Canad. J. Math. Vol. 55 (4), 2003 pp. 750-765

Almost-Free *E*-Rings of Cardinality \aleph_1

Rüdiger Göbel, Saharon Shelah and Lutz Strüngmann

Abstract. An *E*-ring is a unital ring *R* such that every endomorphism of the underlying abelian group R^+ is multiplication by some ring element. The existence of almost-free *E*-rings of cardinality greater than 2^{\aleph_0} is undecidable in ZFC. While they exist in Gödel's universe, they do not exist in other models of set theory. For a regular cardinal $\aleph_1 \le \lambda \le 2^{\aleph_0}$ we construct *E*-rings of cardinality λ in ZFC which have \aleph_1 -free additive structure. For $\lambda = \aleph_1$ we therefore obtain the existence of almost-free *E*-rings of cardinality \aleph_1 in ZFC.

1 Introduction

Recall that a unital ring *R* is an *E*-ring if the evaluation map $\varepsilon \colon \operatorname{End}_{\mathbb{Z}}(R^+) \to R$ given by $\varphi \mapsto \varphi(1)$ is a bijection. Thus every endomorphism of the abelian group R^+ is multiplication by some element $r \in R$. *E*-rings were introduced by Schultz [20] and easy examples are subrings of the rationals \mathbb{Q} or pure subrings of the ring of *p*-adic integers. Schultz characterized *E*-rings of finite rank and the books by Feigelstock [9, 10] and an article [18] survey the results obtained in the eighties, see also [8, 19]. In a natural way the notion of *E*-rings extends to modules by calling a left *R*-module *M* an *E*(*R*)-module or just *E*-module if $\operatorname{Hom}_{\mathbb{Z}}(R, M) = \operatorname{Hom}_{R}(R, M)$ holds, see [1]. It turned out that a unital ring *R* is an *E*-ring if and only if it is an *E*-module.

E-rings and *E*-modules have played an important role in the theory of torsion-free abelian groups of finite rank. For example Niedzwecki and Reid [17] proved that a torsion-free abelian group *G* of finite rank is cyclically projective over its endomorphism ring if and only if $G = R \oplus A$, where *R* is an *E*-ring and *A* is an *E*(*R*)-module. Moreover, Casacuberta and Rodríguez [2] noticed the role of *E*-rings in homotopy theory.

It can be easily seen that every *E*-ring has to be commutative and hence can not be free as an abelian group except when $R = \mathbb{Z}$. But it was proved in [6] and extended in [4, 5], using a Black Box argument from [3], that there exist arbitrarily large *E*-rings *R* which are \aleph_1 -free as abelian groups, which means that every countable subgroup of R^+ is free. The smallest candidate in [4, 5, 6] has size 2^{\aleph_0} . This implies the existence of \aleph_1 -free *E*-rings of cardinality \aleph_1 under the assumption of the continuum hypothesis. Moreover, it was shown in [16] that there exist almost-free *E*-rings for any regular not weakly compact cardinal $\kappa > \aleph_0$ assuming diamond, a prediction principle which

Received by the editors February 20, 2002; revised January 14, 2003.

Publication 785 in the second author's list of publications. The third author was supported by a MINERVA fellowship.

AMS subject classification: 20K20, 20K30, 13B10, 13B25.

Keywords: E-rings, almost-free modules.

[©]Canadian Mathematical Society 2003.

holds for example in Gödel's constructible universe. Here, a group of cardinality λ is called *almost-free* if all its subgroups of smaller cardinality than λ are free.

Since the existence of \aleph_2 -free *E*-rings of cardinality \aleph_2 is undecidable in ordinary set theory ZFC (see [15, Theorem 5.1] and [16]) it is hopeless to conjecture that there exist almost-free *E*-rings of cardinality κ in ZFC for cardinals κ larger than 2^{\aleph_0} . However, we will prove in this paper that there are \aleph_1 -free *E*-rings in ZFC of cardinality λ for every regular cardinal $\aleph_1 \leq \lambda \leq 2^{\aleph_0}$. Thus the existence of almostfree *E*-rings of size \aleph_1 in ZFC follows.

The construction of \aleph_1 -free *E*-rings *R* in ZFC is much easier if $|R| = 2^{\aleph_0}$, because in case $|R| = \aleph_1$ we are closer to freeness, a property which tries to prevent endomorphisms from being scalar multiplication. Thus we need more algebraic arguments and will utilize a combinatorial prediction principle similar to the one used by the first two authors in [14] for constructing almost-free groups of cardinality \aleph_1 with prescribed endomorphism rings.

The general method for such constructions is very natural and it will be explained in full detail in Shelah [21, Chapter VII, Section 5]. Our notations are standard and for unexplained notions we refer to [11, 12, 13] for abelian group theory and to [7] for set-theory. All groups under consideration are abelian.

2 Topology, Trees and a Forest

In this section we explain the underlying geometry of our construction which was used also in [14], see there for further details.

Let *F* be a fixed countable principal ideal domain with $1 \neq 0$ with a fixed infinite set $S = \{s_n : n \in \omega\}$ of pair-wise coprime elements, that is $s_nF + s_mF = F$ for all $n \neq m$. For brevity we will say that *F* is a *p*-domain, which certainly cannot be a field. We choose a sequence of elements

(2.1)
$$q_0 = 1 \text{ and } q_{n+1} = s_n q_n \text{ for all } n \in \omega$$

in *F*, hence the descending chain $q_n F$ ($n \in \omega$) of principal ideals satisfies $\bigcap_{n \in \omega} q_n F = 0$ and generates the Hausdorff *S*-topology on *F*. Thus *F* is a dense and *S*-pure subring of its *S*-adic completion \hat{F} satisfying $q_n F = q_n \hat{F} \cap F$ for all $n \in \omega$.

Now let $T = \omega^{>} 2$ denote the tree of all finite branches $\tau \colon n \to 2$ $(n \in \omega)$. Moreover, $\omega^{>} 2 = Br(T)$ denotes all infinite branches $\eta \colon \omega \to 2$ and clearly $\eta \upharpoonright_{n} \in T$ for all $\eta \in Br(T)$ $(n \in \omega)$. If $\eta \neq \mu \in Br(T)$ then

$$br(\eta, \mu) = \inf\{n \in \omega : \eta(n) \neq \mu(n)\}\$$

denotes the *branch point* of η and μ . If $C \subset \omega$ then we collect the subtree

$$T_C = \{ \tau \in T : \text{ if } e \in l(\tau) \setminus C \text{ then } \tau(e) = 0 \}$$

of *T* where $l(\tau) = n$ denotes the *length* of the finite branch $\tau : n \to 2$. Similarly,

$$Br(T_C) = \{ \eta \in Br(T) : \text{ if } e \in \omega \setminus C \text{ then } \eta(e) = 0 \}$$

and hence $\eta \upharpoonright_n \in T_C$ for all $\eta \in Br(T_C)$ $(n \in \omega)$.

Now we collect some trees to build a forest. Let $\aleph_1 \leq \lambda \leq 2^{\aleph_0}$ be a regular cardinal and choose a family $\mathfrak{C} = \{C_\alpha \subset \omega : \alpha < \lambda\}$ of pair-wise almost disjoint infinite subsets of ω . Let $T \times \alpha = \{v \times \alpha : v \in T\}$ be a disjoint copy of the tree T and let $T_\alpha = T_{C_\alpha} \times \alpha$ for $\alpha < \lambda$. For simplicity we denote the elements of T_α by τ instead of $\tau \times \alpha$ since it will always be clear from the context to which α the finite branch τ refers to. By [14, Observation 2.1] we may assume that each tree T_α is perfect for $\alpha < \lambda$, *i.e.* if $n \in \omega$ then there is at most one finite branch $\eta \upharpoonright_n$ such that $\eta \upharpoonright_{(n+1)} \neq \mu \upharpoonright_{(n+1)}$ for some $\mu \in T_\alpha$. We build a forest by letting

$$T_{\Lambda} = \bigcup_{\alpha < \lambda} T_{\alpha}.$$

Now we define our *base algebra* as $B_{\Lambda} = F[z_{\tau} : \tau \in T_{\Lambda}]$ which is a pure and dense subalgebra of its *S*-adic completion $\widehat{B_{\Lambda}}$ taken in the *S*-topology on B_{Λ} .

For later use we state the following definition which allows us to view the algebra B_{Λ} as a module generated over *F* by monomials in the "variables" z_{τ} ($\tau \in T_{\Lambda}$).

Definition 2.1 Let *X* be a set of commuting variables and *R* an *F*-algebra. If $Y \subseteq R$ then M(Y) will denote the set of all products of elements from *Y*, the *Y*-monomials.

Then any map $\sigma: X \to R$ extends to a unique epimorphism $\sigma: F[X] \to F[\sigma(X)]$. Thus any $r \in F[\sigma(X)]$ can be expressed by a polynomial $\sigma_r \in F[X]$, which is a preimage under σ : There are l_1, \ldots, l_n in $\sigma(X)$ such that

$$r = \sigma_r(l_1, \dots, l_n) = \sum_{m \in \mathcal{M}(\{l_1, \dots, l_n\})} f_m m \text{ with } f_m \in F$$

becomes a polynomial-like expression.

In particular, if $Z_{\alpha} = \{z_{\tau} : \tau \in T_{\alpha}\}$ $(\alpha < \lambda)$ and $Z_{\Lambda} = \{z_{\tau} : \tau \in T_{\Lambda}\}$, then as always the polynomial ring B_{Λ} can be viewed as a free *F*-module over the basis of monomials, we have $B_{\Lambda} = \bigoplus_{z \in M(Z_{\Lambda})} zF$ and a subring $B_{\alpha} = \bigoplus_{z \in M(Z_{\alpha})} zF$.

Since $\aleph_1 \leq \lambda \leq 2^{\aleph_0} = |\operatorname{Br}(T_{C_\alpha})|$ we can choose a family $\{V_\alpha \subseteq \operatorname{Br}(T_{C_\alpha}) : \alpha < \lambda\}$ of subsets V_α of $\operatorname{Br}(T_{C_\alpha})$ with $|V_\alpha| = \lambda$ for $\alpha < \lambda$. Note that for $\alpha \neq \beta < \lambda$ the infinite branches from V_α and V_β branch at almost disjoint sets since $C_\alpha \cap C_\beta$ is finite, thus the pairs V_α , V_β are disjoint. Moreover, we may assume that for any $m \in \omega, \lambda$ pairs of branches in V_α branch above m.

3 The Construction

Following [14] we use the

Definition 3.1 Let $x \in \widehat{B_{\Lambda}}$ be any element in the completion of the base algebra B_{Λ} . Moreover, let $\eta \in V_{\alpha}$ with $\alpha < \lambda$. We define the *branch like elements* $y_{\eta nx}$ for $n \in \omega$ as follows: $y_{\eta nx} := \sum_{i \ge n} \frac{q_i}{q_n} (z_{\eta \upharpoonright i}) + x \sum_{i \ge n} \frac{q_i}{q_n} \eta(i)$.

Note that each element $y_{\eta nx}$ connects an infinite branch $\eta \in Br(T_{C_{\alpha}})$ with finite branches from the tree T_{α} . Furthermore, the element $y_{\eta nx}$ encodes the infinite branch η into an element of $\widehat{B_{\Lambda}}$. We have a first observation which describes this as an equation and which is crucial for the rest of this paper.

(3.1)
$$y_{\eta nx} = s_{n+1} y_{\eta(n+1)x} + z_{\eta \uparrow_n} + x\eta(n) \text{ for all } \alpha < \lambda, \eta \in V_{\alpha}.$$

Proof We calculate the difference

$$q_n y_{\eta nx} - q_{n+1} y_{\eta(n+1)x} = \sum_{i \ge n} q_i(z_{\eta \uparrow_i}) + x \sum_{i \ge n} q_i \eta(i) - \sum_{i \ge n+1} q_i(z_{\eta \uparrow_i}) - x \sum_{i \ge n+1} q_i \eta(i)$$
$$= q_n z_{\eta \uparrow_n} + q_n x \eta(n).$$

Dividing by q_n yields $y_{\eta nx} = s_{n+1}y_{\eta(n+1)x} + z_{\eta \uparrow_n} + x\eta(n)$.

The elements of the polynomial ring B_{Λ} are unique finite sums of monomials in Z_{λ} with coefficients in *F*. Thus, by *S*-adic topology, any $0 \neq g \in \widehat{B_{\Lambda}}$ can be expressed uniquely as a sum

$$g=\sum_{z\in[g]}g_z,$$

where z runs over an at most countable subset $[g] \subseteq M(Z_{\Lambda})$ of monomials and $0 \neq g_z \in z\hat{F}$. We put $[g] = \emptyset$ if g = 0. Thus any $g \in \widehat{B}_{\Lambda}$ has a unique *support* $[g] \subseteq M(Z_{\Lambda})$, and support extends naturally to subsets of \widehat{B}_{Λ} by taking unions of the support of its elements. It follows that

$$[y_{\eta no}] = \{ z_{\eta \upharpoonright_j \times \alpha} : j \in \omega, j \ge n \}$$

for any $\eta \in V_{\alpha}$, $n \in \omega$ and $[z] = \{z\}$ for any $z \in M(Z_{\Lambda})$.

Support can be used to define the norm of elements. If $X \subseteq M(Z_{\Lambda})$ then

$$\|X\| = \inf \left\{ eta < \lambda : X \subseteq \bigcup_{lpha < eta} M(Z_{lpha})
ight\}$$

is the *norm* of *X*. If the infimum is taken over an unbounded subset of λ , we write $||X|| = \infty$. However, since $cf(\lambda) > \omega$, the *norm of an element* $g \in B_{\Lambda}$ is $||g|| = ||[g]|| < \infty$ which is an ordinal $< \lambda$ hence either a successor or cofinal to ω . Norms extend naturally to subsets of B_{Λ} . In particular $||y_{\eta no}|| = \alpha + 1$ for any $\eta \in V_{\alpha}$.

We are ready to define the final *F*-algebra *R* as a *F*-subalgebra of the completion of B_{Λ} . Therefore choose a transfinite sequence b_{α} ($\alpha < \lambda$) which runs λ times through the non-zero pure elements

(3.2)
$$b = \sum_{m \in M} m \in B_{\Lambda}$$
 with finite $M \subseteq M(T_{\Lambda})$.

We call these *b*'s special pure elements which have the property that B_{Λ}/Fb is a free *F*-module.

Definition 3.2 Let *F* be a *p*-domain and let $B_{\Lambda} := F[z_{\tau} : \tau \in T_{\Lambda}]$ be the polynomial ring over Z_{Λ} as above. Then we define the following smooth ascending chain of *F*-subalgebras of $\widehat{B_{\Lambda}}$.

(1) $R_0 = \{0\}; R_1 = F;$ (2) $R_\alpha = \bigcup_{\beta < \alpha} R_\beta$, for α a limit ordinal; (3) $R_{\alpha+1} = R_\alpha [y_{\eta n x_\alpha}, z_\tau : \eta \in V_\alpha, \tau \in T_\alpha, n \in \omega];$ (4) $R = R_\lambda = \bigcup_{\alpha < \lambda} R_\alpha.$ We let $x_\alpha = b_\alpha$ if $b_\alpha \in R_\alpha$ with $||b_\alpha|| \le \alpha$ and $x_\alpha = 0$ otherwise.

For the rest of this paper purification is *F*-purification and properties like freeness, linear dependence or rank are taken with respect to *F*. First we prove some properties of the rings R_{α} ($\alpha \leq \lambda$). It is easy to see that $R_{\alpha} = F[y_{\eta n x_{\beta}}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta},$ $n \in \omega, \beta < \alpha]$ is not a polynomial ring: the set $\{y_{\eta n x_{\alpha}}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta}, n \in \omega,$ $\beta < \alpha\}$ is not algebraically independent over *F*. Nevertheless we have the following

Lemma 3.3 For any fixed $n \in \omega$ and $\alpha < \lambda$ the set $\{y_{\eta n x_{\alpha}}, z_{\tau} : \eta \in V_{\alpha}, \tau \in T_{\alpha}\}$ is algebraically independent over R_{α} . Thus $R_{\alpha}[y_{\eta n x_{\alpha}}, z_{\tau} : \eta \in V_{\alpha}, \tau \in T_{\alpha}]$ is a polynomial ring.

Proof Assume that the set of monomials $M(y_{\eta n x_{\alpha}}, z_{\tau} : \eta \in V_{\alpha}, \tau \in T_{\alpha})$ is linearly dependent over R_{α} for some $\alpha < \lambda$ and $n \in \omega$. Then there exists a non-trivial linear combination of the form

$$(3.3) \qquad \qquad \sum_{y \in Y} \sum_{z \in E_y} g_{y,z} yz = 0$$

with $g_{y,z} \in R_{\alpha}$ and finite sets $Y \subset M(y_{\eta n x_{\alpha}} : \eta \in V_{\alpha})$ and $E_y \subset M(Z_{\alpha})$. We have chosen $V_{\beta} \cap V_{\gamma} = \emptyset$ for all $\beta \neq \gamma$ and $M(Z_{\alpha}) \cap R_{\alpha} = \emptyset$. Moreover $||R_{\alpha}|| < ||R_{\alpha+1}||$ and hence there exists a basal element $z_y \in B_{\Lambda}$ (high enough in an infinite branch) for any $1 \neq y \in Y$ with the following properties

- (i) $z_y \notin E_{\tilde{y}}$ for all $\tilde{y} \in Y$;
- (ii) $z_y \notin [\tilde{y}]$ for all $y \neq \tilde{y} \in Y$;
- (iii) $z_{y} \notin [g_{\tilde{y},z}]$ for all $\tilde{y} \in Y, z \in E_{\tilde{y}}$;
- (iv) $z_{y} \in [y]$.

Now we restrict the equation (3.3) to the basal element z_y and obtain $g_{y,z}z_yz = 0$ for all $z \in E_y$. Since $z_y \notin [g_{y,z}]$ we derive $g_{y,z} = 0$ for all $1 \neq y \in Y$ and $z \in E_y$. Therefore equation (3.3) reduces to $\sum_{z \in E_1} g_{1,z}z = 0$. We apply $M(Z_\alpha) \cap R_\alpha = \emptyset$ once more. Since each z is a basal element from the set $M(Z_\alpha)$ we get that $g_{1,z} = 0$ for all $z \in E_1$. Hence $g_{y,z} = 0$ for all $y \in Y$, $z \in E_y$, contradicting the assumption that (3.3) is a non-trivial linear combination.

The following lemma shows that the *F*-algebras $R_{\delta}/s_{n+1}R_{\delta}$ are also polynomial rings over $F/s_{n+1}F$ for every $n < \omega$. For $\delta < \lambda$ and $n \in \omega$ we can choose a set $U_{n\delta} \subseteq$ V_{δ} such that for any $\eta \in V_{\delta}$ there is $\eta' \in U_{n\delta}$ with $\operatorname{br}(\eta, \eta') > n$ and if $\eta, \eta' \in U_{n\delta}$, then $\operatorname{br}(\eta, \eta') \leq n$. Obviously $|U_{n\delta}| \leq 2^n$. Moreover, let $T'_{\delta} = T_{\delta} \setminus \{z_{\eta_{1n}} : \eta \in U_{n\delta}\}$.

Lemma 3.4 If $n < \omega$, then the set $X_{n+1}^{\delta} = \{y_{\eta n x_{\beta}}, y_{\eta(n+1)x_{\beta}}, z_{\tau} : \eta \in U_{n\beta}, \tau \in T_{\beta}', \beta < \lambda\}$ is algebraically independent over $F/s_{n+1}F$ and generates the algebra $R_{\delta}/s_{n+1}R_{\delta}$. Thus $R_{\delta}/s_{n+1}R_{\delta} = F/s_{n+1}F[X_{n+1}^{\delta}]$ is a polynomial ring.

Remark Here we identify the elements in $X_{n+1}^{\delta} \subseteq R_{\delta}$ with their canonical images *modulo* $s_{n+1}R_{\delta}$.

Proof First we show that X_{n+1}^{δ} is algebraically independent over $F/s_{n+1}F$. Suppose

(3.4)
$$\sum_{y \in Y} \sum_{z \in E_y} f_{y,z} yz \equiv 0 \mod s_{n+1}R$$

with $f_{y,z} \in F$ and finite sets $Y \subseteq M(y_{\eta n x_{\beta}}, y_{\eta(n+1)x_{\beta}} : \eta \in U_{n\beta}, \beta < \delta)$ and $E_y \subseteq M(\bigcup_{\beta < \delta} T'_{\beta})$.

Choose a basal element $z_y \in [y]$ for any $1 \neq y \in Y$ which is a product of basal element z_{τ} with $l(\tau) = n$ and $z_y \notin [y']$ for any $y \neq y' \in Y$ and moreover require $z_y \notin E_{y'}$ for all $y' \in Y$. This is possible by the choice of $U_{n\beta}$ and T'_{β} . Restricting (3.4) to z_y yields

$$\sum_{z \in E_y} f_{y,z} z_y z \equiv 0 \mod s_{n+1} R$$

hence $f_{yz} \equiv 0 \mod s_{n+1}R$. Therefore (3.4) reduces to $\sum_{z \in E_1} f_{1,z}z \equiv 0 \mod s_{n+1}F$ and thus also $f_{1,z} \equiv 0 \mod s_{n+1}F$ is immediate. This shows that the set X_{n+1}^{δ} is algebraically independent over $F/s_{n+1}F$.

Finally we must show that $R_{\delta}/s_{n+1}R_{\delta} = (F/s_{n+1}F)[X_{n+1}^{\delta}]$. We will show by induction on $\alpha < \delta$ that

$$(R_{\alpha} + s_{n+1}R_{\delta})/s_{n+1}R_{\delta} \subseteq (F/s_{n+1}F)[X_{n+1}^{\delta}].$$

If $\alpha=0$ or $\alpha=1$ then the claim is trivial, hence assume that $\alpha>1$ and for all $\beta<\alpha$ we have

$$(R_{\beta} + s_{n+1}R_{\delta})/s_{n+1}R_{\delta} \subseteq (F/s_{n+1}F)[X_{n+1}^{\delta}].$$

If α is a limit ordinal, then $(R_{\alpha} + s_{n+1}R_{\delta})/s_{n+1}R_{\delta} \subseteq (F/s_{n+1}F)[X_{n+1}^{\delta}]$ is immediate. Thus assume that $\alpha = \beta + 1$. By assumption and $x_{\beta} \in R_{\beta}$ we know that $(x_{\beta} + s_{n+1}R_{\delta}) \in (F/s_{n+1}F)[X_{n+1}^{\delta}]$. Hence equation (3.1) shows that the missing elements $z_{\eta \restriction_n} + s_{n+1}R_{\delta}$ $(\eta \in U_{n\beta})$ are in $(F/s_{n+1}F)[X_{n+1}^{\delta}]$.

For $\eta \in V_{\beta}$ we can choose $\eta' \in U_{n\beta}$ such that $\operatorname{br}(\eta, \eta') > n$. Then using (3.1) we obtain $y_{\eta n x_{\beta}} - y_{\eta' n x_{\beta}} \equiv 0 \mod s_{n+1}R$ and therefore $y_{\eta n x_{\beta}} + s_{n+1}R \in (F/s_{n+1}F)[X_{n+1}^{\delta}]$. By induction on $m < \omega$ using again (3.1) it is now easy to verify $y_{\eta n x_{\beta}} + s_{n+1}R_{\delta} \in (F/s_{n+1}F)[X_{n+1}^{\delta}]$ for every $m < \omega, \eta \in U_{n\beta}$ and hence $R_{\alpha} + s_{n+1}R_{\delta} \subseteq (F/s_{n+1}F)[X_{n+1}^{\delta}]$ which finishes the proof.

Now we are able to prove that the members R_{α} of the chain $\{R_{\sigma} : \sigma < \lambda\}$ are *F*-pure submodules of *R* and that *R* is an \aleph_1 -free domain.

Lemma 3.5 R is a commutative F-algebra without zero-divisors and R_{α} as an F-module is pure in R for all $\alpha < \lambda$.

Proof By definition each R_{α} is a commutative *F*-algebra and hence *R* is commutative. To show that *R* has no zero-divisors it is enough to show that each member R_{α} of the chain $\{R_{\sigma} : \sigma < \lambda\}$ is an *F*-algebra without zero-divisors. Since *F* is a domain we can assume, by induction, that R_{β} has no zero-divisors for all $\beta < \alpha$ and some $1 < \alpha < \lambda$. If α is a limit ordinal then it is immediate that R_{α} has no zero-divisors. Hence $\alpha = \gamma + 1$ is a successor ordinal and R_{γ} is a domain. If $g, h \in R_{\alpha}$ with $gh = 0 \neq g$, then we must show that h = 0. Write g in the form

(g)
$$g = \sum_{y \in Y_g} \sum_{z \in E_{g,y}} g_{y,z} y_z$$

with $0 \neq g_{y,z} \in R_{\gamma}$ and finite sets $E_{g,y} \subset M(Z_{\gamma})$ and $Y_g \subset M(y_{\eta n x_{\gamma}} : \eta \in V_{\gamma})$ for some $n \in \omega$. By (3.1) and $x_{\gamma} \in R_{\gamma}$ we may assume *n* is fixed. Similarly, we write

(h)
$$h = \sum_{y \in Y_h} \sum_{z \in E_{h,y}} h_{y,z} yz$$

with $h_{y,z} \in R_{\gamma}$ and finite sets $Y_h \subset M(y_{\eta n x_{\gamma}} : \eta \in V_{\gamma})$ and $E_{h,y} \subset M(Z_{\gamma})$.

Next we want $h_{y,z} = 0$ for all $y \in Y_h, z \in E_{h,y}$. The proof follows by induction on the number of $h_{y,z}$'s. If $h = h_{w,z'}wz'$, then

$$gh = \sum_{y \in Y_g, z \in E_{g,y}} g_{y,z} h_{w,z'} yzwz'$$

and from Lemma 3.3 follows $g_{y,z}h_{w,z'} = 0$ for all $y \in Y_g$, $z \in E_{g,y}$. Since R_γ has no zero-divisors we obtain $h_{w,z'} = 0$ and thus h = 0. Now assume that k + 1 coefficients $h_{y,z} \neq 0$ appear in (h). We fix an arbitrary coefficient $h_{w,z'}$ and write $h = h_{w,z'}wz' + h'$ so that wz' does not appear in the representation of h'. Therefore the product gh is of the form

(gh)
$$gh = \sum_{y \in Y_g} \sum_{z \in E_{g,y}} g_{y,z} h_{w,z'} yzwz' + gh'.$$

If the monomial wz' appears in the representation of (g) then the monomial $w^2(z')^2$ appears in the representation of (gh) only once with coefficient $g_{w,z'}h_{w,z'}$. Using Lemma 3.3 and the hypothesis that R_{γ} has no zero-divisors we get $h_{w,z'} = 0$.

If the monomial wz' does not appear in the representation of (g) then $g_{y,z}h_{w,z'} = 0$ for all appearing coefficients $g_{y,z}$ is immediate by Lemma 3.3. Thus $h_{w,z'} = 0$ and h = h' follows. By induction hypothesis also h = 0 and R has no zero-divisors.

It remains to show that R_{α} is a pure *F*-submodule of *R* for $\alpha < \lambda$. Let $g \in R \setminus R_{\alpha}$ such that $fg \in R_{\alpha}$ for some $0 \neq f \in F$ and choose $\beta < \lambda$ minimal with $g \in R_{\beta}$. Then $\beta > \alpha$ and it is immediate that $\beta = \gamma + 1$ for some $\gamma \ge \alpha$, hence $fg \in R_{\alpha} \subset R_{\gamma}$. Now we can write

(g)
$$g = \sum_{y \in Y_g} \sum_{z \in E_{g,y}} g_{y,z} yz$$

with $g_{y,z} \in R_{\gamma}$ and finite sets $Y_g \subset M(y_{\nu k x_{\gamma}} : \nu \in V_{\gamma})$ for some fixed $k \in \omega$ and $E_g \subset M(Z_{\gamma})$ and clearly

$$fg = \sum_{y \in Y_g} \sum_{z \in E_{g,y}} fg_{y,z} yz \in R_{\gamma}.$$

Hence there exists $g_{\gamma} \in R_{\gamma}$ such that

$$fg-g_{\gamma}=\sum_{y\in Y_g}\sum_{z\in E_{g,y}}fg_{y,z}yz-g_{\gamma}=0.$$

From Lemma 3.3 follows $fg_{y,z} = 0$ for all $1 \neq y \in Y_g$, $1 \neq z \in E_{g,y}$, thus $g_{y,z} = 0$ because *R* is a torsion-free *F*-module. Hence (g) reduces to the summand with y = z = 1, but $g = g_{1,1} \in R_{\gamma}$ contradicts the minimality of β . Thus $g \in R_{\alpha}$ and R_{α} is pure in *R*.

From the next theorem follows for $\alpha = 0$ that *R* is an \aleph_1 -free *F*-module. We say that *R* is *polynomial* \aleph_1 -free if every countable *F*-submodule of *R* can be embedded into a polynomial subring over *F* of *R*. Clearly, polynomial \aleph_1 -freeness implies \aleph_1 -freeness.

Theorem 3.6 If F is a p-domain and $R = \bigcup_{\alpha < \lambda} R_{\alpha}$ is the F-algebra constructed above, then R is a domain of size λ with R/R_{α} is polynomial \aleph_1 -free for all $\alpha < \lambda$.

Proof $|R| = \lambda$ is immediate by construction and *R* is a domain by Lemma 3.5. It remains to show that *R* is an polynomial \aleph_1 -free ring. Therefore let $U \subseteq R$ be a countable pure submodule of *R*. There exist elements $u_i \in R$ such that

$$U = \langle u_1, \ldots, u_n, \ldots \rangle_* \subseteq R.$$

Here the suffix * denotes purification as an *F*-module. Let $U_n := \langle u_1, \ldots, u_n \rangle_*$ for $n \in \omega$. Hence there is a minimal $\alpha_n < \lambda$ such that $u_i \in R_{\alpha_n}$ for $i \leq n$ and $n \in \omega$, which obviously is a successor ordinal $\alpha_n = \gamma_n + 1$. Moreover, $U_n \subseteq R_{\alpha_n}$ since R_{α_n} is pure in *R* and by induction we may assume that R_{γ_n} is polynomial \aleph_1 -free. Fix $n \in \omega$. Using $R_{\alpha_n} = R_{\gamma_n+1} = R_{\gamma_n}[y_{\eta m x_{\gamma_n}}, z_{\tau} : \eta \in V_{\gamma_n}, \tau \in T_{\gamma_n}, m \in \omega]$ from Definition 3.2 we can write

$$u_i = \sum_{y \in Y_i} \sum_{z \in E_{i,y}} g_{y,z,i} yz$$

with $g_{y,z,i} \in R_{\gamma_n}$ and finite sets $Y_i \subset M(y_{\eta m x_{\gamma_n}} : \eta \in V_{\gamma_n})$ for some fixed $m \in \omega$ and $E_{i,y} \subset M(Z_{\gamma_n})$. Choose the pure submodule $R_{U_n} := \langle g_{y,z,i} : y \in Y_i, z \in E_{i,y}, 1 \leq i \leq n \rangle_* \subseteq R_{\gamma_n}$ of R_{γ_n} and let

$$U'_{n} := \{y, z : y \in Y_{i}, z \in E_{i,y}, 1 \le i \le n\}.$$

By induction there is a polynomial subring $L_n \subseteq R_{\gamma_n}$ of R_{γ_n} which contains R_{U_n} purely. Again by induction we may assume that L_{n+1} is a polynomial ring over L_n

https://doi.org/10.4153/CJM-2003-032-8 Published online by Cambridge University Press

for all $n \in \omega$. Hence $U''_n := L_n[U'_n] \subseteq_* R_{\alpha_n}$ is a polynomial ring by Lemma 3.3 and purity of R_{U_n} in R_{γ_n} . Thus $U_n \subseteq_* U''_n \subseteq_* R_{\alpha_n}$. By construction $L_{n+1}[U'_{n+1}]$ is a polynomial ring over $L_n[U'_n]$ and thus the union $U'' = \bigcup_{n \in \omega} U''_n$ is a polynomial ring containing U. Similar arguments show that R/R_α is polynomial \aleph_1 -free for every $\alpha < \lambda$.

4 Main Theorem

In this section we will prove that the *F*-algebra *R* from Definition 3.2 is an *E*(*F*)algebra, hence every *F*-endomorphism of *R* viewed as an *F*-module is multiplication by some element *r* from *R*. Every endomorphism of *R* is uniquely determined by its action on B_{Λ} which is an *S*-dense submodule of *R*. It is therefore enough to show that a given endomorphism φ of *R* acts as multiplication by some $r \in R$ when restricted to B_{Λ} . It is our first aim to show that such φ acts as multiplication on each special pure element x_{α} for $\alpha < \lambda$. Therefore we need the following

Definition 4.1 A set $W \subseteq \lambda$ is closed if

$$x_{\alpha} \in R_{W}^{\alpha} := F[y_{\eta n x_{\beta}}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W, \beta < \alpha, n \in \omega]$$

for every $\alpha \in W$. Moreover let $R_W := F[y_{\eta n x_\beta}, z_\tau : \eta \in V_\beta, \tau \in T_\beta, \beta \in W, n \in \omega]$.

We have a first lemma.

Lemma 4.2 Any finite subset of λ is a subset of a finite and closed subset of λ .

Proof If $\emptyset \neq W \subseteq \lambda$ is finite then let $\gamma = \max(W)$. We prove the claim by induction on γ . If $\gamma = 0$, then $W = \{0\}$, $R_W = F$, $x_0 = 0$ and there is nothing to prove. If $\gamma > 0$, then $x_{\gamma} \in R_{\gamma} = F[y_{\eta n x_{\beta}}, z_{\tau} : n \in \omega, \eta \in V_{\beta}, \tau \in T_{\beta}, \beta < \gamma]$ and there exists a finite set $Q \subseteq \gamma$ such that

$$x_{\gamma} \in F[y_{\eta n x_{\beta}}, z_{\tau} : n \in \omega, \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in Q].$$

If $Q_1 = Q \cup (W \setminus \{\gamma\})$ then $\max(Q_1) < \gamma$. Thus by induction there exists a closed and finite $Q_2 \subseteq \lambda$ containing Q_1 . It is now easy to see that $W' = Q_2 \cup \{\gamma\}$ is as required.

Closed and finite subsets W of λ give rise to nice presentations of elements in R_W .

Lemma 4.3 Let W be a closed and finite subset of λ and $r \in R_W$. Then there exists $m_*^r \in \mathbb{N}$ such that $r \in F[y_{\eta n x_\beta}, z_\tau : \eta \in V_\beta, \tau \in T_\beta, \beta \in W]$ for every $n \ge m_*^r$.

Proof We apply induction on |W|. If |W| = 0, then $R_W = R_{\emptyset} = F$ and Lemma 4.3 holds. If |W| > 0 then $\gamma = \max(W)$ is defined. It is easy to see that $W' = W \setminus \{\gamma\}$ is still closed and finite. Thus $x_{\delta} \in R_{W'}$ for all $\delta \in W$. By induction there is m_*^{δ} such

that $x_{\delta} \in F[y_{\eta n x_{\beta}}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W']$ for every $n \ge m_*^{\delta}$ ($\delta \in W$). Any $r \in R_W$ can be written as a polynomial

$$r = \sigma \big(\{ y_{\eta_{r,l}k_{r,l}x_{\beta_{r,l}}}, z_{\tau_{r,j}} : \eta_{r,l} \in V_{\beta_{r,l}}, \tau_{r,j} \in T_{\beta_{r,j}}, l < l_r, j < j_r \} \big)$$

for some l_r , $j_r \in \mathbb{N}$, $\beta_{r,l}$, $\beta_{r,j} \in W$ and $\eta_{r,l} \in V_{\beta_{r,l}}$, $\tau_{r,j} \in T_{\beta_{r,j}}$. Let $m_*^r = \max(\{m_*^{\delta}, k_{r,l} : l < l_r, \delta \in W\})$. Using (3.1) now it follows easily that $r \in F[y_{\eta}nx_{\beta}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W]$ for every $n \ge m_*^r$.

We are ready to show that every endomorphism of *R* acts as multiplication on each of the special pure elements x_{α} .

Definition 4.4 If R_{α} is as above, then let $G_{\alpha} = \langle y_{\eta n x_{\alpha}}, z_{\tau} : \eta \in V_{\alpha}, \tau \in T_{\alpha}, n \in \omega \rangle_F$ be the *F*-submodule of R_{α} for any $\alpha < \lambda$.

From (3.1) we note that $x_{\alpha} \in G_{\alpha}$ and our claim will follow if we can show that every homomorphism from G_{α} to R^+ maps x_{α} to a multiple of itself.

Proposition 4.5 If $h: G_{\alpha} \to R$ is an F-homomorphism, then $h(x_{\alpha}) \in x_{\alpha}R$.

Proof Let $h: G_{\alpha} \to R$ be an *F*-homomorphism and assume towards contradiction that $h(x_{\alpha}) \notin x_{\alpha}R$. For a subset $V \subseteq V_{\alpha}$ of cardinality λ we define the *F*-submodule

$$G_V = \langle x_{\alpha}, y_{\eta n x_{\alpha}} : \eta \in V, n \in \omega \rangle_* \subseteq G_{\alpha}$$

and note that $\{z_{\eta\uparrow_n} : \eta \in V, n \in \omega\} \subseteq G_V$ from $x_\alpha \in G_V$ and (3.1). Also $G_{V_\alpha} \in \mathfrak{H} =: \{G_V : V \subseteq V_\alpha, |V| = \lambda\} \neq \emptyset$ and we can choose $\beta_* = \min\{\beta \leq \lambda : \exists G_V \in \mathfrak{H} \text{ and } h(G_V) \subseteq R_\beta\}$. There is $G_V \in \mathfrak{H}$ such that $h(G_V) \subseteq R_{\beta_*}$.

We first claim that $\beta_* < \lambda$ and assume towards contradiction that $\beta_* = \lambda$ and we can choose inductively a minimal countable subset $U =: U_V \subseteq V$ such that

(4.1)
$$(\forall \eta \in V)(\forall n \in \omega)(\exists \rho \in U_V)$$
 such that $\eta \upharpoonright_n = \rho \upharpoonright_n$.

For each $\eta \in V$ we define the countable set $Y_{\eta} = \{y_{\eta n x_{\alpha}} : n < \omega\}$. Using $cf(\lambda) = \lambda > \aleph_0$ we can find a successor ordinal $\beta < \lambda$ such that $h(x_{\alpha}) \in R_{\beta}$ and $h(Y_{\rho}) \subseteq R_{\beta}$ for all $\rho \in U$. If $n_* \in \omega$ and $\eta \in V$ choose $n_* < n \in \omega$ and $\rho_n \in U$ by (4.1) such that $\eta \upharpoonright_n = \rho_n \upharpoonright_n$. From Definition 3.1 and (2.1) we see that

$$(4.2) \quad y_{\eta n_* x_\alpha} - y_{\rho_n n_* x_\alpha} = \sum_{i \ge n_*} \frac{q_i}{q_{n_*}} (z_{\eta \uparrow_i}) + x_\alpha \sum_{i \ge n_*} \frac{q_i}{q_{n_*}} \eta(i) - \sum_{i \ge n_*} \frac{q_i}{q_{n_*}} (z_{\rho_n \uparrow_i}) - x_\alpha \sum_{i \ge n_*} \frac{q_i}{q_{n_*}} \rho_n(i)$$
$$= \sum_{i \ge n+1} \frac{q_i}{q_{n_*}} (z_{\eta \uparrow_i}) + x_\alpha \sum_{i \ge n} \frac{q_i}{q_{n_*}} \eta(i) - \sum_{i \ge n+1} \frac{q_i}{q_{n_*}} (z_{\rho_n \uparrow_i}) - x_\alpha \sum_{i \ge n} \frac{q_i}{q_{n_*}} \rho_n(i)$$

is divisible by s_{n-1} . Thus s_{n-1} divides $h(y_{\eta n_* x_\alpha} - y_{\rho_n n_* x_\alpha})$ for $n_* < n < \omega$. From $h(y_{\rho_n n_* x_\alpha}) \in R_\beta$ and the choice of $\rho_n \in U$ it follows that $h(y_{\eta n_* x_\alpha}) + R_\beta \in R/R_\beta$

is divisible by infinitely many s_n . Hence $h(y_{\eta n_* x_\alpha}) \in R_\beta$ since R/R_β is \aleph_1 -free by Lemma 3.6. However n_* was chosen arbitrarily, we therefore have $h(Y_\eta) \subseteq R_\beta$ for all $\eta \in V$ and $h(G_V) \subseteq R_\beta$ follows, which contradicts the minimality of β_* . Therefore $\beta_* \neq \lambda$.

Since $h(G_V) \subseteq R_{\beta_*}$ we can write $h(y_{\eta o x_\alpha}) = \sigma_\eta(\{y_{\nu_{\eta,l}m_{\eta,l}x_{\beta_{\eta,l}}}, z_{\tau_{\eta,k}} : l < l_\eta, k < k_\eta\})$ for every $\eta \in V$ and suitable $\beta_{\eta,l}, \beta_{\eta,k} < \beta_*, \nu_{\eta,l} \in V_{\beta_{\eta,l}}$ and $\tau_{\eta,k} \in T_{\beta_{\eta,k}}$. Recall that polynomials σ_η depend on $\eta \in V$. For notational simplicity we shall assume that all pairs $(\beta_{\eta,l}, \beta_{\eta,k})$ are distinct. For obvious cardinality reasons we may assume without loss of generality that $l_\eta = l_*$ and $k_\eta = k_*$ for some fixed $l_*, k_* \in \mathbb{N}$ for all $\eta \in V$. Moreover, since F is countable, we may assume that the polynomials σ_η are independent of η and thus we can write $\sigma_\eta = \sigma$. Hence

$$h(y_{\eta o x_{\alpha}}) = \sigma(\{y_{\nu_{\eta,l} m_{\eta,l} x_{\beta_{\eta,l}}}, z_{\tau_{\eta,k}} : l < l_*, k < k_*\}).$$

We put $W_{\eta} = \{\beta_{\eta,l}, \beta_{\eta,k} : l < l_*, k < k_*\}$, which is a finite subset of λ for every $\eta \in V$. By Lemma 4.2 we may assume that W_{η} is closed. Moreover, possibly enlarging W_{η} , we also may assume that $h(x_{\alpha}) \in R_{W_{\eta}}$ for all $\eta \in V$. Since $\beta_* < \lambda$ and λ is regular the ordinal β_* is a set of cardinality $< \lambda$ with $W_{\eta} \subseteq \beta_*$ for all $\eta \in V$. By cardinality arguments it easily follows that there is $W = \{\beta_l, \beta_k : l < l_*, k < k_*\} \subseteq \beta_*$ such that $W_{\eta} \in W$ for all $\eta \in V'$ for some $V' \subseteq V$ of cardinality λ . We rename V = V'. Let $m_{\eta} \in \mathbb{N}$ such that $m_{\eta} > l(\tau_{\eta,k})$ for all $\eta \in V$ and $k < k_*$. Again, passing to an equipotent subset (of) V we may assume that $m_{\eta} = m_1$ is fixed for all $\eta \in V$. Now we apply Lemma 4.3 to obtain $h(y_{\eta o x_{\alpha}}) \in F[y_{\eta n_{\eta} x_{\beta}}, z_{\tau} : \eta \in V_{\beta}, \tau \in T_{\beta}, \beta \in W]$ for $\eta \in V$ and some $n_{\eta} \in \mathbb{N}$. Since $|V| > \aleph_0$ we may assume that $n_{\eta} = n_*$ does not depend on $\eta \in V$ anymore. If $m_* = \max\{n_*, m_1\}$ we find new presentations

(4.3)
$$h(y_{\eta o x_{\alpha}}) = \sigma(\{y_{\nu_{n} l} m_* x_{\beta_l}, z_{\tau_{nk}} : l < l_*, k < k_*\})$$

for every $\eta \in V$ and $\beta_l, \beta_k \in W, \nu_{\eta,l} \in V_{\beta_l}$ and $\tau_{\eta,k} \in T_{\beta_k}$. Moreover, $l(\tau_{\eta,k}) \leq m_*$ for all $\eta \in V$ and $k < k_*$. The reader may notice that when obtaining equation (4.3) the polynomial σ and the natural number k_* may become dependent on η again but a cardinality argument allows us to unify them again and for notational reasons we stick to σ and k_* . Using that T_{α} is countable, we are allowed to assume that $\tau_{\eta,k} = \tau_k$ for all $\eta \in V$ and $k < k_*$, hence $h(y_{\eta o x_{\alpha}}) = \sigma(\{y_{\nu_{\eta,l}m_*x_{\beta_l}}, z_{\tau_k} : l < l_*, k < k_*\})$.

Finally, increasing m_* (and unifying σ and k_* again) we may assume that all $\nu_{\eta,l} \mid_{m_*}$ are different $(l < l_*)$ and that

(4.4)
$$\nu_{\eta,l} \upharpoonright_{m_*} \neq \tau_k$$

for all $\eta \in V$ and $l < l_*, k < k_*$. Using a cardinality argument and the countability of the trees T_{β_l} we may assume that $\nu_{\eta,l} \upharpoonright_{m_*}$ does not dependent on $\eta \in V$ for all $l < l_*$. Thus

(4.5)
$$\nu_{\eta,l} \upharpoonright_{m_*} =: \bar{\tau}_l \in T_{\beta_l}$$

and $\tau_k \neq \overline{\tau}_l$ for all $l < l_*$, $k < k_*$ from (4.4). Since *W* is closed and $h(x_\alpha) \in R_W$ we can finally write

$$h(x_{\beta}) = \sigma_{\beta} \big(\{ y_{\nu_{\beta,l}m_* x_{\beta_l}}, z_{\tau_{\beta,k}} : l < l_{\beta}, k < k_{\beta} \} \big)$$

for every $\beta \in W \cup \{\alpha\}$ and suitable $l_{\beta}, k_{\beta} \in \mathbb{N}, \beta_{l}, \beta_{k} \in W$. Obviously, increasing m_{*} once more, we may assume that

(4.6)
$$\nu_{\beta,l} \upharpoonright_{m_*} \neq \nu_{\beta',l'} \upharpoonright_{m_*} \text{ and } \nu_{\beta,l} \upharpoonright_{m_*} \neq \bar{\tau}_i$$

for all $\beta, \beta' \in W \cup \{\alpha\}, l < l_{\beta}, l' < l_{\beta'}, j < l_*$. Now choose any $n_* > m_*$ such that

- (i) $n_* > \sup(C_{\beta} \cap C_{\beta'})$ for all $\beta \neq \beta' \in W \cup \{\alpha\}$;
- (ii) s_{n_*} is relatively prime to all coefficients in σ ;
- (iii) s_{n_*} is relatively prime to all coefficients in σ_β for all $\beta \in W \cup \{\alpha\}$.

Using $\aleph_0 < |V|$ we can choose pairs of branches $\eta_1, \eta_2 \in V$ with arbitrarily large branch point br $(\eta_1, \eta_2) = n + 1 \ge n_*$. Let U be the infinite set of all such n's. An easy calculation using (3.1) shows

$$y_{\eta_1 o x_\alpha} - y_{\eta_2 o x_\alpha} = \left(\prod_{l \le n} s_l\right) (y_{\eta_1 n x_\alpha} - y_{\eta_2 n x_\alpha})$$

and as $br(\eta_1, \eta_2) = n + 1$ we obtain

(4.7)
$$y_{\eta_1 o x_\alpha} - y_{\eta_2 o x_\alpha} \equiv \left(\prod_{l \le n} s_l\right) x_\alpha \mod s_{n+1} R$$

We now distinguish three cases.

Case 1 If $br(\nu_{\eta_1,l}, \nu_{\eta_2,l}) > n + 1$ for some $l < l_*$ then from (3.1) follows

$$y_{\nu_{\eta_1,l}m_*x_{\beta_l}} - y_{\nu_{\eta_2,l}m_*x_{\beta_l}} \equiv 0 \mod s_{n+1}R.$$

Case 2 If $br(\nu_{\eta_1,l}, \nu_{\eta_2,l}) = n + 1$ for some $l < l_*$ then from (3.1) follows

$$y_{\nu_{\eta_1,l}m_*x_{\beta_l}} - y_{\nu_{\eta_2,l}m_*x_{\beta_l}} + s_{n+1}R \in x_{\beta_l}R + s_{n+1}R.$$

We have chosen $br(\eta_1, \eta_2) = n+1 > n_* > sup(C_\beta \cap C_{\beta'})$ for all $\beta \neq \beta' \in W \cup \{\alpha\}$. Hence n + 1 can not be the splitting point of pairs of branches from different levels α and β_l . Thus $\beta_l = \alpha$ and the last displayed expression becomes

$$y_{\nu_{\eta_1,l}m_*x_{\alpha}} - y_{\nu_{\eta_2,l}m_*x_{\alpha}} + s_{n+1}R \in x_{\alpha}R + s_{n+1}R.$$

Case 3 If $k = br(\nu_{\eta_1,l}, \nu_{\eta_2,l}) < n+1$ for some $l < l_*$ then $m_* < k$ by (4.5). From (3.1) and the choice of *n* we see that $y_{\nu_{\eta_1,l},nx_{\alpha}}$ appears in some monomial of $h(y_{\eta_1ox_{\alpha}} - y_{\eta_2ox_{\alpha}})$ with coefficient relatively prime to s_{n+1} . By an easy support argument (restricting to

 $\nu_{\eta_1,l} \upharpoonright_k$ and using (4.4), (4.5) and (4.6)) this monomial can not appear in $h(x_{\alpha})$. From Lemma 3.4 now follows

$$h(y_{\eta_1 o x_\alpha} - y_{\eta_2 o x_\alpha}) - \left(\prod_{l \le n} s_l\right) h(x_\alpha) \not\equiv 0 \mod s_{n+1} R$$

which contradicts (4.7).

Therefore, for all $n \in U$ we obtain

$$\left(\prod_{l\leq n}s_l\right)h(x_{\alpha})\in s_{n+1}R+x_{\alpha}R.$$

The elements $\prod_{l \le n} s_l$ and s_{n+1} are co-prime, thus

$$h(x_{\alpha}) \in \bigcap_{n \in U} s_{n+1}R + x_{\alpha}R$$

Using that U is infinite, we claim

$$\bigcap_{n\in U}s_nR+x_{\alpha}R=x_{\alpha}R,$$

which then implies $h(x_{\alpha}) \in x_{\alpha}R$ and finishes the proof of Proposition 4.5.

The special pure elements are of the form (3.2), thus $x_{\alpha} = \sum_{m \in M} m$ for some finite subset M of $M(T_{\Lambda})$. Choose $y \in \bigcap_{n \in U} s_n R + x_{\alpha} R$. Then there are $f_n, r_n \in R$ for $n \in U$ such that

$$(4.8) y - s_n f_n = x_\alpha r_n.$$

Put $R' = \langle [x_{\alpha}], y, f_n, r_n : n \in U \rangle_*$ and let *L* be the pure polynomial subring of *R* that contains *R'* and exists by Theorem 3.6. Hence equation (4.8) holds in *L*. We may assume that the finite support *M* of x_{α} is contained in a basis of *L* and hence the quotient $L/x_{\alpha}L$ is free and therefore *S*-reduced. This contradicts

$$(4.9) y \equiv s_n f_n \mod x_\alpha L$$

which follows from equation (4.8) for every $n \in U$ unless $y \in x_{\alpha}L$ and hence $y \in x_{\alpha}R$.

We are now ready to prove that *R* is an E(F)-algebra.

Main Theorem 4.6 Let F be a countable principal ideal domain with $1 \neq 0$ and infinitely many pair-wise coprime elements. If $\aleph_1 \leq \lambda \leq 2^{\aleph_0}$ is a regular cardinal, then the F-algebra R in Definition 3.2 is an \aleph_1 -free E(F)-algebra of cardinality λ .

Proof If *h* is a *F*-endomorphism of *R* viewed as *F*-module, then we must show that *h* is scalar multiplication by some element $b \in R$. From Proposition 4.5 for $h \upharpoonright G_{\alpha}$ there exists an element $b_{\alpha} \in R$ such that $h(x_{\alpha}) = x_{\alpha}b_{\alpha}$ for any $\alpha < \lambda$, where the x_{α} 's run through all special pure elements.

Now let U_{α} be a countable subset of V_{α} for every $\alpha < \lambda$ as in (4.1). Then

$$R^*_{\alpha} = F[y_{\eta n x_{\beta}}, z_{\tau} : \eta \in U_{\beta}, \tau \in T_{\beta}, \beta < \alpha, n \in \omega]$$

is a countable subalgebra of R_{α} . Since λ is regular uncountable there exists for every $\alpha < \lambda$ an ordinal $\gamma_{\alpha} < \lambda$ such that $h(R_{\alpha}^*) \subseteq R_{\gamma_{\alpha}}$. We put $C = \{\delta < \lambda : \forall (\alpha < \delta)(\gamma_{\alpha} < \delta)\}$ which is a cub in λ . Intersecting with the cub of all limit ordinals we may assume that C consists of limit ordinals only. If $\delta \in C$, then similar arguments as in the proof of Proposition 4.5 after equation (4.1), using the fact that R/R_{δ} is \aleph_1 -free show that $h(R_{\beta}) \subseteq R_{\delta}$ for every $\beta < \delta$ and taking unions $h(R_{\delta}) \subseteq R_{\delta}$.

Let us assume for the moment that there is some $\delta_* \in C$ such that for every special pure element $r \in B_{\Lambda}$ we have $b_r \in R_{\delta_*}$. Suppose r_1 and r_2 are two distinct pure elements with $b_{r_1} \neq b_{r_2}$. Then choose $\delta_* < \delta \in C$ such that $r_1, r_2 \in R_{\delta}$ and $\tau \in T_{\delta}$ with $\tau \notin ([r_1] \cup [r_2])$. Then

$$(4.10) \quad b_{\tau}\tau + b_{r_1}r_1 = h(\tau) + h(r_1) = h(\tau + r_1) = b_{\tau + r_1}(\tau + r_1) = b_{\tau + r_1}\tau + b_{\tau + r_1}r_1.$$

Now note that R_{δ} is an R_{δ_*} -module and that R/R_{δ} is torsion-free as an R_{δ_*} -module. Moreover, b_{τ} , b_{r_1} and $b_{\tau+r_1}$ are elements of R_{δ_*} , hence τ is not in the support of either of them. Thus restricting equation (4.10) to τ we obtain

$$b_{\tau}\tau = b_{\tau+r_1}\tau$$

and therefore $b_{\tau} = b_{\tau+r_1}$. Now equation (4.10) reduces to $b_{r_1}r_1 = b_{\tau+r_1}r_1$ and since R is a domain we conclude $b_{r_1} = b_{\tau+r_1}$. Hence $b_{r_1} = b_{\tau}$ and similarly $b_{r_2} = b_{\tau}$, therefore $b_{r_1} = b_{r_2}$ which contradicts our assumption. Thus $b_r = b$ does not depend on the special pure elements $r \in B_{\Lambda}$ and therefore h acts as multiplication by b on the special pure elements of B_{Λ} . Thus h is scalar multiplication by b on B_{Λ} and using density also on R.

It remains to prove that there is $\delta_* < \lambda$ such that for every $r \in B_{\Lambda}$ we have $b_r \in R_{\delta_*}$.

Assume towards contradiction that for every $\delta \in C$ there is some element $r_{\delta} \in B_{\Lambda}$ such that $b_{\delta} = b_{r_{\delta}} \notin R_{\delta}$. We may write r_{δ} and also $b_{r_{\delta}}$ as elements in some polynomial ring over R_{δ} , hence $r_{\delta} = \sigma_{r_{\delta}}(x_i^{\delta} : i < i_{r_{\delta}})$ and $b_{\delta} = \sigma_{b_{\delta}}(\tilde{x}_i^{\delta} : i < i_{b_{\delta}})$. Thus $\sigma_{r_{\delta}}$ and $\sigma_{b_{\delta}}$ are polynomials over R_{δ} and the x_i^{δ} 's and \tilde{x}_i^{δ} are independent elements over R_{δ} . For cardinality reasons we may assume that for all $\delta \in C$ we have $i_{r_{\delta}} = i_r$ and $i_{b_{\delta}} = i_b$ for some fixed $i_r, i_b \in \mathbb{N}$. Now choose $n < \omega$ and note that canonical identification $\varphi: \bigcup_{\alpha < \lambda} R_{\alpha}/s_n R_{\alpha} \to \bigcup_{\alpha < \lambda} (R_{\alpha}^* + s_n R)/s_n R$ is an epimorphism. Let $\bar{\sigma}_{r_{\delta}}$ and $\bar{\sigma}_{b_{\delta}}$ be the images of the polynomials $\sigma_{r_{\delta}}$ and $\sigma_{b_{\delta}}$ under φ . Since $|\bigcup_{\alpha < \delta} (R_{\alpha}^* + s_n R)/s_n R| < \lambda$ for every $\delta < \lambda$ and C consists of limit ordinals the mapping $\phi: C \to R/s_n R$, $\delta \mapsto (\bar{\sigma}_{r_{\delta}}, \bar{\sigma}_{b_{\delta}})$ is regressive on C. Thus application of Fodor's lemma shows that ϕ is constant on some stationary subset C' of C and without loss of generality we may assume that C = C'.

For $\delta \in C$ choose $\delta_1, \delta_2 \in C$ such that $\delta_1 < \delta_2$ and $x_i^{\delta}, \tilde{x}_j^{\delta} \in R_{\delta_1}$ for all $i < i_r$, $j < i_b$. Let R' be the smallest polynomial ring over R_{δ} generated by at least the elements $x_i^{\delta_1}, x_i^{\delta_2}$ and $\tilde{x}_i^{\delta_1}, \tilde{x}_i^{\delta_2}$ such that $a_1a_2 = a_3$ and $a_2, a_3 \in R'$ implies $a_1 \in R'$. We may choose $R' = R_{\delta}[H]$ as the polynomial ring where $H \subseteq R \setminus R_{\delta}$ contains the set $\{x_i^{\delta_1}, x_i^{\delta_2}, \tilde{x}_j^{\delta_1}, \tilde{x}_j^{\delta_2} : i < i_r, j < i_b\}$. We now consider

$$(4.11) b_{r_{\delta}+r_{\delta_2}}(r_{\delta}+r_{\delta_2}) = h(r_{\delta}+r_{\delta_2}) = h(r_{\delta}) + h(r_{\delta_2}) = b_{\delta}r_{\delta} + b_{\delta_2}r_{\delta_2}.$$

By choice of R' and $r_{\delta}, r_{\delta_2}, b_{\delta}, b_{\delta_2} \in R'$ follows $b_{r_{\delta}+r_{\delta_2}} \in R'$. If some x_i^{δ} appears in the support of $b_{r_{\delta}+r_{\delta_2}}$, then the product $x_i^{\delta}x_j^{\delta_2}$ appears on the left side (for some $j < i_b$) of (4.11) but not on the right side—a contradiction. Similarly, no $x_i^{\delta_2}$ can appear in the support of $b_{r_{\delta}+r_{\delta_2}}$. Thus $(b_{r_{\delta}+r_{\delta_2}} - b_{\delta})r_{\delta} = -(b_{r_{\delta}+r_{\delta_2}} - b_{\delta_2})r_{\delta_2}$ and therefore $b_{r_{\delta}+r_{\delta_2}} = b_{\delta} = b_{\delta_2}$. Hence $b_{\delta_2} \in R_{\delta_2}$. But this contradicts the choice of r_{δ_2} . The existence of δ^* such that all elements b_r related to special pure elements are in R_{δ^*} is established.

Corollary 4.7 There exists an almost-free E-ring of cardinality \aleph_1 .

Remark 4.8 We note that the Main Theorem could also be proved for cardinals $\aleph_1 \leq \lambda \leq 2^{\aleph_0}$ which are not regular. The proof for $cf(\lambda) = \omega$ would be much more technical and complicated.

References

- [1] R. Bowshell and P. Schultz, *Unital rings whose additive endomorphisms commute*. Math. Ann. **228** (1977), 197–214.
- [2] C. Casacuberta, J. Rodríguez and J. Tai, *Localizations of abelian Eilenberg-Mac-Lane spaces of finite type*. Prepublications, Universitat Autònoma de Barcelona 22(1997).
- [3] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras. Proc. London Math. Soc. (3) 50(1985), 447–479.
- [4] M. Dugas, Large E-modules exist. J. Algebra 142(1991), 405–413.
- [5] M. Dugas and R. Göbel, Torsion-free nilpotent groups and E-modules. Arch. Math. (4) 45(1990), 340–351.
- [6] M. Dugas, A. Mader and C. Vinsonhaler, Large E-rings exist. J. Algebra (1) 108(1987), 88–101.
- [7] P. Eklof and A. Mekler, Almost free modules, Set-theoretic methods. North-Holland, Amsterdam, 1990.
- [8] T. Faticoni, *Each countable reduced torsion-free commutative ring is a pure subring of an E-ring*. Comm. Algebra (12) 15(1987), 2545–2564.
- [9] S. Feigelstock, *Additive Groups Of Rings Vol. I.* Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983.
- [10] _____, Additive Groups Of Rings Vol. II. Pitman Research Notes in Math. Series 169(1988).
- [11] L. Fuchs, Infinite Abelian Groups-Volume I. Academic Press, New York, London, 1970.
- [12] _____, Infinite Abelian Groups—Volume II. Academic Press, New York, London, 1973.
- [13] _____, Abelian Groups. Hungarian Academy of Science, Budapest, 1958.
- [14] R. Göbel and S. Shelah, Indecomposable almost free modules—the local case. Canad. J. Math. 50(1998), 719–738.
- [15] _____, On the existence of rigid ℵ1-free abelian groups of cardinality ℵ1. In: Abelian Groups and Modules, Proceedings of the Padova Conference, 1994, 227–237.
- [16] R. Göbel and L. Strüngmann, Almost-free E(R)-algebras and E(A, R)-modules. Fund. Math. 169(2001), 175–192.
- [17] G. Niedzwecki and J. Reid, Abelian groups cyclic and projective as modules over their endomorphism rings. J. Algebra 159(1993), 139–149.

- [18] R. S. Pierce and C. Vinsonhaler, *Classifying E-rings*. Comm. Algebra **19**(1991), 615–653.
- [19] J. Reid, Abelian groups finitely generated over their endomorphism rings. Springer Lecture Notes in Math. 874, 1981, 41–52.
- [20] P. Schultz, *The endomorphism ring of the additive group of a ring*. J. Austral. Math. Soc. **15**(1973), 60–69.
- [21] S. Shelah, book for Oxford University Press, in preparation.

Fachbereich 6—Mathematik University of Essen 45117 Essen Germany e-mail: R.Goebel@uni-essen.de Institute of Mathematics Hebrew University Givat Ram Jerusalem 91904 Israel e-mail: shelah@math.huji.ac.il

Institute of Mathematics Hebrew University Givat Ram Jerusalem 91904 Israel e-mail: lutz@math.huji.ac.il