > 0.

Proof Take a positive constant r0 < 1 which satisfies B(z0, r0) ⊂⊂ Ω. By Lemma 2 we have∫
B(z0,r0)

(ln r0 − ln |z − z0|)
n(ddcu)n

= (max
Ω
|u|)n lim

k→∞

∫
max(ln |z−z0|,−k)<ln r0

(
ln r0 −max(ln |z − z0|,−k)

)n
(

ddc u

maxΩ |u|

)n

≤ (n!)2(max
Ω
|u|)n lim

k→∞

∫
max(ln |z−z0|,−k)<ln r0

(
ddc max(ln |z − z0|,−k)

)n

=
(

n!
)2

(2πmax
Ω
|u|)n <∞.

So the function
(

ln r0 − ln |z − z0|
)n

is integrable in B(z0, r0) with respect to the measure
(ddcu)n, and it then follows from ‖(ddcu)n‖B(z0,r) = O

(
Cn{B(z0, r)}

)
= o(1) as r → 0 that

(ln r0 − ln r)n‖(ddcu)n‖B(z0,r) ≤

∫
B(z0,r)

(ln r0 − ln |z − z0|)
n(ddcu)n → 0 as r → 0

which implies the conclusion of Theorem 4 because ( 1
− ln r )n = O(Cn{B(z0, r)}).

It is now natural to ask whether or not the inequality assumption in Corollary 2 can
be replaced by the weaker condition ‖(ddcu)n‖{u<k} = o

(
Cn(u < k)

)
as k → −∞ or

‖(ddcu)n‖B(z0,r) = o
(
Cn{B(z0, r)}

)
as r → 0 for all points z0 ∈ Ω. The answer is negative,

as the following example shows.

Example 3 Let n = 1. Since φ(x) = − ln
(
ln(−x)

)
is increasing and convex for x < −1,

the unbounded function u(z) = φ(ln |z|) = − ln
(
ln(− ln |z|)

)
is subharmonic in the ball

B(0, 1/3) and bounded near the sphere |z| = 1/3. We claim that the measure ddcu puts
no mass at the origin. To see this we assume that ψ is a nonnegative C∞ function with
compact support in B(0, 1/3) and satisfies ψ(0) = 1. By Stokes’ theorem we have∫

B(0, 1
3 )
ψ ddcu =

∫
B(0, 1

3 )
u ddcψ = lim

ε→0

∫
ε<|z|< 1

3

u ddcψ

= lim
ε→0

{∫
ε<|z|< 1

3

ψ ddcu +

∫
|z|=ε

u dcψ − ψ dcu

}

=

∫
0<|z|< 1

3

ψ ddcu + lim
ε→0

∫
|z|=ε

u dcψ − ψ dcu,
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where the last term vanishes because∫
|z|=ε

u dcψ − ψ dcu = O
(
ε ln
(
ln(− ln ε)

))
+ O

(
1

− ln ε ln(− ln ε)

)
as ε→ 0.

Hence ‖ddcu‖{0} = 0. On the other hand, a direct calculation gives

ddcu =
1 + ln(− ln |z|)

4|z|2 ln2 |z| ln2(− ln |z|)
dz ∧ dcz for z �= 0.

Then∫
B(0,r)

ddcu ≤

∫
0<|z|<r

1

2|z|2 ln2 |z| ln
(
− ln |z|

) dz ∧ dcz

≤
1

2 ln
(
− ln r

) ∫
B(0,r)

1

|z|2 ln2 |z|
dz ∧ dcz = o

(
C1{B(0, r)}

)
as r → 0,

which implies obviously that both ‖(ddcu)n‖{u<k} = o
(
C1(u < k)

)
as k → −∞ and

‖(ddcu)n‖B(z0,r) = o
(

C1{B(z0, r)}
)

as r → 0 for all points z0 in B(0, 1/3).

Now we give a positive result on this direction.

Theorem 5 Suppose that u ∈ B satisfies u(z) ≥ k2 for all z near the boundary ∂Ω. If there
exist constants k0 < k1 ≤ k2 and A0 < (k1 − k0)n such that

‖(ddcu)n‖{u<k1} = A0Cn(u < k0),

then u ≥ k0 in Ω.

Proof It follows from Lemma 2 that for each w ∈ PSH(Ω) with 0 < w < 1

(k1 − k0)n

∫
u<k0

(ddcw)n ≤

∫
u<k0

(k1 − u)n (ddcw)n ≤

∫
u<k1

(k1 − u)n (ddcw)n

≤

∫
u<k1

(ddcu)n = A0Cn(u < k0)

which implies the inequality (k1 − k0)nCn(u < k0) ≤ A0Cn(u < k0), and it then turns out
from A0 < (k1 − k0)n that Cn(u < k0) = 0. Thus u ≥ k0 in Ω and the proof of Theorem 5
is complete.

To end this section we prefer to show another application of Theorem 3, which uses a
simple integral to characterize bounded radial psh functions, see Corollary 3.4 in [P].

Corollary 3 Suppose that φ(t) is increasing and convex on [−∞, 0), and limt→0− φ(t) = 0.
Then the psh function u(z) = φ(ln |z|) is bounded on the unit ball B(0, 1) if and only if there
exists a constant Du > 0 such that for any k < −1/2 with Cn(u < k) �= 0 we can find a
constant k1 with k1 − 1 < k ≤ k1 and∫ 1

2

r1

1

r

(
‖(ddcu)n‖B(0,r)

) 1
n dr < Du,

where r1 denotes the radius of the ball {u < k1}.
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Proof We first show the “only if” part. Since the u is bounded, for any constant k < −1/2
with Cn(u < k) �= 0 there exists a sequence k1 − 1 < k ≤ k1 < · · · < ks = −1/2 such that
the inequality in Theorem 3 holds. Denote by B(0, r j) the ball {u < k j} for j = 1, 2, . . . , s.
It then follows from Cn(u < k j−1 + 0) = ( 2π

− ln r j−1
)n that

Au >

s∑
j=2

(
‖(ddcu)n‖{u<k j}

Cn(u < k j−1 + 0)

) 1
n

=
1

2π

s∑
j=2

(
‖(ddcu)n‖{u<k j}

) 1
n ln

1

r j−1

≥
1

2π

s∑
j=2

∫ r j

r j−1

1

r

(
‖(ddcu)n‖B(0,r)

) 1
n dr

=
1

2π

∫ rs

r1

1

r

(
‖(ddcu)n‖B(0,r)

) 1
n dr,

which completes the proof of the “only if” part.
To prove the “if” part, for any constant k < −1/2 with Cn(u < k) �= 0 and each

constant k1 with k1 − 1 < k ≤ k1, we choose a sequence k1 < k2 < · · · < ks < ks+1 such
that ks−1 < −1/2 = ks and r j =

√
r j−1 for j = 2, 3, . . . , s − 1, s + 1, where the constants

r j denote radii of balls B(0, r j) = {u < k j}. Hence we have

∫ rs+1

r1

1

r

(
‖(ddcu)n‖B(0,r)

) 1
n dr ≥

s+1∑
j=3

∫ r j

r j−1

1

r

(
‖(ddcu)n‖B(0,r)

) 1
n dr

≥
s+1∑
j=3

(
‖(ddcu)n‖B(0,r j−1)

) 1
n

∫ r j

r j−1

1

r
dr

=
π

2

s∑
j=2

(
‖(ddcu)n‖{u<k j}

Cn(u < k j−1 + 0)

) 1
n

.

It then follows from the assumption and Theorem 3 that the u is bounded in B(0, 1), and
the proof of Corollary 3 is complete.

4 Monge-Ampère Measures of Bounded Plurisubharmonic Functions

The complex Monge-Ampère measure of a bounded psh function vanishes on any pluripo-
lar set. So vanishing on all pluripolar sets is a necessary condition for a positive measure
to be complex Monge-Ampère measure of some bounded psh function. However, this
condition is not sufficient, see Example 3. In the following we prove a characterization of
complex Monge-Ampère measures of bounded psh functions.

Theorem 6 Suppose that µ is a positive measure vanishing on each pluripolar set of Ω. Then
µ = (ddcv)n for some bounded psh function v inΩ if and only if there exists positive constants
A and D such that for any negative u ∈ PSH(Ω), which satisfies (ddcu)n ≤ µ and u(z) ≥ −1
near the boundary ∂Ω, and for each constant k < −1 with Cn(u < k) �= 0 we can find a
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sequence k ≤ k1 < · · · < ks−1 < ks = −1 satisfying k1 < k + D and

s∑
j=2

(
µ(u < k j)

Cn(u < k j−1 + 0)

) 1
n

< A.

Proof To show the “only if” part, by Lemma 2 any function u in PSH(Ω) with (ddcu)n ≤
µ = (ddcv)n and u(z) ≥ −1 ≥ v(z) − supΩ |v| − 1 near the boundary ∂Ω satisfies the
inequality u(z) ≥ v(z) − supΩ |v| − 1 ≥ −D for all z ∈ Ω, where we take D = supΩ |v| −
infΩ |v| + 1. So for any constant k < −1 with Cn(u < k) �= 0 we have that k ≥ −D. Take a
sequence k ≤ k1 < k2 = −1 such that the inequality Cn(u < k2) ≤ 2Cn(u < k1 + 0) holds.
Hence we obtain the inequality

(
µ(u < k2)

Cn(u < k1 + 0)

) 1
n

< A,

where the constant A = 1 + 2
1
n supΩ |v|. This completes the proof of the “only if” part.

For the proof of “if” part, we assume first that the measure µ has a compact support in
Ω. Since µ vanishes on all pluripolar sets, by Theorem 6.3 in [C2] there exists a decreasing
sequence of psh functions uk vanishing on ∂Ω such that (ddcuk)n increase to µ. It then
follows from the assumption on µ and the proof of Theorem 3 that all functions uk ≥
−A − D − 1, which gives that the psh function v = limk→∞ uk is bounded on Ω and
by the monotone convergence theorem in [B-T2] we get that (ddcuk)n → (ddcv)n. Thus
µ = (ddcv)n and we have proved the “if” part for any measure µ with compact support in
Ω. In general case, we take a sequence of measures µl with compact support which increase
to µ as l↗∞. By the above proof there exist psh functions vl such that 0 ≥ vl ≥ −A−D−1
and (ddcvl)n = µl for all l. Modifying vl near the ∂Ω, we can assume that vl = 1 on ∂Ω
and (ddcvl)n ≥ µl. So it follows from Theorem 2 that µl = (ddcv�l )n for some bounded
psh function v�l with v�l = 0 on ∂Ω. Since µ ≥ µl for all l, the functions v�l are uniformly
bounded in Ω and hence the monotone limit v� = liml→∞ v�l is bounded and satisfies
(ddcv�)n = µ. The proof of Theorem 6 is complete.

Theorem 6 implies that if µ is a Monge-Ampère measure of some bounded psh function
in Ω then any positive measure µ1 ≤ µ is also a Monge-Ampère measure of bounded psh
function in Ω. However, there exists a positive measure µ ≤ Cn which is not a Monge-
Ampère measure of some bounded psh function, see [KO2]. In [KO3] and [KO4], by using
a stronger condition Kolodziej obtained a positive result for some classes of measures. Now
we have

Corollary 4 Suppose that µ is a positive measure in Ω and suppose that ε > 0 and F(x) =

x
(

ln(1 + 1/x)
)−n−ε

. If the inequality µ(E) ≤ F
(
Cn(E)

)
holds for any set E ⊂ Ω, then there

exists a bounded psh function v in Ω such that µ = (ddcv)n.

Proof Repeating the proof of Corollary 2, we get that the measure µ satisfies the inequality
assumption in Theorem 6. Hence, it is a Monge-Ampère measure of some bounded psh
function in Ω and the proof is complete.

https://doi.org/10.4153/CJM-2000-045-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-045-x


Complex Monge-Ampère Measures 1099

We also record another consequence of Theorem 6.

Corollary 5 Suppose that µ is a positive measure in Ω and that p > 1 and 1/p + 1/q = 1.
If there exists Ap > 0 such that µ(E) ≤ Ap

[
Cn(E)

]p
for all E ⊂⊂ Ω, then for any q1 > q

and any nonnegative function f in Lq1
µ (Ω) we can find a bounded psh function v inΩ such that

(ddcv)n = f dµ and the supremum norm supΩ |v| are uniformly bounded for all functions f
with ‖ f ‖L

q1
µ (Ω) ≤ 1.

Conversely, if for any nonnegative function f in Lq
µ(Ω) we can find a bounded psh func-

tion v inΩ such that (ddcv)n = f dµ and supΩ |v| are uniformly bounded for all functions f

with ‖ f ‖Lq
µ(Ω) ≤ 1, then there exists Ap > 0 such that µ(E) ≤ Ap

[
Cn(E)

]p
for all E ⊂⊂ Ω.

Proof Assume that f ∈ Lq1
µ (Ω) be a nonnegative function inΩ. For all E ⊂⊂ Ω, by Hölder

inequality, we have∫
E

f dµ ≤ ‖ f ‖L
q1
µ (Ω)µ(E)1−1/q1 ≤ ‖ f ‖L

q1
µ (Ω)A

1−1/q1
p Cn(E)1+p/q−p/q1 ,

where the exponent 1 + p/q − p/q1 > 1. By a similar proof of Corollary 2 we obtain
that the positive measure f dµ satisfies the condition in Theorem 6 and hence there exists
a bounded psh function v in Ω such that (ddcv)n = f dµ, where supΩ |v| are uniformly
bounded for all functions f with ‖ f ‖L

q1
µ (Ω) ≤ 1.

To prove the converse assertion, we set fE = χE/µ(E)
1
q for each E ⊂⊂ Ω, where χE

denotes the characteristic function of the set E. Then ‖ fE‖Lq
µ(Ω) = 1 and

µ(E)
1
p =

∫
E

fE dµ =

∫
E
(ddcvE)n ≤ (sup

Ω

|vE|)
nCn(E),

where, by the assumption, the constants (supΩ |vE|)n are uniformly bounded for all subsets

E ⊂⊂ Ω. Hence there exists Ap > 0 such that µ(E) ≤ Ap

[
Cn(E)

]p
for all E ⊂⊂ Ω. The

proof of Corollary 5 is complete.
In [KO3] Kolodziej proved that any positive measure f dλ, where f ∈ Lp

λ(Ω), p > 1 and
λ denotes the Lebesgue measure, is the complex Monge-Ampère measure of some bounded
psh function. Corollary 5 implies directly

Corollary 6 Let µ be a positive measure in Ω. Then for any δ > 1 there exists Aδ > 0 such

that µ(E) ≤ Aδ

[
Cn(E)

]δ
for all E ⊂⊂ Ω if and only if for any p > 1 there exists Bp > 0 such

that for all nonnegative functions f in Lp
µ(Ω) with ‖ f ‖Lp

µ(Ω) ≤ 1 we can find a bounded psh

function v in Ω such that (ddcv)n = f dµ and supΩ |v| ≤ Bp.
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