Almost-Free E-Rings of Cardinality \aleph_{1}

Rüdiger Göbel, Saharon Shelah and Lutz Strüngmann

Abstract

An E-ring is a unital ring R such that every endomorphism of the underlying abelian group R^{+}is multiplication by some ring element. The existence of almost-free E-rings of cardinality greater than $2^{\aleph_{0}}$ is undecidable in ZFC. While they exist in Gödel's universe, they do not exist in other models of set theory. For a regular cardinal $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}$ we construct E-rings of cardinality λ in ZFC which have \aleph_{1}-free additive structure. For $\lambda=\aleph_{1}$ we therefore obtain the existence of almost-free E-rings of cardinality \aleph_{1} in ZFC.

1 Introduction

Recall that a unital ring R is an E-ring if the evaluation map $\varepsilon: \operatorname{End}_{\mathbb{Z}}\left(R^{+}\right) \rightarrow R$ given by $\varphi \mapsto \varphi(1)$ is a bijection. Thus every endomorphism of the abelian group R^{+}is multiplication by some element $r \in R$. E-rings were introduced by Schultz [20] and easy examples are subrings of the rationals $\mathbb{O} \mathcal{L}$ or pure subrings of the ring of p-adic integers. Schultz characterized E-rings of finite rank and the books by Feigelstock [9,10] and an article [18] survey the results obtained in the eighties, see also [8, 19]. In a natural way the notion of E-rings extends to modules by calling a left R-module M an $E(R)$-module or just E-module if $\operatorname{Hom}_{\mathbb{Z}}(R, M)=\operatorname{Hom}_{R}(R, M)$ holds, see [1]. It turned out that a unital ring R is an E-ring if and only if it is an E-module.
E-rings and E-modules have played an important role in the theory of torsion-free abelian groups of finite rank. For example Niedzwecki and Reid [17] proved that a torsion-free abelian group G of finite rank is cyclically projective over its endomorphism ring if and only if $G=R \oplus A$, where R is an E-ring and A is an $E(R)$-module. Moreover, Casacuberta and Rodríguez [2] noticed the role of E-rings in homotopy theory.

It can be easily seen that every E-ring has to be commutative and hence can not be free as an abelian group except when $R=\mathbb{Z}$. But it was proved in [6] and extended in $[4,5]$, using a Black Box argument from [3], that there exist arbitrarily large E-rings R which are \aleph_{1}-free as abelian groups, which means that every countable subgroup of R^{+}is free. The smallest candidate in $[4,5,6]$ has size $2^{\aleph_{0}}$. This implies the existence of \aleph_{1}-free E-rings of cardinality \aleph_{1} under the assumption of the continuum hypothesis. Moreover, it was shown in [16] that there exist almost-free E-rings for any regular not weakly compact cardinal $\kappa>\aleph_{0}$ assuming diamond, a prediction principle which

[^0]holds for example in Gödel's constructible universe. Here, a group of cardinality λ is called almost-free if all its subgroups of smaller cardinality than λ are free.

Since the existence of \aleph_{2}-free E-rings of cardinality \aleph_{2} is undecidable in ordinary set theory ZFC (see [15, Theorem 5.1] and [16]) it is hopeless to conjecture that there exist almost-free E-rings of cardinality κ in ZFC for cardinals κ larger than $2^{\aleph_{0}}$. However, we will prove in this paper that there are \aleph_{1}-free E-rings in ZFC of cardinality λ for every regular cardinal $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}$. Thus the existence of almostfree E-rings of size \aleph_{1} in ZFC follows.

The construction of \aleph_{1}-free E-rings R in ZFC is much easier if $|R|=2^{\aleph_{0}}$, because in case $|R|=\aleph_{1}$ we are closer to freeness, a property which tries to prevent endomorphisms from being scalar multiplication. Thus we need more algebraic arguments and will utilize a combinatorial prediction principle similar to the one used by the first two authors in [14] for constructing almost-free groups of cardinality \aleph_{1} with prescribed endomorphism rings.

The general method for such constructions is very natural and it will be explained in full detail in Shelah [21, Chapter VII, Section 5]. Our notations are standard and for unexplained notions we refer to $[11,12,13]$ for abelian group theory and to [7] for set-theory. All groups under consideration are abelian.

2 Topology, Trees and a Forest

In this section we explain the underlying geometry of our construction which was used also in [14], see there for further details.

Let F be a fixed countable principal ideal domain with $1 \neq 0$ with a fixed infinite set $S=\left\{s_{n}: n \in \omega\right\}$ of pair-wise coprime elements, that is $s_{n} F+s_{m} F=F$ for all $n \neq m$. For brevity we will say that F is a p-domain, which certainly cannot be a field. We choose a sequence of elements

$$
\begin{equation*}
q_{0}=1 \text { and } q_{n+1}=s_{n} q_{n} \quad \text { for all } n \in \omega \tag{2.1}
\end{equation*}
$$

in F, hence the descending chain $q_{n} F(n \in \omega)$ of principal ideals satisfies $\bigcap_{n \in \omega} q_{n} F=$ 0 and generates the Hausdorff S-topology on F. Thus F is a dense and S-pure subring of its S-adic completion \hat{F} satisfying $q_{n} F=q_{n} \hat{F} \cap F$ for all $n \in \omega$.

Now let $T=\omega>2$ denote the tree of all finite branches $\tau: n \rightarrow 2(n \in \omega)$. Moreover, ${ }^{\omega} 2=\operatorname{Br}(T)$ denotes all infinite branches $\eta: \omega \rightarrow 2$ and clearly $\eta \upharpoonright_{n} \in T$ for all $\eta \in \operatorname{Br}(T)(n \in \omega)$. If $\eta \neq \mu \in \operatorname{Br}(T)$ then

$$
\operatorname{br}(\eta, \mu)=\inf \{n \in \omega: \eta(n) \neq \mu(n)\}
$$

denotes the branch point of η and μ. If $C \subset \omega$ then we collect the subtree

$$
T_{C}=\{\tau \in T: \text { if } e \in l(\tau) \backslash C \text { then } \tau(e)=0\}
$$

of T where $l(\tau)=n$ denotes the length of the finite branch $\tau: n \rightarrow 2$.
Similarly,

$$
\operatorname{Br}\left(T_{C}\right)=\{\eta \in \operatorname{Br}(T): \text { if } e \in \omega \backslash C \text { then } \eta(e)=0\}
$$

and hence $\eta \upharpoonright_{n} \in T_{C}$ for all $\eta \in \operatorname{Br}\left(T_{C}\right)(n \in \omega)$.
Now we collect some trees to build a forest. Let $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}$ be a regular cardinal and choose a family $\mathfrak{C}=\left\{C_{\alpha} \subset \omega: \alpha<\lambda\right\}$ of pair-wise almost disjoint infinite subsets of ω. Let $T \times \alpha=\{v \times \alpha: v \in T\}$ be a disjoint copy of the tree T and let $T_{\alpha}=T_{C_{\alpha}} \times \alpha$ for $\alpha<\lambda$. For simplicity we denote the elements of T_{α} by τ instead of $\tau \times \alpha$ since it will always be clear from the context to which α the finite branch τ refers to. By [14, Observation 2.1] we may assume that each tree T_{α} is perfect for $\alpha<\lambda$, i.e. if $n \in \omega$ then there is at most one finite branch $\eta \upharpoonright_{n}$ such that $\eta \upharpoonright_{(n+1)} \neq \mu \upharpoonright_{(n+1)}$ for some $\mu \in T_{\alpha}$. We build a forest by letting

$$
T_{\Lambda}=\bigcup_{\alpha<\lambda} T_{\alpha}
$$

Now we define our base algebra as $B_{\Lambda}=F\left[z_{\tau}: \tau \in T_{\Lambda}\right]$ which is a pure and dense subalgebra of its S-adic completion $\widehat{B_{\Lambda}}$ taken in the S-topology on B_{Λ}.

For later use we state the following definition which allows us to view the algebra B_{Λ} as a module generated over F by monomials in the "variables" $z_{\tau}\left(\tau \in T_{\Lambda}\right)$.

Definition 2.1 Let X be a set of commuting variables and R an F-algebra. If $Y \subseteq R$ then $M(Y)$ will denote the set of all products of elements from Y, the Y-monomials.

Then any map $\sigma: X \rightarrow R$ extends to a unique epimorphism $\sigma: F[X] \rightarrow F[\sigma(X)]$. Thus any $r \in F[\sigma(X)]$ can be expressed by a polynomial $\sigma_{r} \in F[X]$, which is a preimage under σ : There are l_{1}, \ldots, l_{n} in $\sigma(X)$ such that

$$
r=\sigma_{r}\left(l_{1}, \ldots, l_{n}\right)=\sum_{m \in M\left(\left\{l_{1}, \ldots, l_{n}\right\}\right)} f_{m} m \quad \text { with } f_{m} \in F
$$

becomes a polynomial-like expression.
In particular, if $Z_{\alpha}=\left\{z_{\tau}: \tau \in T_{\alpha}\right\}(\alpha<\lambda)$ and $Z_{\Lambda}=\left\{z_{\tau}: \tau \in T_{\Lambda}\right\}$, then as always the polynomial ring B_{Λ} can be viewed as a free F-module over the basis of monomials, we have $B_{\Lambda}=\bigoplus_{z \in M\left(Z_{\Lambda}\right)} z F$ and a subring $B_{\alpha}=\bigoplus_{z \in M\left(Z_{\alpha}\right)} z F$.

Since $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}=\left|\operatorname{Br}\left(T_{C_{\alpha}}\right)\right|$ we can choose a family $\left\{V_{\alpha} \subseteq \operatorname{Br}\left(T_{C_{\alpha}}\right)\right.$: $\alpha<\lambda\}$ of subsets V_{α} of $\operatorname{Br}\left(T_{C_{\alpha}}\right)$ with $\left|V_{\alpha}\right|=\lambda$ for $\alpha<\lambda$. Note that for $\alpha \neq \beta<\lambda$ the infinite branches from V_{α} and V_{β} branch at almost disjoint sets since $C_{\alpha} \cap C_{\beta}$ is finite, thus the pairs V_{α}, V_{β} are disjoint. Moreover, we may assume that for any $m \in \omega, \lambda$ pairs of branches in V_{α} branch above m.

3 The Construction

Following [14] we use the
Definition 3.1 Let $x \in \widehat{B_{\Lambda}}$ be any element in the completion of the base algebra B_{Λ}. Moreover, let $\eta \in V_{\alpha}$ with $\alpha<\lambda$. We define the branch like elements $y_{\eta n x}$ for $n \in \omega$ as follows: $y_{\eta n x}:=\sum_{i \geq n} \frac{q_{i}}{q_{n}}\left(z_{\eta \upharpoonright_{i}}\right)+x \sum_{i \geq n} \frac{q_{i}}{q_{n}} \eta(i)$.

Note that each element $y_{\eta n x}$ connects an infinite branch $\eta \in \operatorname{Br}\left(T_{C_{\alpha}}\right)$ with finite branches from the tree T_{α}. Furthermore, the element $y_{\eta n x}$ encodes the infinite branch η into an element of $\widehat{B_{\Lambda}}$. We have a first observation which describes this as an equation and which is crucial for the rest of this paper.

$$
\begin{equation*}
y_{\eta n x}=s_{n+1} y_{\eta(n+1) x}+z_{\eta \upharpoonright_{n}}+x \eta(n) \quad \text { for all } \alpha<\lambda, \eta \in V_{\alpha} \tag{3.1}
\end{equation*}
$$

Proof We calculate the difference

$$
\begin{aligned}
q_{n} y_{\eta n x}-q_{n+1} y_{\eta(n+1) x} & =\sum_{i \geq n} q_{i}\left(z_{\eta \upharpoonright_{i}}\right)+x \sum_{i \geq n} q_{i} \eta(i)-\sum_{i \geq n+1} q_{i}\left(z_{\eta \upharpoonright_{i}}\right)-x \sum_{i \geq n+1} q_{i} \eta(i) \\
& =q_{n} z_{\eta \upharpoonright_{n}}+q_{n} x \eta(n)
\end{aligned}
$$

Dividing by q_{n} yields $y_{\eta n x}=s_{n+1} y_{\eta(n+1) x}+z_{\eta \upharpoonright_{n}}+x \eta(n)$.
The elements of the polynomial ring B_{Λ} are unique finite sums of monomials in Z_{λ} with coefficients in F. Thus, by S-adic topology, any $0 \neq g \in \widehat{B_{\Lambda}}$ can be expressed uniquely as a sum

$$
g=\sum_{z \in[g]} g_{z}
$$

where z runs over an at most countable subset $[g] \subseteq M\left(Z_{\Lambda}\right)$ of monomials and $0 \neq g_{z} \in z \hat{F}$. We put $[g]=\varnothing$ if $g=0$. Thus any $g \in \widehat{B_{\Lambda}}$ has a unique support $[g] \subseteq M\left(Z_{\Lambda}\right)$, and support extends naturally to subsets of $\widehat{B_{\Lambda}}$ by taking unions of the support of its elements. It follows that

$$
\left[y_{\eta \text { no }}\right]=\left\{z_{\eta \upharpoonright_{j} \times \alpha}: j \in \omega, j \geq n\right\}
$$

for any $\eta \in V_{\alpha}, n \in \omega$ and $[z]=\{z\}$ for any $z \in M\left(Z_{\Lambda}\right)$.
Support can be used to define the norm of elements. If $X \subseteq M\left(Z_{\Lambda}\right)$ then

$$
\|X\|=\inf \left\{\beta<\lambda: X \subseteq \bigcup_{\alpha<\beta} M\left(Z_{\alpha}\right)\right\}
$$

is the norm of X. If the infimum is taken over an unbounded subset of λ, we write $\|X\|=\infty$. However, since $\operatorname{cf}(\lambda)>\omega$, the norm of an element $g \in B_{\Lambda}$ is $\|g\|=$ $\|[g]\|<\infty$ which is an ordinal $<\lambda$ hence either a successor or cofinal to ω. Norms extend naturally to subsets of B_{Λ}. In particular $\left\|y_{\eta \mathrm{no}}\right\|=\alpha+1$ for any $\eta \in V_{\alpha}$.

We are ready to define the final F-algebra R as a F-subalgebra of the completion of B_{Λ}. Therefore choose a transfinite sequence $b_{\alpha}(\alpha<\lambda)$ which runs λ times through the non-zero pure elements

$$
\begin{equation*}
b=\sum_{m \in M} m \in B_{\Lambda} \quad \text { with finite } M \subseteq M\left(T_{\Lambda}\right) \tag{3.2}
\end{equation*}
$$

We call these b 's special pure elements which have the property that $B_{\Lambda} / F b$ is a free F-module.

Definition 3.2 Let F be a p-domain and let $B_{\Lambda}:=F\left[z_{\tau}: \tau \in T_{\Lambda}\right]$ be the polynomial ring over Z_{Λ} as above. Then we define the following smooth ascending chain of F-subalgebras of $\widehat{B_{\Lambda}}$.
(1) $R_{0}=\{0\} ; R_{1}=F$;
(2) $R_{\alpha}=\bigcup_{\beta<\alpha} R_{\beta}$, for α a limit ordinal;
(3) $R_{\alpha+1}=R_{\alpha}\left[y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\alpha}, \tau \in T_{\alpha}, n \in \omega\right]$;
(4) $R=R_{\lambda}=\bigcup_{\alpha<\lambda} R_{\alpha}$.

We let $x_{\alpha}=b_{\alpha}$ if $b_{\alpha} \in R_{\alpha}$ with $\left\|b_{\alpha}\right\| \leq \alpha$ and $x_{\alpha}=0$ otherwise.
For the rest of this paper purification is F-purification and properties like freeness, linear dependence or rank are taken with respect to F. First we prove some properties of the rings $R_{\alpha}(\alpha \leq \lambda)$. It is easy to see that $R_{\alpha}=F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}\right.$, $n \in \omega, \beta<\alpha]$ is not a polynomial ring: the set $\left\{y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, n \in \omega\right.$, $\beta<\alpha\}$ is not algebraically independent over F. Nevertheless we have the following

Lemma 3.3 For any fixed $n \in \omega$ and $\alpha<\lambda$ the set $\left\{y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\alpha}, \tau \in\right.$ $\left.T_{\alpha}\right\}$ is algebraically independent over R_{α}. Thus $R_{\alpha}\left[y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\alpha}, \tau \in T_{\alpha}\right]$ is a polynomial ring.

Proof Assume that the set of monomials $M\left(y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\alpha}, \tau \in T_{\alpha}\right)$ is linearly dependent over R_{α} for some $\alpha<\lambda$ and $n \in \omega$. Then there exists a non-trivial linear combination of the form

$$
\begin{equation*}
\sum_{y \in Y} \sum_{z \in E_{y}} g_{y, z} y z=0 \tag{3.3}
\end{equation*}
$$

with $g_{y, z} \in R_{\alpha}$ and finite sets $Y \subset M\left(y_{\eta n x_{\alpha}}: \eta \in V_{\alpha}\right)$ and $E_{y} \subset M\left(Z_{\alpha}\right)$. We have chosen $V_{\beta} \cap V_{\gamma}=\varnothing$ for all $\beta \neq \gamma$ and $M\left(Z_{\alpha}\right) \cap R_{\alpha}=\varnothing$. Moreover $\left\|R_{\alpha}\right\|<\left\|R_{\alpha+1}\right\|$ and hence there exists a basal element $z_{y} \in B_{\Lambda}$ (high enough in an infinite branch) for any $1 \neq y \in Y$ with the following properties
(i) $z_{y} \notin E_{\tilde{y}}$ for all $\tilde{y} \in Y$;
(ii) $z_{y} \notin[\tilde{y}]$ for all $y \neq \tilde{y} \in Y$;
(iii) $z_{y} \notin\left[g_{\tilde{y}, z}\right]$ for all $\tilde{y} \in Y, z \in E_{\tilde{y}}$;
(iv) $z_{y} \in[y]$.

Now we restrict the equation (3.3) to the basal element z_{y} and obtain $g_{y, z} z_{y} z=0$ for all $z \in E_{y}$. Since $z_{y} \notin\left[g_{y, z}\right]$ we derive $g_{y, z}=0$ for all $1 \neq y \in Y$ and $z \in E_{y}$. Therefore equation (3.3) reduces to $\sum_{z \in E_{1}} g_{1, z} z=0$. We apply $M\left(Z_{\alpha}\right) \cap R_{\alpha}=\varnothing$ once more. Since each z is a basal element from the set $M\left(Z_{\alpha}\right)$ we get that $g_{1, z}=0$ for all $z \in E_{1}$. Hence $g_{y, z}=0$ for all $y \in Y, z \in E_{y}$, contradicting the assumption that (3.3) is a non-trivial linear combination.

The following lemma shows that the F-algebras $R_{\delta} / s_{n+1} R_{\delta}$ are also polynomial rings over $F / s_{n+1} F$ for every $n<\omega$. For $\delta<\lambda$ and $n \in \omega$ we can choose a set $U_{n \delta} \subseteq$ V_{δ} such that for any $\eta \in V_{\delta}$ there is $\eta^{\prime} \in U_{n \delta}$ with $\operatorname{br}\left(\eta, \eta^{\prime}\right)>n$ and if $\eta, \eta^{\prime} \in U_{n \delta}$, then $\operatorname{br}\left(\eta, \eta^{\prime}\right) \leq n$. Obviously $\left|U_{n \delta}\right| \leq 2^{n}$. Moreover, let $T_{\delta}^{\prime}=T_{\delta} \backslash\left\{z_{\eta_{\left.\right|_{n}}}: \eta \in U_{n \delta}\right\}$.

Lemma 3.4 If $n<\omega$, then the set $X_{n+1}^{\delta}=\left\{y_{\eta n x_{\beta}}, y_{\eta(n+1) x_{\beta}}, z_{\tau}: \eta \in U_{n \beta}\right.$, $\left.\tau \in T_{\beta}^{\prime}, \beta<\lambda\right\}$ is algebraically independent over $F / s_{n+1} F$ and generates the algebra $R_{\delta} / s_{n+1} R_{\delta}$. Thus $R_{\delta} / s_{n+1} R_{\delta}=F / s_{n+1} F\left[X_{n+1}^{\delta}\right]$ is a polynomial ring.

Remark Here we identify the elements in $X_{n+1}^{\delta} \subseteq R_{\delta}$ with their canonical images modulo $s_{n+1} R_{\delta}$.

Proof First we show that X_{n+1}^{δ} is algebraically independent over $F / s_{n+1} F$. Suppose

$$
\begin{equation*}
\sum_{y \in Y} \sum_{z \in E_{y}} f_{y, z} y z \equiv 0 \bmod s_{n+1} R \tag{3.4}
\end{equation*}
$$

with $f_{y, z} \in F$ and finite sets $Y \subseteq M\left(y_{\eta n x_{\beta}}, y_{\eta(n+1) x_{\beta}}: \eta \in U_{n \beta}, \beta<\delta\right)$ and $E_{y} \subseteq$ $M\left(\bigcup_{\beta<\delta} T_{\beta}^{\prime}\right)$.

Choose a basal element $z_{y} \in[y]$ for any $1 \neq y \in Y$ which is a product of basal element z_{τ} with $l(\tau)=n$ and $z_{y} \notin\left[y^{\prime}\right]$ for any $y \neq y^{\prime} \in Y$ and moreover require $z_{y} \notin E_{y^{\prime}}$ for all $y^{\prime} \in Y$. This is possible by the choice of $U_{n \beta}$ and T_{β}^{\prime}. Restricting (3.4) to z_{y} yields

$$
\sum_{z \in E_{y}} f_{y, z} z_{y} z \equiv 0 \bmod s_{n+1} R
$$

hence $f_{y z} \equiv 0 \bmod s_{n+1} R$. Therefore (3.4) reduces to $\sum_{z \in E_{1}} f_{1, z} z \equiv 0 \bmod s_{n+1} F$ and thus also $f_{1, z} \equiv 0 \bmod s_{n+1} F$ is immediate. This shows that the set X_{n+1}^{δ} is algebraically independent over $F / s_{n+1} F$.

Finally we must show that $R_{\delta} / s_{n+1} R_{\delta}=\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$. We will show by induction on $\alpha<\delta$ that

$$
\left(R_{\alpha}+s_{n+1} R_{\delta}\right) / s_{n+1} R_{\delta} \subseteq\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]
$$

If $\alpha=0$ or $\alpha=1$ then the claim is trivial, hence assume that $\alpha>1$ and for all $\beta<\alpha$ we have

$$
\left(R_{\beta}+s_{n+1} R_{\delta}\right) / s_{n+1} R_{\delta} \subseteq\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]
$$

If α is a limit ordinal, then $\left(R_{\alpha}+s_{n+1} R_{\delta}\right) / s_{n+1} R_{\delta} \subseteq\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$ is immediate. Thus assume that $\alpha=\beta+1$. By assumption and $x_{\beta} \in R_{\beta}$ we know that $\left(x_{\beta}+s_{n+1} R_{\delta}\right) \in$ $\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$. Hence equation (3.1) shows that the missing elements $z_{\eta \upharpoonright_{n}}+s_{n+1} R_{\delta}$ $\left(\eta \in U_{n \beta}\right)$ are in $\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$.

For $\eta \in V_{\beta}$ we can choose $\eta^{\prime} \in U_{n \beta}$ such that $\operatorname{br}\left(\eta, \eta^{\prime}\right)>n$. Then using (3.1) we obtain $y_{\eta n x_{\beta}}-y_{\eta^{\prime} n x_{\beta}} \equiv 0 \bmod s_{n+1} R$ and therefore $y_{\eta n x_{\beta}}+s_{n+1} R \in\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$. By induction on $m<\omega$ using again (3.1) it is now easy to verify $y_{\eta m x_{\beta}}+s_{n+1} R_{\delta} \in$ $\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$ for every $m<\omega, \eta \in U_{n \beta}$ and hence $R_{\alpha}+s_{n+1} R_{\delta} \subseteq\left(F / s_{n+1} F\right)\left[X_{n+1}^{\delta}\right]$ which finishes the proof.

Now we are able to prove that the members R_{α} of the chain $\left\{R_{\sigma}: \sigma<\lambda\right\}$ are F-pure submodules of R and that R is an \aleph_{1}-free domain.

Lemma 3.5 $\quad R$ is a commutative F-algebra without zero-divisors and R_{α} as an F module is pure in R for all $\alpha<\lambda$.

Proof By definition each R_{α} is a commutative F-algebra and hence R is commutative. To show that R has no zero-divisors it is enough to show that each member R_{α} of the chain $\left\{R_{\sigma}: \sigma<\lambda\right\}$ is an F-algebra without zero-divisors. Since F is a domain we can assume, by induction, that R_{β} has no zero-divisors for all $\beta<\alpha$ and some $1<\alpha<\lambda$. If α is a limit ordinal then it is immediate that R_{α} has no zero-divisors. Hence $\alpha=\gamma+1$ is a successor ordinal and R_{γ} is a domain. If $g, h \in R_{\alpha}$ with $g h=0 \neq g$, then we must show that $h=0$. Write g in the form

$$
\begin{equation*}
g=\sum_{y \in Y_{g}} \sum_{z \in E_{g, y}} g_{y, z} y z \tag{g}
\end{equation*}
$$

with $0 \neq g_{y, z} \in R_{\gamma}$ and finite sets $E_{g, y} \subset M\left(Z_{\gamma}\right)$ and $Y_{g} \subset M\left(y_{\eta n x}: \eta \in V_{\gamma}\right)$ for some $n \in \omega$. By (3.1) and $x_{\gamma} \in R_{\gamma}$ we may assume n is fixed. Similarly, we write

$$
\begin{equation*}
h=\sum_{y \in Y_{h}} \sum_{z \in E_{h, y}} h_{y, z} y z \tag{h}
\end{equation*}
$$

with $h_{y, z} \in R_{\gamma}$ and finite sets $Y_{h} \subset M\left(y_{\eta n x_{\gamma}}: \eta \in V_{\gamma}\right)$ and $E_{h, y} \subset M\left(Z_{\gamma}\right)$.
Next we want $h_{y, z}=0$ for all $y \in Y_{h}, z \in E_{h, y}$. The proof follows by induction on the number of $h_{y, z}$'s. If $h=h_{w, z^{\prime}} w z^{\prime}$, then

$$
g h=\sum_{y \in Y_{g}, z \in E_{g, y}} g_{y, z} h_{w, z^{\prime}} y z w z^{\prime}
$$

and from Lemma 3.3 follows $g_{y, z} h_{w, z^{\prime}}=0$ for all $y \in Y_{g}, z \in E_{g, y}$. Since R_{γ} has no zero-divisors we obtain $h_{w, z^{\prime}}=0$ and thus $h=0$. Now assume that $k+1$ coefficients $h_{y, z} \neq 0$ appear in (h). We fix an arbitrary coefficient $h_{w, z^{\prime}}$ and write $h=h_{w, z^{\prime}} w z^{\prime}+h^{\prime}$ so that $w z^{\prime}$ does not appear in the representation of h^{\prime}. Therefore the product $g h$ is of the form

$$
\begin{equation*}
g h=\sum_{y \in Y_{g}} \sum_{z \in E_{g, y}} g_{y, z} h_{w, z^{\prime}} y z w z^{\prime}+g h^{\prime} . \tag{gh}
\end{equation*}
$$

If the monomial $w z^{\prime}$ appears in the representation of (g) then the monomial $w^{2}\left(z^{\prime}\right)^{2}$ appears in the representation of (gh) only once with coefficient $g_{w, z^{\prime}} h_{w, z^{\prime}}$. Using Lemma 3.3 and the hypothesis that R_{γ} has no zero-divisors we get $h_{w, z^{\prime}}=0$.

If the monomial $w z^{\prime}$ does not appear in the representation of (g) then $g_{y, z} h_{w, z^{\prime}}=0$ for all appearing coefficients $g_{y, z}$ is immediate by Lemma 3.3. Thus $h_{w, z^{\prime}}=0$ and $h=h^{\prime}$ follows. By induction hypothesis also $h=0$ and R has no zero-divisors.

It remains to show that R_{α} is a pure F-submodule of R for $\alpha<\lambda$. Let $g \in R \backslash R_{\alpha}$ such that $f g \in R_{\alpha}$ for some $0 \neq f \in F$ and choose $\beta<\lambda$ minimal with $g \in R_{\beta}$. Then $\beta>\alpha$ and it is immediate that $\beta=\gamma+1$ for some $\gamma \geq \alpha$, hence $f g \in R_{\alpha} \subset R_{\gamma}$. Now we can write

$$
\begin{equation*}
g=\sum_{y \in Y_{g}} \sum_{z \in E_{g, y}} g_{y, z} y z \tag{g}
\end{equation*}
$$

with $g_{y, z} \in R_{\gamma}$ and finite sets $Y_{g} \subset M\left(y_{v k x_{\gamma}}: v \in V_{\gamma}\right)$ for some fixed $k \in \omega$ and $E_{g} \subset M\left(Z_{\gamma}\right)$ and clearly

$$
f g=\sum_{y \in Y_{g}} \sum_{z \in E_{g, v}} f g_{y, z} y z \in R_{\gamma} .
$$

Hence there exists $g_{\gamma} \in R_{\gamma}$ such that

$$
f g-g_{\gamma}=\sum_{y \in Y_{g}} \sum_{z \in E_{g, \gamma}} f g_{y, z} y z-g_{\gamma}=0 .
$$

From Lemma 3.3 follows $f g_{y, z}=0$ for all $1 \neq y \in Y_{g}, 1 \neq z \in E_{g, y}$, thus $g_{y, z}=0$ because R is a torsion-free F-module. Hence (g) reduces to the summand with $y=$ $z=1$, but $g=g_{1,1} \in R_{\gamma}$ contradicts the minimality of β. Thus $g \in R_{\alpha}$ and R_{α} is pure in R.

From the next theorem follows for $\alpha=0$ that R is an \aleph_{1}-free F-module. We say that R is polynomial \aleph_{1}-free if every countable F-submodule of R can be embedded into a polynomial subring over F of R. Clearly, polynomial \aleph_{1}-freeness implies \aleph_{1} freeness.

Theorem 3.6 If F is a p-domain and $R=\bigcup_{\alpha<\lambda} R_{\alpha}$ is the F-algebra constructed above, then R is a domain of size λ with R / R_{α} is polynomial \aleph_{1}-free for all $\alpha<\lambda$.

Proof $|R|=\lambda$ is immediate by construction and R is a domain by Lemma 3.5. It remains to show that R is an polynomial \aleph_{1}-free ring. Therefore let $U \subseteq R$ be a countable pure submodule of R. There exist elements $u_{i} \in R$ such that

$$
U=\left\langle u_{1}, \ldots, u_{n}, \ldots\right\rangle_{*} \subseteq R
$$

Here the suffix $*$ denotes purification as an F-module. Let $U_{n}:=\left\langle u_{1}, \ldots, u_{n}\right\rangle_{*}$ for $n \in \omega$. Hence there is a minimal $\alpha_{n}<\lambda$ such that $u_{i} \in R_{\alpha_{n}}$ for $i \leq n$ and $n \in \omega$, which obviously is a successor ordinal $\alpha_{n}=\gamma_{n}+1$. Moreover, $U_{n} \subseteq R_{\alpha_{n}}$ since $R_{\alpha_{n}}$ is pure in R and by induction we may assume that $R_{\gamma_{n}}$ is polynomial \aleph_{1}-free. Fix $n \in \omega$. Using $R_{\alpha_{n}}=R_{\gamma_{n}+1}=R_{\gamma_{n}}\left[y_{\eta m x_{\gamma_{n}}}, z_{\tau}: \eta \in V_{\gamma_{n}}, \tau \in T_{\gamma_{n}}, m \in \omega\right]$ from Definition 3.2 we can write

$$
u_{i}=\sum_{y \in Y_{i}} \sum_{z \in E_{i, y}} g_{y, z, i} y z
$$

with $g_{y, z, i} \in R_{\gamma_{n}}$ and finite sets $Y_{i} \subset M\left(y_{\eta m x_{\gamma_{n}}}: \eta \in V_{\gamma_{n}}\right)$ for some fixed $m \in \omega$ and $E_{i, y} \subset M\left(Z_{\gamma_{n}}\right)$. Choose the pure submodule $R_{U_{n}}:=\left\langle g_{y, z, i}: y \in Y_{i}, z \in E_{i, y}, 1 \leq\right.$ $i \leq n\rangle_{*} \subseteq R_{\gamma_{n}}$ of $R_{\gamma_{n}}$ and let

$$
U_{n}^{\prime}:=\left\{y, z: y \in Y_{i}, z \in E_{i, y}, 1 \leq i \leq n\right\}
$$

By induction there is a polynomial subring $L_{n} \subseteq R_{\gamma_{n}}$ of $R_{\gamma_{n}}$ which contains $R_{U_{n}}$ purely. Again by induction we may assume that L_{n+1} is a polynomial ring over L_{n}
for all $n \in \omega$. Hence $U_{n}^{\prime \prime}:=L_{n}\left[U_{n}^{\prime}\right] \subseteq_{*} R_{\alpha_{n}}$ is a polynomial ring by Lemma 3.3 and purity of $R_{U_{n}}$ in $R_{\gamma_{n}}$. Thus $U_{n} \subseteq_{*} U_{n}^{\prime \prime} \subseteq_{*} R_{\alpha_{n}}$. By construction $L_{n+1}\left[U_{n+1}^{\prime}\right]$ is a polynomial ring over $L_{n}\left[U_{n}^{\prime}\right]$ and thus the union $U^{\prime \prime}=\bigcup_{n \in \omega} U_{n}^{\prime \prime}$ is a polynomial ring containing U. Similar arguments show that R / R_{α} is polynomial \aleph_{1}-free for every $\alpha<\lambda$.

4 Main Theorem

In this section we will prove that the F-algebra R from Definition 3.2 is an $E(F)$ algebra, hence every F-endomorphism of R viewed as an F-module is multiplication by some element r from R. Every endomorphism of R is uniquely determined by its action on B_{Λ} which is an S-dense submodule of R. It is therefore enough to show that a given endomorphism φ of R acts as multiplication by some $r \in R$ when restricted to B_{Λ}. It is our first aim to show that such φ acts as multiplication on each special pure element x_{α} for $\alpha<\lambda$. Therefore we need the following

Definition 4.1 A set $W \subseteq \lambda$ is closed if

$$
x_{\alpha} \in R_{W}^{\alpha}:=F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W, \beta<\alpha, n \in \omega\right]
$$

for every $\alpha \in W$. Moreover let $R_{W}:=F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W, n \in \omega\right]$.
We have a first lemma.

Lemma 4.2 Any finite subset of λ is a subset of a finite and closed subset of λ.

Proof If $\varnothing \neq W \subseteq \lambda$ is finite then let $\gamma=\max (W)$. We prove the claim by induction on γ. If $\gamma=0$, then $W=\{0\}, R_{W}=F, x_{0}=0$ and there is nothing to prove. If $\gamma>0$, then $x_{\gamma} \in R_{\gamma}=F\left[y_{\eta n x_{\beta}}, z_{\tau}: n \in \omega, \eta \in V_{\beta}, \tau \in T_{\beta}, \beta<\gamma\right]$ and there exists a finite set $Q \subseteq \gamma$ such that

$$
x_{\gamma} \in F\left[y_{\eta n x_{\beta}}, z_{\tau}: n \in \omega, \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in Q\right]
$$

If $Q_{1}=Q \cup(W \backslash\{\gamma\})$ then $\max \left(Q_{1}\right)<\gamma$. Thus by induction there exists a closed and finite $Q_{2} \subseteq \lambda$ containing Q_{1}. It is now easy to see that $W^{\prime}=Q_{2} \cup\{\gamma\}$ is as required.

Closed and finite subsets W of λ give rise to nice presentations of elements in R_{W}.
Lemma 4.3 Let W be a closed and finite subset of λ and $r \in R_{W}$. Then there exists $m_{*}^{r} \in \mathbb{N}$ such that $r \in F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W\right]$ for every $n \geq m_{*}^{r}$.

Proof We apply induction on $|W|$. If $|W|=0$, then $R_{W}=R_{\varnothing}=F$ and Lemma 4.3 holds. If $|W|>0$ then $\gamma=\max (W)$ is defined. It is easy to see that $W^{\prime}=W \backslash\{\gamma\}$ is still closed and finite. Thus $x_{\delta} \in R_{W^{\prime}}$ for all $\delta \in W$. By induction there is m_{*}^{δ} such
that $x_{\delta} \in F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W^{\prime}\right]$ for every $n \geq m_{*}^{\delta}(\delta \in W)$. Any $r \in R_{W}$ can be written as a polynomial

$$
r=\sigma\left(\left\{y_{\eta_{r, l} k_{r, l} x_{\beta_{r, l}}}, z_{\tau_{r, j}}: \eta_{r, l} \in V_{\beta_{r, l},} \tau_{r, j} \in T_{\beta_{r, j}}, l<l_{r}, j<j_{r}\right\}\right)
$$

for some $l_{r}, j_{r} \in \mathbb{N}, \beta_{r, l}, \beta_{r, j} \in W$ and $\eta_{r, l} \in V_{\beta_{r, l}}, \tau_{r, j} \in T_{\beta_{r, j},}$ Let $m_{*}^{r}=\max \left(\left\{m_{*}^{\delta}, k_{r, l}\right.\right.$: $\left.\left.l<l_{r}, \delta \in W\right\}\right)$. Using (3.1) now it follows easily that $r \in F\left[y_{\eta} n x_{\beta}, z_{\tau}: \eta \in V_{\beta}\right.$, $\left.\tau \in T_{\beta}, \beta \in W\right]$ for every $n \geq m_{*}^{r}$.

We are ready to show that every endomorphism of R acts as multiplication on each of the special pure elements x_{α}.

Definition 4.4 If R_{α} is as above, then let $G_{\alpha}=\left\langle y_{\eta n x_{\alpha}}, z_{\tau}: \eta \in V_{\alpha}, \tau \in T_{\alpha}, n \in \omega\right\rangle_{F}$ be the F-submodule of R_{α} for any $\alpha<\lambda$.

From (3.1) we note that $x_{\alpha} \in G_{\alpha}$ and our claim will follow if we can show that every homomorphism from G_{α} to R^{+}maps x_{α} to a multiple of itself.

Proposition 4.5 If $h: G_{\alpha} \rightarrow R$ is an F-homomorphism, then $h\left(x_{\alpha}\right) \in x_{\alpha} R$.
Proof Let $h: G_{\alpha} \rightarrow R$ be an F-homomorphism and assume towards contradiction that $h\left(x_{\alpha}\right) \notin x_{\alpha} R$. For a subset $V \subseteq V_{\alpha}$ of cardinality λ we define the F-submodule

$$
G_{V}=\left\langle x_{\alpha}, y_{\eta n x_{\alpha}}: \eta \in V, n \in \omega\right\rangle_{*} \subseteq G_{\alpha}
$$

and note that $\left\{z_{\eta \upharpoonright_{n}}: \eta \in V, n \in \omega\right\} \subseteq G_{V}$ from $x_{\alpha} \in G_{V}$ and (3.1). Also $G_{V_{\alpha}} \in \mathfrak{H}=$: $\left\{G_{V}: V \subseteq V_{\alpha},|V|=\lambda\right\} \neq \varnothing$ and we can choose $\beta_{*}=\min \left\{\beta \leq \lambda: \exists G_{V} \in \mathfrak{H}\right.$ and $\left.h\left(G_{V}\right) \subseteq R_{\beta}\right\}$. There is $G_{V} \in \mathfrak{S}$ such that $h\left(G_{V}\right) \subseteq R_{\beta_{*}}$.

We first claim that $\beta_{*}<\lambda$ and assume towards contradiction that $\beta_{*}=\lambda$ and we can choose inductively a minimal countable subset $U=$: $U_{V} \subseteq V$ such that

$$
\begin{equation*}
(\forall \eta \in V)(\forall n \in \omega)\left(\exists \rho \in U_{V}\right) \quad \text { such that } \eta \upharpoonright_{n}=\rho \upharpoonright_{n} . \tag{4.1}
\end{equation*}
$$

For each $\eta \in V$ we define the countable set $Y_{\eta}=\left\{y_{\eta n x_{\alpha}}: n<\omega\right\}$. Using $\operatorname{cf}(\lambda)=\lambda>\aleph_{0}$ we can find a successor ordinal $\beta<\lambda$ such that $h\left(x_{\alpha}\right) \in R_{\beta}$ and $h\left(Y_{\rho}\right) \subseteq R_{\beta}$ for all $\rho \in U$. If $n_{*} \in \omega$ and $\eta \in V$ choose $n_{*}<n \in \omega$ and $\rho_{n} \in U$ by (4.1) such that $\eta \upharpoonright_{n}=\rho_{n} \upharpoonright_{n}$. From Definition 3.1 and (2.1) we see that

$$
\begin{align*}
& y_{\eta n_{*} x_{\alpha}}-y_{\rho_{n} n_{*} x_{\alpha}} \tag{4.2}\\
& \quad=\sum_{i \geq n_{*}} \frac{q_{i}}{q_{n_{*}}}\left(z_{\eta \upharpoonright_{i}}\right)+x_{\alpha} \sum_{i \geq n_{*}} \frac{q_{i}}{q_{n_{*}}} \eta(i)-\sum_{i \geq n_{*}} \frac{q_{i}}{q_{n_{*}}}\left(z_{\rho_{n} \upharpoonright_{i}}\right)-x_{\alpha} \sum_{i \geq n_{*}} \frac{q_{i}}{q_{n_{*}}} \rho_{n}(i) \\
& \quad=\sum_{i \geq n+1} \frac{q_{i}}{q_{n_{*}}}\left(z_{\eta \upharpoonright_{i}}\right)+x_{\alpha} \sum_{i \geq n} \frac{q_{i}}{q_{n_{*}}} \eta(i)-\sum_{i \geq n+1} \frac{q_{i}}{q_{n_{*}}}\left(z_{\rho_{n} \upharpoonright_{i}}\right)-x_{\alpha} \sum_{i \geq n} \frac{q_{i}}{q_{n_{*}}} \rho_{n}(i)
\end{align*}
$$

is divisible by s_{n-1}. Thus s_{n-1} divides $h\left(y_{n_{*} x_{\alpha}}-y_{\rho_{n} n_{*} x_{\alpha}}\right)$ for $n_{*}<n<\omega$. From $h\left(y_{\rho_{n} n_{*} x_{\alpha}}\right) \in R_{\beta}$ and the choice of $\rho_{n} \in U$ it follows that $h\left(y_{\eta_{*} x_{\alpha}}\right)+R_{\beta} \in R / R_{\beta}$
is divisible by infinitely many s_{n}. Hence $h\left(y_{\eta n_{*} x_{\alpha}}\right) \in R_{\beta}$ since R / R_{β} is \aleph_{1}-free by Lemma 3.6. However n_{*} was chosen arbitrarily, we therefore have $h\left(Y_{\eta}\right) \subseteq R_{\beta}$ for all $\eta \in V$ and $h\left(G_{V}\right) \subseteq R_{\beta}$ follows, which contradicts the minimality of β_{*}. Therefore $\beta_{*} \neq \lambda$.

Since $h\left(G_{V}\right) \subseteq R_{\beta_{*}}$ we can write $h\left(y_{\eta o x_{\alpha}}\right)=\sigma_{\eta}\left(\left\{y_{\nu_{\eta, l} m_{\eta, l}, x_{\beta_{\eta, l}}}, z_{\tau_{\eta, k}}: l<l_{\eta}, k<k_{\eta}\right\}\right)$ for every $\eta \in V$ and suitable $\beta_{\eta, l}, \beta_{\eta, k}<\beta_{*}, \nu_{\eta, l} \in V_{\beta_{\eta, l}}$ and $\tau_{\eta, k} \in T_{\beta_{\eta, k}}$. Recall that polynomials σ_{η} depend on $\eta \in V$. For notational simplicity we shall assume that all pairs $\left(\beta_{\eta, l}, \beta_{\eta, k}\right)$ are distinct. For obvious cardinality reasons we may assume without loss of generality that $l_{\eta}=l_{*}$ and $k_{\eta}=k_{*}$ for some fixed $l_{*}, k_{*} \in \mathbb{N}$ for all $\eta \in V$. Moreover, since F is countable, we may assume that the polynomials σ_{η} are independent of η and thus we can write $\sigma_{\eta}=\sigma$. Hence

$$
h\left(y_{\eta o x_{\alpha}}\right)=\sigma\left(\left\{y_{\nu_{\eta, l}, m_{\eta, \mid}, x_{\beta_{n, l}}}, z_{\tau_{\eta, k}}: l<l_{*}, k<k_{*}\right\}\right) .
$$

We put $W_{\eta}=\left\{\beta_{\eta, l}, \beta_{\eta, k}: l<l_{*}, k<k_{*}\right\}$, which is a finite subset of λ for every $\eta \in V$. By Lemma 4.2 we may assume that W_{η} is closed. Moreover, possibly enlarging W_{η}, we also may assume that $h\left(x_{\alpha}\right) \in R_{W_{\eta}}$ for all $\eta \in V$. Since $\beta_{*}<\lambda$ and λ is regular the ordinal β_{*} is a set of cardinality $<\lambda$ with $W_{\eta} \subseteq \beta_{*}$ for all $\eta \in V$. By cardinality arguments it easily follows that there is $W=\left\{\beta_{l}, \beta_{k}: l<l_{*}, k<k_{*}\right\} \subseteq$ β_{*} such that $W_{\eta}=W$ for all $\eta \in V^{\prime}$ for some $V^{\prime} \subseteq V$ of cardinality λ. We rename $V=V^{\prime}$. Let $m_{\eta} \in \mathbb{N}$ such that $m_{\eta}>l\left(\tau_{\eta, k}\right)$ for all $\eta \in V$ and $k<k_{*}$. Again, passing to an equipotent subset (of) V we may assume that $m_{\eta}=m_{1}$ is fixed for all $\eta \in V$. Now we apply Lemma 4.3 to obtain $h\left(y_{\eta o x_{\alpha}}\right) \in F\left[y_{\eta n_{\eta} x_{\beta}}, z_{\tau}: \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in\right.$ $W]$ for $\eta \in V$ and some $n_{\eta} \in \mathbb{N}$. Since $|V|>\aleph_{0}$ we may assume that $n_{\eta}=n_{*}$ does not depend on $\eta \in V$ anymore. If $m_{*}=\max \left\{n_{*}, m_{1}\right\}$ we find new presentations

$$
\begin{equation*}
h\left(y_{\eta o x_{\alpha}}\right)=\sigma\left(\left\{y_{\nu_{\eta, l}, m_{*} x_{\beta_{l}}}, z_{\tau_{\eta, k}}: l<l_{*}, k<k_{*}\right\}\right) \tag{4.3}
\end{equation*}
$$

for every $\eta \in V$ and $\beta_{l}, \beta_{k} \in W, \nu_{\eta, l} \in V_{\beta_{l}}$ and $\tau_{\eta, k} \in T_{\beta_{k}}$. Moreover, $l\left(\tau_{\eta, k}\right) \leq m_{*}$ for all $\eta \in V$ and $k<k_{*}$. The reader may notice that when obtaining equation (4.3) the polynomial σ and the natural number k_{*} may become dependent on η again but a cardinality argument allows us to unify them again and for notational reasons we stick to σ and k_{*}. Using that T_{α} is countable, we are allowed to assume that $\tau_{\eta, k}=\tau_{k}$ for all $\eta \in V$ and $k<k_{*}$, hence $h\left(y_{\eta o x_{\alpha}}\right)=\sigma\left(\left\{y_{\nu_{\eta, l} m_{*} x_{\beta_{l}}}, z_{\tau_{k}}: l<l_{*}, k<k_{*}\right\}\right)$.

Finally, increasing m_{*} (and unifying σ and k_{*} again) we may assume that all $\nu_{\eta, l} \upharpoonright_{m_{*}}$ are different $\left(l<l_{*}\right)$ and that

$$
\begin{equation*}
\nu_{\eta, l} \upharpoonright_{m_{*}} \neq \tau_{k} \tag{4.4}
\end{equation*}
$$

for all $\eta \in V$ and $l<l_{*}, k<k_{*}$. Using a cardinality argument and the countability of the trees $T_{\beta_{l}}$ we may assume that $\nu_{\eta, l} \upharpoonright_{m_{*}}$ does not dependent on $\eta \in V$ for all $l<l_{*}$. Thus

$$
\begin{equation*}
\nu_{\eta, l} \Gamma_{m_{*}}=: \bar{\tau}_{l} \in T_{\beta_{l}} \tag{4.5}
\end{equation*}
$$

and $\tau_{k} \neq \bar{\tau}_{l}$ for all $l<l_{*}, k<k_{*}$ from (4.4). Since W is closed and $h\left(x_{\alpha}\right) \in R_{W}$ we can finally write

$$
h\left(x_{\beta}\right)=\sigma_{\beta}\left(\left\{y_{\nu_{\beta, l} m_{*} x_{\beta_{l},}}, z_{\tau_{\beta, k}}: l<l_{\beta}, k<k_{\beta}\right\}\right)
$$

for every $\beta \in W \cup\{\alpha\}$ and suitable $l_{\beta}, k_{\beta} \in \mathbb{N}, \beta_{l}, \beta_{k} \in W$. Obviously, increasing m_{*} once more, we may assume that

$$
\begin{equation*}
\nu_{\beta, l} \upharpoonright_{m_{*}} \neq \nu_{\beta^{\prime}, l^{\prime}} \upharpoonright_{m_{*}} \quad \text { and } \quad \nu_{\beta, l} \upharpoonright_{m_{*}} \neq \bar{\tau}_{j} \tag{4.6}
\end{equation*}
$$

for all $\beta, \beta^{\prime} \in W \cup\{\alpha\}, l<l_{\beta}, l^{\prime}<l_{\beta^{\prime}}, j<l_{*}$.
Now choose any $n_{*}>m_{*}$ such that
(i) $\quad n_{*}>\sup \left(C_{\beta} \cap C_{\beta^{\prime}}\right)$ for all $\beta \neq \beta^{\prime} \in W \cup\{\alpha\}$;
(ii) $s_{n_{*}}$ is relatively prime to all coefficients in σ;
(iii) $s_{n_{*}}$ is relatively prime to all coefficients in σ_{β} for all $\beta \in W \cup\{\alpha\}$.

Using $\aleph_{0}<|V|$ we can choose pairs of branches $\eta_{1}, \eta_{2} \in V$ with arbitrarily large branch point $\operatorname{br}\left(\eta_{1}, \eta_{2}\right)=n+1 \geq n_{*}$. Let U be the infinite set of all such n 's. An easy calculation using (3.1) shows

$$
y_{\eta_{1} o x_{\alpha}}-y_{\eta_{2} o x_{\alpha}}=\left(\prod_{l \leq n} s_{l}\right)\left(y_{\eta_{1} n x_{\alpha}}-y_{\eta_{2} n x_{\alpha}}\right)
$$

and as $\operatorname{br}\left(\eta_{1}, \eta_{2}\right)=n+1$ we obtain

$$
\begin{equation*}
y_{\eta_{1} o x_{\alpha}}-y_{\eta_{2} o x_{\alpha}} \equiv\left(\prod_{l \leq n} s_{l}\right) x_{\alpha} \bmod s_{n+1} R \tag{4.7}
\end{equation*}
$$

We now distinguish three cases.
Case 1 If $\operatorname{br}\left(\nu_{\eta_{1}, l}, \nu_{\eta_{2}, l}\right)>n+1$ for some $l<l_{*}$ then from (3.1) follows

$$
y_{\nu_{\eta_{1},}, m_{*} x_{\beta_{l}}}-y_{\nu_{\eta_{2},}, m_{*} x_{\beta_{l}}} \equiv 0 \bmod s_{n+1} R .
$$

Case 2 If $\operatorname{br}\left(\nu_{\eta_{1}, l}, \nu_{\eta_{2}, l}\right)=n+1$ for some $l<l_{*}$ then from (3.1) follows

$$
y_{\nu_{\eta_{1},}, \mid m_{*} x_{\beta_{l}}}-y_{\nu_{\eta_{2}}, \mid m_{*} x_{\beta_{l}}}+s_{n+1} R \in x_{\beta_{l}} R+s_{n+1} R .
$$

We have chosen $\operatorname{br}\left(\eta_{1}, \eta_{2}\right)=n+1>n_{*}>\sup \left(C_{\beta} \cap C_{\beta^{\prime}}\right)$ for all $\beta \neq \beta^{\prime} \in W \cup\{\alpha\}$. Hence $n+1$ can not be the splitting point of pairs of branches from different levels α and β_{l}. Thus $\beta_{l}=\alpha$ and the last displayed expression becomes

$$
y_{\nu_{\eta_{1}, l m_{*}} x_{\alpha}}-y_{\nu_{n_{2}}, l m_{*} x_{\alpha}}+s_{n+1} R \in x_{\alpha} R+s_{n+1} R .
$$

Case 3 If $k=\operatorname{br}\left(\nu_{\eta_{1}, l}, \nu_{\eta_{2}, l}\right)<n+1$ for some $l<l_{*}$ then $m_{*}<k$ by (4.5). From (3.1) and the choice of n we see that $y_{\nu_{\eta_{1}, ~}, n x_{\alpha}}$ appears in some monomial of $h\left(y_{\eta_{1} o x_{\alpha}}-y_{\eta_{2} o x_{\alpha}}\right)$ with coefficient relatively prime to s_{n+1}. By an easy support argument (restricting to
$\nu_{\eta_{1}, l} \upharpoonright_{k}$ and using (4.4), (4.5) and (4.6)) this monomial can not appear in $h\left(x_{\alpha}\right)$. From Lemma 3.4 now follows

$$
h\left(y_{\eta_{1} o x_{\alpha}}-y_{\eta_{2} o x_{\alpha}}\right)-\left(\prod_{l \leq n} s_{l}\right) h\left(x_{\alpha}\right) \not \equiv 0 \bmod s_{n+1} R
$$

which contradicts (4.7).
Therefore, for all $n \in U$ we obtain

$$
\left(\prod_{l \leq n} s_{l}\right) h\left(x_{\alpha}\right) \in s_{n+1} R+x_{\alpha} R
$$

The elements $\prod_{l \leq n} s_{l}$ and s_{n+1} are co-prime, thus

$$
h\left(x_{\alpha}\right) \in \bigcap_{n \in U} s_{n+1} R+x_{\alpha} R .
$$

Using that U is infinite, we claim

$$
\bigcap_{n \in U} s_{n} R+x_{\alpha} R=x_{\alpha} R,
$$

which then implies $h\left(x_{\alpha}\right) \in x_{\alpha} R$ and finishes the proof of Proposition 4.5.
The special pure elements are of the form (3.2), thus $x_{\alpha}=\sum_{m \in M} m$ for some finite subset M of $M\left(T_{\Lambda}\right)$. Choose $y \in \bigcap_{n \in U} s_{n} R+x_{\alpha} R$. Then there are $f_{n}, r_{n} \in R$ for $n \in U$ such that

$$
\begin{equation*}
y-s_{n} f_{n}=x_{\alpha} r_{n} . \tag{4.8}
\end{equation*}
$$

Put $R^{\prime}=\left\langle\left[x_{\alpha}\right], y, f_{n}, r_{n}: n \in U\right\rangle_{*}$ and let L be the pure polynomial subring of R that contains R^{\prime} and exists by Theorem 3.6. Hence equation (4.8) holds in L. We may assume that the finite support M of x_{α} is contained in a basis of L and hence the quotient $L / x_{\alpha} L$ is free and therefore S-reduced. This contradicts

$$
\begin{equation*}
y \equiv s_{n} f_{n} \bmod x_{\alpha} L \tag{4.9}
\end{equation*}
$$

which follows from equation (4.8) for every $n \in U$ unless $y \in x_{\alpha} L$ and hence $y \in$ $x_{\alpha} R$.

We are now ready to prove that R is an $E(F)$-algebra.
Main Theorem 4.6 Let F be a countable principal ideal domain with $1 \neq 0$ and infinitely many pair-wise coprime elements. If $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}$ is a regular cardinal, then the F-algebra R in Definition 3.2 is an \aleph_{1}-free $E(F)$-algebra of cardinality λ.

Proof If h is a F-endomorphism of R viewed as F-module, then we must show that h is scalar multiplication by some element $b \in R$. From Proposition 4.5 for $h \upharpoonright G_{\alpha}$ there exists an element $b_{\alpha} \in R$ such that $h\left(x_{\alpha}\right)=x_{\alpha} b_{\alpha}$ for any $\alpha<\lambda$, where the x_{α} 's run through all special pure elements.

Now let U_{α} be a countable subset of V_{α} for every $\alpha<\lambda$ as in (4.1). Then

$$
R_{\alpha}^{*}=F\left[y_{\eta n x_{\beta}}, z_{\tau}: \eta \in U_{\beta}, \tau \in T_{\beta}, \beta<\alpha, n \in \omega\right]
$$

is a countable subalgebra of R_{α}. Since λ is regular uncountable there exists for every $\alpha<\lambda$ an ordinal $\gamma_{\alpha}<\lambda$ such that $h\left(R_{\alpha}^{*}\right) \subseteq R_{\gamma_{\alpha}}$. We put $C=\{\delta<\lambda$: $\left.\forall(\alpha<\delta)\left(\gamma_{\alpha}<\delta\right)\right\}$ which is a cub in λ. Intersecting with the cub of all limit ordinals we may assume that C consists of limit ordinals only. If $\delta \in C$, then similar arguments as in the proof of Proposition 4.5 after equation (4.1), using the fact that R / R_{δ} is \aleph_{1}-free show that $h\left(R_{\beta}\right) \subseteq R_{\delta}$ for every $\beta<\delta$ and taking unions $h\left(R_{\delta}\right) \subseteq R_{\delta}$.

Let us assume for the moment that there is some $\delta_{*} \in C$ such that for every special pure element $r \in B_{\Lambda}$ we have $b_{r} \in R_{\delta_{*}}$. Suppose r_{1} and r_{2} are two distinct pure elements with $b_{r_{1}} \neq b_{r_{2}}$. Then choose $\delta_{*}<\delta \in C$ such that $r_{1}, r_{2} \in R_{\delta}$ and $\tau \in T_{\delta}$ with $\tau \notin\left(\left[r_{1}\right] \cup\left[r_{2}\right]\right)$. Then

$$
\begin{equation*}
b_{\tau} \tau+b_{r_{1}} r_{1}=h(\tau)+h\left(r_{1}\right)=h\left(\tau+r_{1}\right)=b_{\tau+r_{1}}\left(\tau+r_{1}\right)=b_{\tau+r_{1}} \tau+b_{\tau+r_{1}} r_{1} . \tag{4.10}
\end{equation*}
$$

Now note that R_{δ} is an $R_{\delta_{*}}$-module and that R / R_{δ} is torsion-free as an $R_{\delta_{*}}$-module. Moreover, $b_{\tau}, b_{r_{1}}$ and $b_{\tau+r_{1}}$ are elements of $R_{\delta_{*}}$, hence τ is not in the support of either of them. Thus restricting equation (4.10) to τ we obtain

$$
b_{\tau} \tau=b_{\tau+r_{1}} \tau
$$

and therefore $b_{\tau}=b_{\tau+r_{1}}$. Now equation (4.10) reduces to $b_{r_{1}} r_{1}=b_{\tau+r_{1}} r_{1}$ and since R is a domain we conclude $b_{r_{1}}=b_{\tau+r_{1}}$. Hence $b_{r_{1}}=b_{\tau}$ and similarly $b_{r_{2}}=b_{\tau}$, therefore $b_{r_{1}}=b_{r_{2}}$ which contradicts our assumption. Thus $b_{r}=b$ does not depend on the special pure elements $r \in B_{\Lambda}$ and therefore h acts as multiplication by b on the special pure elements of B_{Λ}. Thus h is scalar multiplication by b on B_{Λ} and using density also on R.

It remains to prove that there is $\delta_{*}<\lambda$ such that for every $r \in B_{\Lambda}$ we have $b_{r} \in R_{\delta_{*}}$.

Assume towards contradiction that for every $\delta \in C$ there is some element $r_{\delta} \in B_{\Lambda}$ such that $b_{\delta}=b_{r_{\delta}} \notin R_{\delta}$. We may write r_{δ} and also $b_{r_{\delta}}$ as elements in some polynomial ring over R_{δ}, hence $r_{\delta}=\sigma_{r_{\delta}}\left(x_{i}^{\delta}: i<i_{r_{\delta}}\right)$ and $b_{\delta}=\sigma_{b_{\delta}}\left(\tilde{x}_{i}^{\delta}: i<i_{b_{\delta}}\right)$. Thus $\sigma_{r_{\delta}}$ and $\sigma_{b_{\delta}}$ are polynomials over R_{δ} and the x_{i}^{δ} 's and \tilde{x}_{i}^{δ} are independent elements over R_{δ}. For cardinality reasons we may assume that for all $\delta \in C$ we have $i_{r_{\delta}}=i_{r}$ and $i_{b_{\delta}}=i_{b}$ for some fixed $i_{r}, i_{b} \in \mathbb{N}$. Now choose $n<\omega$ and note that canonical identification $\varphi: \bigcup_{\alpha<\lambda} R_{\alpha} / s_{n} R_{\alpha} \rightarrow \bigcup_{\alpha<\lambda}\left(R_{\alpha}^{*}+s_{n} R\right) / s_{n} R$ is an epimorphism. Let $\bar{\sigma}_{r_{\delta}}$ and $\bar{\sigma}_{b_{\delta}}$ be the images of the polynomials $\sigma_{r_{\delta}}$ and $\sigma_{b_{\delta}}$ under φ. Since $\left|\bigcup_{\alpha<\delta}\left(R_{\alpha}^{*}+s_{n} R\right) / s_{n} R\right|<$ λ for every $\delta<\lambda$ and C consists of limit ordinals the mapping $\phi: C \rightarrow R / s_{n} R$, $\delta \mapsto\left(\bar{\sigma}_{r_{\delta}}, \bar{\sigma}_{b_{\delta}}\right)$ is regressive on C. Thus application of Fodor's lemma shows that ϕ is constant on some stationary subset C^{\prime} of C and without loss of generality we may assume that $C=C^{\prime}$.

For $\delta \in C$ choose $\delta_{1}, \delta_{2} \in C$ such that $\delta_{1}<\delta_{2}$ and $x_{i}^{\delta}, \tilde{x}_{j}^{\delta} \in R_{\delta_{1}}$ for all $i<i_{r}$, $j<i_{b}$. Let R^{\prime} be the smallest polynomial ring over R_{δ} generated by at least the elements $x_{i}^{\delta_{1}}, x_{i}^{\delta_{2}}$ and $\tilde{x}_{i}^{\delta_{1}}, \tilde{x}_{i}^{\delta_{2}}$ such that $a_{1} a_{2}=a_{3}$ and $a_{2}, a_{3} \in R^{\prime}$ implies $a_{1} \in R^{\prime}$. We may choose $R^{\prime}=R_{\delta}[H]$ as the polynomial ring where $H \subseteq R \backslash R_{\delta}$ contains the set $\left\{x_{i}^{\delta_{1}}, x_{i}^{\delta_{2}}, \tilde{x}_{j}^{\delta_{1}}, \tilde{x}_{j}^{\delta_{2}}: i<i_{r}, j<i_{b}\right\}$. We now consider

$$
\begin{equation*}
b_{r_{\delta}+r_{\delta_{2}}}\left(r_{\delta}+r_{\delta_{2}}\right)=h\left(r_{\delta}+r_{\delta_{2}}\right)=h\left(r_{\delta}\right)+h\left(r_{\delta_{2}}\right)=b_{\delta} r_{\delta}+b_{\delta_{2}} r_{\delta_{2}} . \tag{4.11}
\end{equation*}
$$

By choice of R^{\prime} and $r_{\delta}, r_{\delta_{2}}, b_{\delta}, b_{\delta_{2}} \in R^{\prime}$ follows $b_{r_{\delta}+r_{\delta_{2}}} \in R^{\prime}$. If some x_{i}^{δ} appears in the support of $b_{r_{\delta}+r_{\delta_{2}}}$, then the product $x_{i}^{\delta} x_{j}^{\delta_{2}}$ appears on the left side (for some $j<i_{b}$) of (4.11) but not on the right side-a contradiction. Similarly, no $x_{i}^{\delta_{2}}$ can appear in the support of $b_{r_{\delta}+r_{\delta_{2}}}$. Thus $\left(b_{r_{\delta}+r_{\delta_{2}}}-b_{\delta}\right) r_{\delta}=-\left(b_{r_{\delta}+r_{\delta_{2}}}-b_{\delta_{2}}\right) r_{\delta_{2}}$ and therefore $b_{r_{\delta}+r_{\delta_{2}}}=b_{\delta}=b_{\delta_{2}}$. Hence $b_{\delta_{2}} \in R_{\delta_{2}}$. But this contradicts the choice of $r_{\delta_{2}}$. The existence of δ^{*} such that all elements b_{r} related to special pure elements are in $R_{\delta^{*}}$ is established.

Corollary 4.7 There exists an almost-free E-ring of cardinality \aleph_{1}.

Remark 4.8 We note that the Main Theorem could also be proved for cardinals $\aleph_{1} \leq \lambda \leq 2^{\aleph_{0}}$ which are not regular. The proof for $\operatorname{cf}(\lambda)=\omega$ would be much more technical and complicated.

References

[1] R. Bowshell and P. Schultz, Unital rings whose additive endomorphisms commute. Math. Ann. 228 (1977), 197-214.
[2] C. Casacuberta, J. Rodríguez and J. Tai, Localizations of abelian Eilenberg-Mac-Lane spaces of finite type. Prepublications, Universitat Autònoma de Barcelona 22(1997).
[3] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras. Proc. London Math. Soc. (3) 50(1985), 447-479.
[4] M. Dugas, Large E-modules exist. J. Algebra 142(1991), 405-413.
[5] M. Dugas and R. Göbel, Torsion-free nilpotent groups and E-modules. Arch. Math. (4) 45(1990), 340-351.
[6] M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist. J. Algebra (1) 108(1987), 88-101.
[7] P. Eklof and A. Mekler, Almost free modules, Set-theoretic methods. North-Holland, Amsterdam, 1990.
[8] T. Faticoni, Each countable reduced torsion-free commutative ring is a pure subring of an E-ring. Comm. Algebra (12) 15(1987), 2545-2564.
[9] S. Feigelstock, Additive Groups Of Rings Vol. I. Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983.
[10] \longrightarrow Additive Groups Of Rings Vol. II. Pitman Research Notes in Math. Series 169(1988).
[11] L. Fuchs, Infinite Abelian Groups-Volume I. Academic Press, New York, London, 1970.
[12] Infinite Abelian Groups—Volume II. Academic Press, New York, London, 1973.
[13] , Abelian Groups. Hungarian Academy of Science, Budapest, 1958.
[14] R. Göbel and S. Shelah, Indecomposable almost free modules-the local case. Canad. J. Math. 50(1998), 719-738.
[15] \longrightarrow On the existence of rigid \aleph_{1}-free abelian groups of cardinality \aleph_{1}. In: Abelian Groups and Modules, Proceedings of the Padova Conference, 1994, 227-237.
[16] R. Göbel and L. Strüngmann, Almost-free $E(R)$-algebras and $E(A, R)$-modules. Fund. Math. 169(2001), 175-192.
[17] G. Niedzwecki and J. Reid, Abelian groups cyclic and projective as modules over their endomorphism rings. J. Algebra 159(1993), 139-149.
[18] R. S. Pierce and C. Vinsonhaler, Classifying E-rings. Comm. Algebra 19(1991), 615-653.
[19] J. Reid, Abelian groups finitely generated over their endomorphism rings. Springer Lecture Notes in Math. 874, 1981, 41-52.
[20] P. Schultz, The endomorphism ring of the additive group of a ring. J. Austral. Math. Soc. 15(1973), 60-69.
[21] S. Shelah, book for Oxford University Press, in preparation.

Fachbereich 6—Mathematik	Institute of Mathematics
University of Essen	Hebrew University
45117 Essen	Givat Ram
Germany	Jerusalem 91904
e-mail: R.Goebel@uni-essen.de	Israel
	e-mail: shelah@math.huji.ac.il

Institute of Mathematics
Hebrew University
Givat Ram
Jerusalem 91904
Israel
e-mail: lutz@math.huji.ac.il

[^0]: Received by the editors February 20, 2002; revised January 14, 2003.
 Publication 785 in the second author's list of publications. The third author was supported by a MINERVA fellowship.

 AMS subject classification: 20K20, 20K30, 13B10, 13B25.
 Keywords: E-rings, almost-free modules.
 (C)Canadian Mathematical Society 2003.

