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Almost-Free E-Rings
of Cardinality ℵ1

Rüdiger Göbel, Saharon Shelah and Lutz Strüngmann

Abstract. An E-ring is a unital ring R such that every endomorphism of the underlying abelian group

R+ is multiplication by some ring element. The existence of almost-free E-rings of cardinality greater

than 2ℵ0 is undecidable in ZFC. While they exist in Gödel’s universe, they do not exist in other models

of set theory. For a regular cardinal ℵ1 ≤ λ ≤ 2ℵ0 we construct E-rings of cardinality λ in ZFC which

have ℵ1-free additive structure. For λ = ℵ1 we therefore obtain the existence of almost-free E-rings of

cardinality ℵ1 in ZFC.

1 Introduction

Recall that a unital ring R is an E-ring if the evaluation map ε : EndZ(R+) → R given

by ϕ 7→ ϕ(1) is a bijection. Thus every endomorphism of the abelian group R+ is
multiplication by some element r ∈ R. E-rings were introduced by Schultz [20] and
easy examples are subrings of the rationals Q or pure subrings of the ring of p-adic
integers. Schultz characterized E-rings of finite rank and the books by Feigelstock

[9, 10] and an article [18] survey the results obtained in the eighties, see also [8, 19].
In a natural way the notion of E-rings extends to modules by calling a left R-module
M an E(R)-module or just E-module if HomZ(R, M) = HomR(R, M) holds, see [1].
It turned out that a unital ring R is an E-ring if and only if it is an E-module.

E-rings and E-modules have played an important role in the theory of torsion-free

abelian groups of finite rank. For example Niedzwecki and Reid [17] proved that a
torsion-free abelian group G of finite rank is cyclically projective over its endomor-
phism ring if and only if G = R ⊕ A, where R is an E-ring and A is an E(R)-module.
Moreover, Casacuberta and Rodrı́guez [2] noticed the role of E-rings in homotopy

theory.

It can be easily seen that every E-ring has to be commutative and hence can not be
free as an abelian group except when R = Z. But it was proved in [6] and extended in
[4, 5], using a Black Box argument from [3], that there exist arbitrarily large E-rings
R which are ℵ1-free as abelian groups, which means that every countable subgroup of

R+ is free. The smallest candidate in [4, 5, 6] has size 2ℵ0 . This implies the existence of
ℵ1-free E-rings of cardinality ℵ1 under the assumption of the continuum hypothesis.
Moreover, it was shown in [16] that there exist almost-free E-rings for any regular not
weakly compact cardinal κ > ℵ0 assuming diamond, a prediction principle which
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holds for example in Gödel’s constructible universe. Here, a group of cardinality λ is
called almost-free if all its subgroups of smaller cardinality than λ are free.

Since the existence of ℵ2-free E-rings of cardinality ℵ2 is undecidable in ordinary
set theory ZFC (see [15, Theorem 5.1] and [16]) it is hopeless to conjecture that
there exist almost-free E-rings of cardinality κ in ZFC for cardinals κ larger than
2ℵ0 . However, we will prove in this paper that there are ℵ1-free E-rings in ZFC of

cardinality λ for every regular cardinal ℵ1 ≤ λ ≤ 2ℵ0 . Thus the existence of almost-
free E-rings of size ℵ1 in ZFC follows.

The construction of ℵ1-free E-rings R in ZFC is much easier if |R| = 2ℵ0 , because
in case |R| = ℵ1 we are closer to freeness, a property which tries to prevent endomor-

phisms from being scalar multiplication. Thus we need more algebraic arguments
and will utilize a combinatorial prediction principle similar to the one used by the
first two authors in [14] for constructing almost-free groups of cardinality ℵ1 with
prescribed endomorphism rings.

The general method for such constructions is very natural and it will be explained
in full detail in Shelah [21, Chapter VII, Section 5]. Our notations are standard and
for unexplained notions we refer to [11, 12, 13] for abelian group theory and to [7]
for set-theory. All groups under consideration are abelian.

2 Topology, Trees and a Forest

In this section we explain the underlying geometry of our construction which was

used also in [14], see there for further details.
Let F be a fixed countable principal ideal domain with 1 6= 0 with a fixed infinite

set S = {sn : n ∈ ω} of pair-wise coprime elements, that is snF + smF = F for all
n 6= m. For brevity we will say that F is a p-domain, which certainly cannot be a field.

We choose a sequence of elements

(2.1) q0 = 1 and qn+1 = snqn for all n ∈ ω

in F, hence the descending chain qnF (n ∈ ω) of principal ideals satisfies
⋂

n∈ω qnF =

0 and generates the Hausdorff S-topology on F. Thus F is a dense and S-pure subring
of its S-adic completion F̂ satisfying qnF = qnF̂ ∩ F for all n ∈ ω.

Now let T =
ω>2 denote the tree of all finite branches τ : n → 2 (n ∈ ω). More-

over, ω2 = Br(T) denotes all infinite branches η : ω → 2 and clearly η �n∈ T for all
η ∈ Br(T) (n ∈ ω). If η 6= µ ∈ Br(T) then

br(η, µ) = inf{n ∈ ω : η(n) 6= µ(n)}

denotes the branch point of η and µ. If C ⊂ ω then we collect the subtree

TC = {τ ∈ T : if e ∈ l(τ ) \C then τ (e) = 0}

of T where l(τ ) = n denotes the length of the finite branch τ : n → 2.
Similarly,

Br(TC ) = {η ∈ Br(T) : if e ∈ ω \C then η(e) = 0}
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and hence η �n∈ TC for all η ∈ Br(TC ) (n ∈ ω).

Now we collect some trees to build a forest. Let ℵ1 ≤ λ ≤ 2ℵ0 be a regular
cardinal and choose a family C = {Cα ⊂ ω : α < λ} of pair-wise almost disjoint
infinite subsets of ω. Let T × α = {v × α : v ∈ T} be a disjoint copy of the tree

T and let Tα = TCα
× α for α < λ. For simplicity we denote the elements of Tα

by τ instead of τ × α since it will always be clear from the context to which α the
finite branch τ refers to. By [14, Observation 2.1] we may assume that each tree Tα is
perfect for α < λ, i.e. if n ∈ ω then there is at most one finite branch η �n such that

η �(n+1) 6= µ �(n+1) for some µ ∈ Tα. We build a forest by letting

TΛ =

⋃

α<λ

Tα.

Now we define our base algebra as BΛ = F[zτ : τ ∈ TΛ] which is a pure and dense
subalgebra of its S-adic completion B̂Λ taken in the S-topology on BΛ.

For later use we state the following definition which allows us to view the algebra
BΛ as a module generated over F by monomials in the “variables” zτ (τ ∈ TΛ).

Definition 2.1 Let X be a set of commuting variables and R an F-algebra. If Y ⊆ R

then M(Y ) will denote the set of all products of elements from Y , the Y -monomials.

Then any map σ : X → R extends to a unique epimorphism σ : F[X] → F[σ(X)].
Thus any r ∈ F[σ(X)] can be expressed by a polynomial σr ∈ F[X], which is a
preimage under σ: There are l1, . . . , ln in σ(X) such that

r = σr(l1, . . . , ln) =

∑

m∈M({l1,...,ln})

fmm with fm ∈ F

becomes a polynomial-like expression.

In particular, if Zα = {zτ : τ ∈ Tα} (α < λ) and ZΛ = {zτ : τ ∈ TΛ}, then
as always the polynomial ring BΛ can be viewed as a free F-module over the basis of
monomials, we have BΛ =

⊕
z∈M(ZΛ) zF and a subring Bα =

⊕
z∈M(Zα) zF.

Since ℵ1 ≤ λ ≤ 2ℵ0 = |Br(TCα
)| we can choose a family {Vα ⊆ Br(TCα

) :
α < λ} of subsets Vα of Br(TCα

) with |Vα| = λ for α < λ. Note that for α 6= β < λ
the infinite branches from Vα and Vβ branch at almost disjoint sets since Cα ∩ Cβ

is finite, thus the pairs Vα, Vβ are disjoint. Moreover, we may assume that for any

m ∈ ω, λ pairs of branches in Vα branch above m.

3 The Construction

Following [14] we use the

Definition 3.1 Let x ∈ B̂Λ be any element in the completion of the base algebra BΛ.
Moreover, let η ∈ Vα with α < λ. We define the branch like elements yηnx for n ∈ ω
as follows: yηnx :=

∑
i≥n

qi

qn
(zη�i

) + x
∑

i≥n
qi

qn
η(i).

https://doi.org/10.4153/CJM-2003-032-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-032-8


Almost-Free E-Rings of Cardinality ℵ1 753

Note that each element yηnx connects an infinite branch η ∈ Br(TCα
) with fi-

nite branches from the tree Tα. Furthermore, the element yηnx encodes the infinite

branch η into an element of B̂Λ. We have a first observation which describes this as
an equation and which is crucial for the rest of this paper.

(3.1) yηnx = sn+1 yη(n+1)x + zη�n
+ xη(n) for all α < λ, η ∈ Vα.

Proof We calculate the difference

qn yηnx − qn+1 yη(n+1)x =

∑

i≥n

qi(zη�i
) + x

∑

i≥n

qiη(i) −
∑

i≥n+1

qi(zη�i
) − x

∑

i≥n+1

qiη(i)

= qnzη�n
+ qnxη(n).

Dividing by qn yields yηnx = sn+1 yη(n+1)x + zη�n
+ xη(n).

The elements of the polynomial ring BΛ are unique finite sums of monomials in
Zλ with coefficients in F. Thus, by S-adic topology, any 0 6= g ∈ B̂Λ can be expressed
uniquely as a sum

g =

∑

z∈[g]

gz,

where z runs over an at most countable subset [g] ⊆ M(ZΛ) of monomials and
0 6= gz ∈ zF̂. We put [g] = ∅ if g = 0. Thus any g ∈ B̂Λ has a unique support

[g] ⊆ M(ZΛ), and support extends naturally to subsets of B̂Λ by taking unions of the

support of its elements. It follows that

[yηno ] = {zη� j×α : j ∈ ω, j ≥ n}

for any η ∈ Vα, n ∈ ω and [z] = {z} for any z ∈ M(ZΛ).
Support can be used to define the norm of elements. If X ⊆ M(ZΛ) then

‖X‖ = inf
{

β < λ : X ⊆
⋃

α<β

M(Zα)
}

is the norm of X. If the infimum is taken over an unbounded subset of λ, we write

‖X‖ = ∞. However, since cf(λ) > ω, the norm of an element g ∈ BΛ is ‖g‖ =

‖[g]‖ < ∞ which is an ordinal < λ hence either a successor or cofinal to ω. Norms
extend naturally to subsets of BΛ. In particular ‖yηno‖ = α + 1 for any η ∈ Vα.

We are ready to define the final F-algebra R as a F-subalgebra of the completion of

BΛ. Therefore choose a transfinite sequence bα (α < λ) which runs λ times through
the non-zero pure elements

(3.2) b =

∑

m∈M

m ∈ BΛ with finite M ⊆ M(TΛ).

We call these b’s special pure elements which have the property that BΛ/Fb is a free
F-module.
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Definition 3.2 Let F be a p-domain and let BΛ := F[zτ : τ ∈ TΛ] be the polyno-
mial ring over ZΛ as above. Then we define the following smooth ascending chain of

F-subalgebras of B̂Λ.
(1) R0 = {0}; R1 = F;

(2) Rα =
⋃

β<α Rβ , for α a limit ordinal;

(3) Rα+1 = Rα[yηnxα
, zτ : η ∈ Vα, τ ∈ Tα, n ∈ ω];

(4) R = Rλ =
⋃

α<λ Rα.
We let xα = bα if bα ∈ Rα with ‖bα‖ ≤ α and xα = 0 otherwise.

For the rest of this paper purification is F-purification and properties like freeness,
linear dependence or rank are taken with respect to F. First we prove some properties

of the rings Rα (α ≤ λ). It is easy to see that Rα = F[yηnxβ
, zτ : η ∈ Vβ , τ ∈ Tβ ,

n ∈ ω, β < α] is not a polynomial ring: the set {yηnxα
, zτ : η ∈ Vβ , τ ∈ Tβ , n ∈ ω,

β < α} is not algebraically independent over F. Nevertheless we have the following

Lemma 3.3 For any fixed n ∈ ω and α < λ the set {yηnxα
, zτ : η ∈ Vα, τ ∈

Tα} is algebraically independent over Rα. Thus Rα[yηnxα
, zτ : η ∈ Vα, τ ∈ Tα] is a

polynomial ring.

Proof Assume that the set of monomials M(yηnxα
, zτ : η ∈ Vα, τ ∈ Tα) is linearly

dependent over Rα for some α < λ and n ∈ ω. Then there exists a non-trivial linear
combination of the form

(3.3)
∑

y∈Y

∑

z∈Ey

gy,z yz = 0

with gy,z ∈ Rα and finite sets Y ⊂ M(yηnxα
: η ∈ Vα) and Ey ⊂ M(Zα). We have

chosen Vβ ∩Vγ = ∅ for all β 6= γ and M(Zα) ∩Rα = ∅. Moreover ‖Rα‖ < ‖Rα+1‖
and hence there exists a basal element zy ∈ BΛ (high enough in an infinite branch)
for any 1 6= y ∈ Y with the following properties

(i) zy 6∈ E ỹ for all ỹ ∈ Y ;

(ii) zy 6∈ [ ỹ] for all y 6= ỹ ∈ Y ;
(iii) zy 6∈ [g ỹ,z] for all ỹ ∈ Y , z ∈ E ỹ ;
(iv) zy ∈ [y].

Now we restrict the equation (3.3) to the basal element zy and obtain gy,zzyz = 0
for all z ∈ Ey . Since zy 6∈ [gy,z] we derive gy,z = 0 for all 1 6= y ∈ Y and z ∈ Ey .
Therefore equation (3.3) reduces to

∑
z∈E1

g1,zz = 0. We apply M(Zα) ∩ Rα = ∅

once more. Since each z is a basal element from the set M(Zα) we get that g1,z = 0

for all z ∈ E1. Hence gy,z = 0 for all y ∈ Y , z ∈ Ey , contradicting the assumption
that (3.3) is a non-trivial linear combination.

The following lemma shows that the F-algebras Rδ/sn+1Rδ are also polynomial
rings over F/sn+1F for every n < ω. For δ < λ and n ∈ ω we can choose a set Unδ ⊆
Vδ such that for any η ∈ Vδ there is η ′ ∈ Unδ with br(η, η ′) > n and if η, η ′ ∈ Unδ ,
then br(η, η ′) ≤ n. Obviously |Unδ| ≤ 2n. Moreover, let T ′

δ = Tδ \ {zη�n
: η ∈ Unδ}.
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Lemma 3.4 If n < ω, then the set Xδ
n+1 = {yηnxβ

, yη(n+1)xβ
, zτ : η ∈ Unβ,

τ ∈ T ′
β , β < λ} is algebraically independent over F/sn+1F and generates the algebra

Rδ/sn+1Rδ . Thus Rδ/sn+1Rδ = F/sn+1F[Xδ
n+1] is a polynomial ring.

Remark Here we identify the elements in Xδ
n+1 ⊆ Rδ with their canonical images

modulo sn+1Rδ .

Proof First we show that Xδ
n+1 is algebraically independent over F/sn+1F. Suppose

(3.4)
∑

y∈Y

∑

z∈Ey

fy,z yz ≡ 0 mod sn+1R

with fy,z ∈ F and finite sets Y ⊆ M(yηnxβ
, yη(n+1)xβ

: η ∈ Unβ, β < δ) and Ey ⊆
M(

⋃
β<δ T ′

β).

Choose a basal element zy ∈ [y] for any 1 6= y ∈ Y which is a product of basal
element zτ with l(τ ) = n and zy /∈ [y ′] for any y 6= y ′ ∈ Y and moreover require
zy /∈ Ey ′ for all y ′ ∈ Y . This is possible by the choice of Unβ and T ′

β . Restricting (3.4)

to zy yields ∑

z∈Ey

fy,zzyz ≡ 0 mod sn+1R

hence fyz ≡ 0 mod sn+1R. Therefore (3.4) reduces to
∑

z∈E1
f1,zz ≡ 0 mod sn+1F

and thus also f1,z ≡ 0 mod sn+1F is immediate. This shows that the set Xδ
n+1 is

algebraically independent over F/sn+1F.

Finally we must show that Rδ/sn+1Rδ = (F/sn+1F)[Xδ
n+1]. We will show by induc-

tion on α < δ that

(Rα + sn+1Rδ)/sn+1Rδ ⊆ (F/sn+1F)[Xδ
n+1].

If α = 0 or α = 1 then the claim is trivial, hence assume that α > 1 and for all β < α
we have

(Rβ + sn+1Rδ)/sn+1Rδ ⊆ (F/sn+1F)[Xδ
n+1].

If α is a limit ordinal, then (Rα + sn+1Rδ)/sn+1Rδ ⊆ (F/sn+1F)[Xδ
n+1] is immediate.

Thus assume that α = β+1. By assumption and xβ ∈ Rβ we know that (xβ+sn+1Rδ) ∈
(F/sn+1F)[Xδ

n+1]. Hence equation (3.1) shows that the missing elements zη�n
+ sn+1Rδ

(η ∈ Unβ) are in (F/sn+1F)[Xδ
n+1].

For η ∈ Vβ we can choose η ′ ∈ Unβ such that br(η, η ′) > n. Then using (3.1) we
obtain yηnxβ

− yη ′nxβ
≡ 0 mod sn+1R and therefore yηnxβ

+ sn+1R ∈ (F/sn+1F)[Xδ
n+1].

By induction on m < ω using again (3.1) it is now easy to verify yηmxβ
+ sn+1Rδ ∈

(F/sn+1F)[Xδ
n+1] for every m < ω, η ∈ Unβ and hence Rα + sn+1Rδ ⊆ (F/sn+1F)[Xδ

n+1]

which finishes the proof.

Now we are able to prove that the members Rα of the chain {Rσ : σ < λ} are
F-pure submodules of R and that R is an ℵ1-free domain.
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Lemma 3.5 R is a commutative F-algebra without zero-divisors and Rα as an F-

module is pure in R for all α < λ.

Proof By definition each Rα is a commutative F-algebra and hence R is commutative.
To show that R has no zero-divisors it is enough to show that each member Rα of the
chain {Rσ : σ < λ} is an F-algebra without zero-divisors. Since F is a domain
we can assume, by induction, that Rβ has no zero-divisors for all β < α and some

1 < α < λ. If α is a limit ordinal then it is immediate that Rα has no zero-divisors.
Hence α = γ + 1 is a successor ordinal and Rγ is a domain. If g, h ∈ Rα with
gh = 0 6= g, then we must show that h = 0. Write g in the form

g =

∑

y∈Yg

∑

z∈Eg,y

gy,z yz(g)

with 0 6= gy,z ∈ Rγ and finite sets Eg,y ⊂ M(Zγ) and Yg ⊂ M(yηnxγ
: η ∈ Vγ) for

some n ∈ ω. By (3.1) and xγ ∈ Rγ we may assume n is fixed. Similarly, we write

h =

∑

y∈Yh

∑

z∈Eh,y

hy,z yz(h)

with hy,z ∈ Rγ and finite sets Yh ⊂ M(yηnxγ
: η ∈ Vγ) and Eh,y ⊂ M(Zγ).

Next we want hy,z = 0 for all y ∈ Yh, z ∈ Eh,y . The proof follows by induction on
the number of hy,z’s. If h = hw,z ′wz ′, then

gh =

∑

y∈Yg ,z∈Eg,y

gy,zhw,z ′ yzwz ′

and from Lemma 3.3 follows gy,zhw,z ′ = 0 for all y ∈ Yg , z ∈ Eg,y . Since Rγ has no
zero-divisors we obtain hw,z ′ = 0 and thus h = 0. Now assume that k + 1 coefficients

hy,z 6= 0 appear in (h). We fix an arbitrary coefficient hw,z ′ and write h = hw,z ′wz ′+h ′

so that wz ′ does not appear in the representation of h ′. Therefore the product gh is
of the form

gh =

∑

y∈Yg

∑

z∈Eg,y

gy,zhw,z ′ yzwz ′ + gh ′.(gh)

If the monomial wz ′ appears in the representation of (g) then the monomial w2(z ′)2

appears in the representation of (gh) only once with coefficient gw,z ′hw,z ′ . Using
Lemma 3.3 and the hypothesis that Rγ has no zero-divisors we get hw,z ′ = 0.

If the monomial wz ′ does not appear in the representation of (g) then gy,zhw,z ′ = 0
for all appearing coefficients gy,z is immediate by Lemma 3.3. Thus hw,z ′ = 0 and

h = h ′ follows. By induction hypothesis also h = 0 and R has no zero-divisors.
It remains to show that Rα is a pure F-submodule of R for α < λ. Let g ∈ R \ Rα

such that f g ∈ Rα for some 0 6= f ∈ F and choose β < λ minimal with g ∈ Rβ .
Then β > α and it is immediate that β = γ+1 for some γ ≥ α, hence f g ∈ Rα ⊂ Rγ .

Now we can write

g =

∑

y∈Yg

∑

z∈Eg,y

gy,z yz(g)
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with gy,z ∈ Rγ and finite sets Yg ⊂ M(yvkxγ
: v ∈ Vγ) for some fixed k ∈ ω and

Eg ⊂ M(Zγ) and clearly

f g =

∑

y∈Yg

∑

z∈Eg,y

f gy,z yz ∈ Rγ .

Hence there exists gγ ∈ Rγ such that

f g − gγ =

∑

y∈Yg

∑

z∈Eg,y

f gy,z yz − gγ = 0.

From Lemma 3.3 follows f gy,z = 0 for all 1 6= y ∈ Yg , 1 6= z ∈ Eg,y , thus gy,z = 0

because R is a torsion-free F-module. Hence (g) reduces to the summand with y =

z = 1, but g = g1,1 ∈ Rγ contradicts the minimality of β. Thus g ∈ Rα and Rα is
pure in R.

From the next theorem follows for α = 0 that R is an ℵ1-free F-module. We say
that R is polynomial ℵ1-free if every countable F-submodule of R can be embedded
into a polynomial subring over F of R. Clearly, polynomial ℵ1-freeness implies ℵ1-
freeness.

Theorem 3.6 If F is a p-domain and R =
⋃

α<λ Rα is the F-algebra constructed

above, then R is a domain of size λ with R/Rα is polynomial ℵ1-free for all α < λ.

Proof |R| = λ is immediate by construction and R is a domain by Lemma 3.5. It
remains to show that R is an polynomial ℵ1-free ring. Therefore let U ⊆ R be a

countable pure submodule of R. There exist elements ui ∈ R such that

U = 〈u1, . . . , un, . . . 〉∗ ⊆ R.

Here the suffix ∗ denotes purification as an F-module. Let Un := 〈u1, . . . , un〉∗ for

n ∈ ω. Hence there is a minimal αn < λ such that ui ∈ Rαn
for i ≤ n and n ∈ ω,

which obviously is a successor ordinal αn = γn + 1. Moreover, Un ⊆ Rαn
since Rαn

is
pure in R and by induction we may assume that Rγn

is polynomial ℵ1-free. Fix n ∈ ω.
Using Rαn

= Rγn+1 = Rγn
[yηmxγn

, zτ : η ∈ Vγn
, τ ∈ Tγn

, m ∈ ω] from Definition 3.2

we can write
ui =

∑

y∈Yi

∑

z∈Ei,y

gy,z,i yz

with gy,z,i ∈ Rγn
and finite sets Yi ⊂ M(yηmxγn

: η ∈ Vγn
) for some fixed m ∈ ω and

Ei,y ⊂ M(Zγn
). Choose the pure submodule RUn

:= 〈gy,z,i : y ∈ Yi , z ∈ Ei,y , 1 ≤
i ≤ n〉∗ ⊆ Rγn

of Rγn
and let

U ′
n := {y, z : y ∈ Yi , z ∈ Ei,y , 1 ≤ i ≤ n}.

By induction there is a polynomial subring Ln ⊆ Rγn
of Rγn

which contains RUn

purely. Again by induction we may assume that Ln+1 is a polynomial ring over Ln
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for all n ∈ ω. Hence U ′ ′
n := Ln[U ′

n] ⊆∗ Rαn
is a polynomial ring by Lemma 3.3

and purity of RUn
in Rγn

. Thus Un ⊆∗ U ′ ′
n ⊆∗ Rαn

. By construction Ln+1[U ′
n+1] is

a polynomial ring over Ln[U ′
n] and thus the union U ′′

=
⋃

n∈ω U ′′
n is a polynomial

ring containing U . Similar arguments show that R/Rα is polynomialℵ1-free for every
α < λ.

4 Main Theorem

In this section we will prove that the F-algebra R from Definition 3.2 is an E(F)-
algebra, hence every F-endomorphism of R viewed as an F-module is multiplication

by some element r from R. Every endomorphism of R is uniquely determined by its
action on BΛ which is an S-dense submodule of R. It is therefore enough to show that
a given endomorphism ϕ of R acts as multiplication by some r ∈ R when restricted
to BΛ. It is our first aim to show that such ϕ acts as multiplication on each special

pure element xα for α < λ. Therefore we need the following

Definition 4.1 A set W ⊆ λ is closed if

xα ∈ Rα
W := F[yηnxβ

, zτ : η ∈ Vβ , τ ∈ Tβ , β ∈ W, β < α, n ∈ ω]

for every α ∈ W . Moreover let RW := F[yηnxβ
, zτ : η ∈ Vβ , τ ∈ Tβ , β ∈ W, n ∈ ω].

We have a first lemma.

Lemma 4.2 Any finite subset of λ is a subset of a finite and closed subset of λ.

Proof If ∅ 6= W ⊆ λ is finite then let γ = max(W ). We prove the claim by induc-
tion on γ. If γ = 0, then W = {0}, RW = F, x0 = 0 and there is nothing to prove. If
γ > 0, then xγ ∈ Rγ = F[yηnxβ

, zτ : n ∈ ω, η ∈ Vβ , τ ∈ Tβ , β < γ] and there exists
a finite set Q ⊆ γ such that

xγ ∈ F[yηnxβ
, zτ : n ∈ ω, η ∈ Vβ , τ ∈ Tβ , β ∈ Q].

If Q1 = Q ∪ (W \ {γ}) then max(Q1) < γ. Thus by induction there exists a closed

and finite Q2 ⊆ λ containing Q1. It is now easy to see that W ′
= Q2 ∪ {γ} is as

required.

Closed and finite subsets W of λ give rise to nice presentations of elements in RW .

Lemma 4.3 Let W be a closed and finite subset of λ and r ∈ RW . Then there exists

mr
∗ ∈ N such that r ∈ F[yηnxβ

, zτ : η ∈ Vβ , τ ∈ Tβ , β ∈ W ] for every n ≥ mr
∗.

Proof We apply induction on |W |. If |W | = 0, then RW = R∅ = F and Lemma 4.3
holds. If |W | > 0 then γ = max(W ) is defined. It is easy to see that W ′

= W \ {γ}
is still closed and finite. Thus xδ ∈ RW ′ for all δ ∈ W . By induction there is mδ

∗ such
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that xδ ∈ F[yηnxβ
, zτ : η ∈ Vβ , τ ∈ Tβ , β ∈ W ′] for every n ≥ mδ

∗ (δ ∈ W ). Any
r ∈ RW can be written as a polynomial

r = σ
(
{yηr,lkr,lxβr,l

, zτr, j
: ηr,l ∈ Vβr,l

, τr, j ∈ Tβr, j
, l < lr, j < jr}

)

for some lr, jr ∈ N, βr,l, βr, j ∈ W and ηr,l ∈ Vβr,l
, τr, j ∈ Tβr, j

. Let mr
∗ = max

(
{mδ

∗, kr,l :

l < lr, δ ∈ W}
)

. Using (3.1) now it follows easily that r ∈ F[yηnxβ , zτ : η ∈ Vβ ,
τ ∈ Tβ , β ∈ W ] for every n ≥ mr

∗.

We are ready to show that every endomorphism of R acts as multiplication on each

of the special pure elements xα.

Definition 4.4 If Rα is as above, then let Gα = 〈yηnxα
, zτ : η ∈ Vα, τ ∈ Tα, n ∈ ω〉F

be the F-submodule of Rα for any α < λ.

From (3.1) we note that xα ∈ Gα and our claim will follow if we can show that
every homomorphism from Gα to R+ maps xα to a multiple of itself.

Proposition 4.5 If h : Gα → R is an F-homomorphism, then h(xα) ∈ xαR.

Proof Let h : Gα → R be an F-homomorphism and assume towards contradiction
that h(xα) 6∈ xαR. For a subset V ⊆ Vα of cardinality λ we define the F-submodule

GV = 〈xα, yηnxα
: η ∈ V, n ∈ ω〉∗ ⊆ Gα

and note that {zη�n
: η ∈ V, n ∈ ω} ⊆ GV from xα ∈ GV and (3.1). Also GVα

∈ H =:

{GV : V ⊆ Vα, |V | = λ} 6= ∅ and we can choose β∗ = min{β ≤ λ : ∃GV ∈ H and
h(GV ) ⊆ Rβ}. There is GV ∈ H such that h(GV ) ⊆ Rβ∗

.
We first claim that β∗ < λ and assume towards contradiction that β∗ = λ and we

can choose inductively a minimal countable subset U =: UV ⊆ V such that

(4.1) (∀η ∈ V )(∀n ∈ ω)(∃ρ ∈ UV ) such that η �n= ρ �n .

For each η ∈ V we define the countable set Yη = {yηnxα
: n < ω}. Using

cf(λ) = λ > ℵ0 we can find a successor ordinal β < λ such that h(xα) ∈ Rβ and
h(Yρ) ⊆ Rβ for all ρ ∈ U . If n∗ ∈ ω and η ∈ V choose n∗ < n ∈ ω and ρn ∈ U by

(4.1) such that η �n= ρn �n. From Definition 3.1 and (2.1) we see that

yηn∗xα
− yρnn∗xα

=

∑

i≥n∗

qi

qn∗

(zη�i
) + xα

∑

i≥n∗

qi

qn∗

η(i) −
∑

i≥n∗

qi

qn∗

(zρn�i
) − xα

∑

i≥n∗

qi

qn∗

ρn(i)

=

∑

i≥n+1

qi

qn∗

(zη�i
) + xα

∑

i≥n

qi

qn∗

η(i) −
∑

i≥n+1

qi

qn∗

(zρn�i
) − xα

∑

i≥n

qi

qn∗

ρn(i)

(4.2)

is divisible by sn−1. Thus sn−1 divides h(yηn∗xα
− yρnn∗xα

) for n∗ < n < ω. From
h(yρnn∗xα

) ∈ Rβ and the choice of ρn ∈ U it follows that h(yηn∗xα
) + Rβ ∈ R/Rβ
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is divisible by infinitely many sn. Hence h(yηn∗xα
) ∈ Rβ since R/Rβ is ℵ1-free by

Lemma 3.6. However n∗ was chosen arbitrarily, we therefore have h(Yη) ⊆ Rβ for all

η ∈ V and h(GV ) ⊆ Rβ follows, which contradicts the minimality of β∗. Therefore
β∗ 6= λ.

Since h(GV ) ⊆ Rβ∗
we can write h(yηoxα

) = ση({yνη,lmη,lxβη,l
, zτη,k

: l < lη, k < kη})

for every η ∈ V and suitable βη,l, βη,k < β∗, νη,l ∈ Vβη,l
and τη,k ∈ Tβη,k

. Recall
that polynomials ση depend on η ∈ V . For notational simplicity we shall assume

that all pairs (βη,l, βη,k) are distinct. For obvious cardinality reasons we may assume
without loss of generality that lη = l∗ and kη = k∗ for some fixed l∗, k∗ ∈ N for all
η ∈ V . Moreover, since F is countable, we may assume that the polynomials ση are
independent of η and thus we can write ση = σ. Hence

h(yηoxα
) = σ

(
{yνη,lmη,lxβη,l

, zτη,k
: l < l∗, k < k∗}

)
.

We put Wη = {βη,l, βη,k : l < l∗, k < k∗}, which is a finite subset of λ for every
η ∈ V . By Lemma 4.2 we may assume that Wη is closed. Moreover, possibly enlarging

Wη , we also may assume that h(xα) ∈ RWη
for all η ∈ V . Since β∗ < λ and λ is

regular the ordinal β∗ is a set of cardinality < λ with Wη ⊆ β∗ for all η ∈ V . By
cardinality arguments it easily follows that there is W = {βl, βk : l < l∗, k < k∗} ⊆
β∗ such that Wη = W for all η ∈ V ′ for some V ′ ⊆ V of cardinality λ. We rename

V = V ′. Let mη ∈ N such that mη > l(τη,k) for all η ∈ V and k < k∗. Again, passing
to an equipotent subset (of) V we may assume that mη = m1 is fixed for all η ∈ V .
Now we apply Lemma 4.3 to obtain h(yηoxα

) ∈ F[yηnηxβ
, zτ : η ∈ Vβ , τ ∈ Tβ , β ∈

W ] for η ∈ V and some nη ∈ N. Since |V | > ℵ0 we may assume that nη = n∗ does
not depend on η ∈ V anymore. If m∗ = max{n∗, m1} we find new presentations

(4.3) h(yηoxα
) = σ

(
{yνη,lm∗xβl

, zτη,k
: l < l∗, k < k∗}

)

for every η ∈ V and βl, βk ∈ W , νη,l ∈ Vβl
and τη,k ∈ Tβk

. Moreover, l(τη,k) ≤ m∗

for all η ∈ V and k < k∗. The reader may notice that when obtaining equation (4.3)
the polynomial σ and the natural number k∗ may become dependent on η again but

a cardinality argument allows us to unify them again and for notational reasons we
stick to σ and k∗. Using that Tα is countable, we are allowed to assume that τη,k = τk

for all η ∈ V and k < k∗, hence h(yηoxα
) = σ

(
{yνη,lm∗xβl

, zτk
: l < l∗, k < k∗}

)
.

Finally, increasing m∗ (and unifying σ and k∗ again) we may assume that all

νη,l �m∗
are different (l < l∗) and that

(4.4) νη,l �m∗
6= τk

for all η ∈ V and l < l∗, k < k∗. Using a cardinality argument and the countability of
the trees Tβl

we may assume that νη,l �m∗
does not dependent on η ∈ V for all l < l∗.

Thus

(4.5) νη,l �m∗
=: τ̄l ∈ Tβl

and τk 6= τ̄l for all l < l∗, k < k∗ from (4.4). Since W is closed and h(xα) ∈ RW we
can finally write

h(xβ) = σβ

(
{yνβ,lm∗xβl

, zτβ,k
: l < lβ , k < kβ}

)
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for every β ∈ W ∪ {α} and suitable lβ , kβ ∈ N, βl, βk ∈ W . Obviously, increasing
m∗ once more, we may assume that

(4.6) νβ,l �m∗
6= νβ ′,l ′ �m∗

and νβ,l �m∗
6= τ̄ j

for all β, β ′ ∈ W ∪ {α}, l < lβ , l ′ < lβ ′ , j < l∗.

Now choose any n∗ > m∗ such that

(i) n∗ > sup(Cβ ∩Cβ ′) for all β 6= β ′ ∈ W ∪ {α};
(ii) sn∗

is relatively prime to all coefficients in σ;
(iii) sn∗

is relatively prime to all coefficients in σβ for all β ∈ W ∪ {α}.

Using ℵ0 < |V | we can choose pairs of branches η1, η2 ∈ V with arbitrarily large
branch point br(η1, η2) = n + 1 ≥ n∗. Let U be the infinite set of all such n’s. An

easy calculation using (3.1) shows

yη1oxα
− yη2oxα

=

(∏

l≤n

sl

)
(yη1nxα

− yη2nxα
)

and as br(η1, η2) = n + 1 we obtain

(4.7) yη1oxα
− yη2oxα

≡
(∏

l≤n

sl

)
xα mod sn+1R.

We now distinguish three cases.

Case 1 If br(νη1,l, νη2,l) > n + 1 for some l < l∗ then from (3.1) follows

yνη1 ,lm∗xβl
− yνη2 ,lm∗xβl

≡ 0 mod sn+1R.

Case 2 If br(νη1,l, νη2,l) = n + 1 for some l < l∗ then from (3.1) follows

yνη1 ,lm∗xβl
− yνη2 ,lm∗xβl

+ sn+1R ∈ xβl
R + sn+1R.

We have chosen br(η1, η2) = n + 1 > n∗ > sup(Cβ ∩Cβ ′) for all β 6= β ′ ∈ W ∪{α}.
Hence n + 1 can not be the splitting point of pairs of branches from different levels α
and βl. Thus βl = α and the last displayed expression becomes

yνη1 ,lm∗xα
− yνη2 ,lm∗xα

+ sn+1R ∈ xαR + sn+1R.

Case 3 If k = br(νη1,l, νη2,l) < n+1 for some l < l∗ then m∗ < k by (4.5). From (3.1)
and the choice of n we see that yνη1 ,lnxα

appears in some monomial of h(yη1oxα
−yη2oxα

)
with coefficient relatively prime to sn+1. By an easy support argument (restricting to
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νη1,l �k and using (4.4), (4.5) and (4.6)) this monomial can not appear in h(xα). From
Lemma 3.4 now follows

h(yη1oxα
− yη2oxα

) −
(∏

l≤n

sl

)
h(xα) 6≡ 0 mod sn+1R

which contradicts (4.7).

Therefore, for all n ∈ U we obtain

(∏

l≤n

sl

)
h(xα) ∈ sn+1R + xαR.

The elements
∏

l≤n sl and sn+1 are co-prime, thus

h(xα) ∈
⋂

n∈U

sn+1R + xαR.

Using that U is infinite, we claim

⋂

n∈U

snR + xαR = xαR,

which then implies h(xα) ∈ xαR and finishes the proof of Proposition 4.5.

The special pure elements are of the form (3.2), thus xα =
∑

m∈M m for some
finite subset M of M(TΛ). Choose y ∈

⋂
n∈U snR + xαR. Then there are fn, rn ∈ R for

n ∈ U such that

(4.8) y − sn fn = xαrn.

Put R ′
= 〈[xα], y, fn, rn : n ∈ U 〉∗ and let L be the pure polynomial subring of R

that contains R ′ and exists by Theorem 3.6. Hence equation (4.8) holds in L. We

may assume that the finite support M of xα is contained in a basis of L and hence the
quotient L/xαL is free and therefore S-reduced. This contradicts

(4.9) y ≡ sn fn mod xαL

which follows from equation (4.8) for every n ∈ U unless y ∈ xαL and hence y ∈
xαR.

We are now ready to prove that R is an E(F)-algebra.

Main Theorem 4.6 Let F be a countable principal ideal domain with 1 6= 0 and in-

finitely many pair-wise coprime elements. If ℵ1 ≤ λ ≤ 2ℵ0 is a regular cardinal, then

the F-algebra R in Definition 3.2 is an ℵ1-free E(F)-algebra of cardinality λ.
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Proof If h is a F-endomorphism of R viewed as F-module, then we must show that
h is scalar multiplication by some element b ∈ R. From Proposition 4.5 for h � Gα

there exists an element bα ∈ R such that h(xα) = xαbα for any α < λ, where the xα’s
run through all special pure elements.

Now let Uα be a countable subset of Vα for every α < λ as in (4.1). Then

R∗
α = F[yηnxβ

, zτ : η ∈ Uβ, τ ∈ Tβ , β < α, n ∈ ω]

is a countable subalgebra of Rα. Since λ is regular uncountable there exists for ev-
ery α < λ an ordinal γα < λ such that h(R∗

α) ⊆ Rγα
. We put C = {δ < λ :

∀(α < δ)(γα < δ)} which is a cub in λ. Intersecting with the cub of all limit ordinals
we may assume that C consists of limit ordinals only. If δ ∈ C , then similar argu-

ments as in the proof of Proposition 4.5 after equation (4.1), using the fact that R/Rδ

is ℵ1-free show that h(Rβ) ⊆ Rδ for every β < δ and taking unions h(Rδ) ⊆ Rδ .
Let us assume for the moment that there is some δ∗ ∈ C such that for every

special pure element r ∈ BΛ we have br ∈ Rδ∗ . Suppose r1 and r2 are two distinct

pure elements with br1
6= br2

. Then choose δ∗ < δ ∈ C such that r1, r2 ∈ Rδ and
τ ∈ Tδ with τ 6∈ ([r1] ∪ [r2]). Then

(4.10) bτ τ + br1
r1 = h(τ ) + h(r1) = h(τ + r1) = bτ+r1

(τ + r1) = bτ+r1
τ + bτ+r1

r1.

Now note that Rδ is an Rδ∗-module and that R/Rδ is torsion-free as an Rδ∗-module.
Moreover, bτ , br1

and bτ+r1
are elements of Rδ∗ , hence τ is not in the support of either

of them. Thus restricting equation (4.10) to τ we obtain

bττ = bτ+r1
τ

and therefore bτ = bτ+r1
. Now equation (4.10) reduces to br1

r1 = bτ+r1
r1 and since R

is a domain we conclude br1
= bτ+r1

. Hence br1
= bτ and similarly br2

= bτ , therefore
br1

= br2
which contradicts our assumption. Thus br = b does not depend on the

special pure elements r ∈ BΛ and therefore h acts as multiplication by b on the special

pure elements of BΛ. Thus h is scalar multiplication by b on BΛ and using density also
on R.

It remains to prove that there is δ∗ < λ such that for every r ∈ BΛ we have
br ∈ Rδ∗ .

Assume towards contradiction that for every δ ∈ C there is some element rδ ∈ BΛ

such that bδ = brδ 6∈ Rδ . We may write rδ and also brδ as elements in some polynomial
ring over Rδ , hence rδ = σrδ (xδ

i : i < irδ ) and bδ = σbδ
(x̃δ

i : i < ibδ
). Thus σrδ and σbδ

are polynomials over Rδ and the xδ
i ’s and x̃δ

i are independent elements over Rδ . For

cardinality reasons we may assume that for all δ ∈ C we have irδ = ir and ibδ
= ib

for some fixed ir, ib ∈ N. Now choose n < ω and note that canonical identification
ϕ :

⋃
α<λ Rα/snRα →

⋃
α<λ(R∗

α + snR)/snR is an epimorphism. Let σ̄rδ and σ̄bδ
be

the images of the polynomials σrδ and σbδ
under ϕ. Since |

⋃
α<δ(R∗

α + snR)/snR| <
λ for every δ < λ and C consists of limit ordinals the mapping φ : C → R/snR,
δ 7→ (σ̄rδ , σ̄bδ

) is regressive on C . Thus application of Fodor’s lemma shows that φ
is constant on some stationary subset C ′ of C and without loss of generality we may
assume that C = C ′.
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For δ ∈ C choose δ1, δ2 ∈ C such that δ1 < δ2 and xδ
i , x̃δ

j ∈ Rδ1
for all i < ir ,

j < ib. Let R ′ be the smallest polynomial ring over Rδ generated by at least the

elements xδ1

i , xδ2

i and x̃δ1

i , x̃δ2

i such that a1a2 = a3 and a2, a3 ∈ R ′ implies a1 ∈ R ′. We
may choose R ′

= Rδ[H] as the polynomial ring where H ⊆ R \ Rδ contains the set
{xδ1

i , xδ2

i , x̃δ1

j , x̃δ2

j : i < ir, j < ib}. We now consider

(4.11) brδ+rδ2
(rδ + rδ2

) = h(rδ + rδ2
) = h(rδ) + h(rδ2

) = bδrδ + bδ2
rδ2

.

By choice of R ′ and rδ, rδ2
, bδ, bδ2

∈ R ′ follows brδ+rδ2
∈ R ′. If some xδ

i appears in the

support of brδ+rδ2
, then the product xδ

i xδ2

j appears on the left side (for some j < ib)

of (4.11) but not on the right side—a contradiction. Similarly, no xδ2

i can appear
in the support of brδ+rδ2

. Thus (brδ+rδ2
− bδ)rδ = −(brδ+rδ2

− bδ2
)rδ2

and therefore
brδ+rδ2

= bδ = bδ2
. Hence bδ2

∈ Rδ2
. But this contradicts the choice of rδ2

. The

existence of δ∗ such that all elements br related to special pure elements are in Rδ∗ is
established.

Corollary 4.7 There exists an almost-free E-ring of cardinality ℵ1.

Remark 4.8 We note that the Main Theorem could also be proved for cardinals
ℵ1 ≤ λ ≤ 2ℵ0 which are not regular. The proof for cf(λ) = ω would be much more

technical and complicated.
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