
1 Introduction

Bandit problems were introduced by William R. Thompson in an article published in 1933
in Biometrika. Thompson was interested in medical trials and the cruelty of running a trial
blindly, without adapting the treatment allocations on the fly as the drug appears more or

Figure 1.1 Mouse learning a T-maze.

less effective. The name comes from the 1950s,
when Frederick Mosteller and Robert Bush decided
to study animal learning and ran trials on mice and
then on humans. The mice faced the dilemma of
choosing to go left or right after starting in the
bottom of a T-shaped maze, not knowing each time
at which end they would find food. To study a
similar learning setting in humans, a ‘two-armed
bandit’ machine was commissioned where humans
could choose to pull either the left or the right arm
of the machine, each giving a random pay-off with
the distribution of pay-offs for each arm unknown
to the human player. The machine was called a ‘two-
armed bandit’ in homage to the one-armed bandit, an old-fashioned name for a lever-
operated slot machine (‘bandit’ because they steal your money).

There are many reasons to care about bandit problems. Decision-making with uncertainty
is a challenge we all face, and bandits provide a simple model of this dilemma. Bandit
problems also have practical applications. We already mentioned clinical trial design, which
researchers have used to motivate their work for 80 years. We can’t point to an example
where bandits have actually been used in clinical trials, but adaptive experimental design
is gaining popularity and is actively encouraged by the US Food and Drug Administration,
with the justification that not doing so can lead to the withholding of effective drugs until
long after a positive effect has been established.

While clinical trials are an important application for the future, there are applications
where bandit algorithms are already in use. Major tech companies use bandit algorithms
for configuring web interfaces, where applications include news recommendation, dynamic
pricing and ad placement. A bandit algorithm plays a role in Monte Carlo Tree Search, an
algorithm made famous by the recent success of AlphaGo.

Finally, the mathematical formulation of bandit problems leads to a rich structure with
connections to other branches of mathematics. In writing this book (and previous papers),
we have read books on convex analysis/optimisation, Brownian motion, probability theory,
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concentration analysis, statistics, differential geometry, information theory, Markov chains,
computational complexity and more. What fun!

A combination of all these factors has led to an enormous growth in research over the
last two decades. Google Scholar reports less than 1000, then 2700 and 7000 papers when
searching for the phrase ‘bandit algorithm’ for the periods of 2001–5, 2006–10, and 2011–
15, respectively, and the trend just seems to have strengthened since then, with 5600 papers
coming up for the period of 2016 to the middle of 2018. Even if these numbers are somewhat
overblown, they are indicative of a rapidly growing field. This could be a fashion, or maybe
there is something interesting happening here. We think that the latter is true.

A Classical Dilemma

Imagine you are playing a two-armed bandit machine and you already pulled each lever
five times, resulting in the following pay-offs (in dollars):

Figure 1.2 Two-armed
bandit

Round 1 2 3 4 5 6 7 8 9 10

left 0 10 0 0 10

right 10 0 0 0 0

The left arm appears to be doing slightly better. The average pay-
off for this arm is $4, while the average for the right arm is only $2.
Let’s say you have 10 more trials (pulls) altogether. What is your
strategy? Will you keep pulling the left arm, ignoring the right? Or
would you attribute the poor performance of the right arm to bad luck and try it a few more
times? How many more times? This illustrates one of the main interests in bandit problems.
They capture the fundamental dilemma a learner faces when choosing between uncertain
options. Should one explore an option that looks inferior or exploit by going with the option
that looks best currently? Finding the right balance between exploration and exploitation is
at the heart of all bandit problems.

1.1 The Language of Bandits

A bandit problem is a sequential game between a learner and an environment. The game
is played over n rounds, where n is a positive natural number called the horizon. In each
round t ∈ [n], the learner first chooses an action At from a given setA, and the environment
then reveals a reward Xt ∈ R.

In the literature, actions are often also called ‘arms’. We talk about k-armed bandits
when the number of actions is k, and about multi-armed bandits when the number of
arms is at least two and the actual number is immaterial to the discussion. If there are
multi-armed bandits, there are also one-armed bandits, which are really two-armed
bandits where the pay-off of one of the arms is a known fixed deterministic number.
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Of course the learner cannot peek into the future when choosing their actions, which
means that At should only depend on the history Ht−1 = (A1,X1, . . . ,At−1,Xt−1). A
policy is a mapping from histories to actions: A learner adopts a policy to interact with
an environment. An environment is a mapping from history sequences ending in actions to
rewards. Both the learner and the environment may randomise their decisions, but this detail
is not so important for now. The most common objective of the learner is to choose actions
that lead to the largest possible cumulative reward over all n rounds, which is

∑n
t=1 Xt.

The fundamental challenge in bandit problems is that the environment is unknown to
the learner. All the learner knows is that the true environment lies in some set E called
the environment class. Most of this book is about designing policies for different kinds
of environment classes, though in some cases the framework is extended to include side
observations as well as actions and rewards.

The next question is how to evaluate a learner. We discuss several performance measures
throughout the book, but most of our efforts are devoted to understanding the regret. There
are several ways to define this quantity. To avoid getting bogged down in details, we start
with a somewhat informal definition.

Definition 1.1. The regret of the learner relative to a policy π (not necessarily that fol-
lowed by the learner) is the difference between the total expected reward using policy π for
n rounds and the total expected reward collected by the learner over n rounds. The regret
relative to a set of policies Π is the maximum regret relative to any policy π ∈ Π in the set.

The set Π is often called the competitor class. Another way of saying all this is that the
regret measures the performance of the learner relative to the best policy in the competitor
class. We usually measure the regret relative to a set of policies Π that is large enough to
include the optimal policy for all environments in E . In this case, the regret measures the
loss suffered by the learner relative to the optimal policy.

Example 1.2. Suppose the action set is A = {1, 2, . . . , k}. An environment is called a
stochastic Bernoulli bandit if the reward Xt ∈ {0, 1} is binary valued and there exists
a vector μ ∈ [0, 1]k such that the probability that Xt = 1 given the learner chose action
At = a is μa. The class of stochastic Bernoulli bandits is the set of all such bandits, which
are characterised by their mean vectors. If you knew the mean vector associated with the
environment, then the optimal policy is to play the fixed action a∗ = argmaxa∈A μa. This
means that for this problem the natural competitor class is the set of k constant polices
Π = {π1, . . . ,πk}, where πi chooses action i in every round. The regret over n rounds
becomes

Rn = nmax
a∈A

μa − E

[
n∑

t=1

Xt

]
,

where the expectation is with respect to the randomness in the environment and policy. The
first term in this expression is the maximum expected reward using any policy. The second
term is the expected reward collected by the learner.

For a fixed policy and competitor class, the regret depends on the environment. The
environments where the regret is large are those where the learner is behaving worse. Of
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course the ideal case is that the regret be small for all environments. The worst-case regret
is the maximum regret over all possible environments.

One of the core questions in the study of bandits is to understand the growth rate of
the regret as n grows. A good learner achieves sublinear regret. Letting Rn denote the
regret over n rounds, this means that Rn = o(n) or equivalently that limn→∞ Rn/n = 0.
Of course one can ask for more. Under what circumstances is Rn = O(

√
n) or Rn =

O(log(n))? And what are the leading constants? How does the regret depend on the specific
environment in which the learner finds itself? We will discover eventually that for the
environment class in Example 1.2, the worst-case regret for any policy is at least Ω(

√
n)

and that there exist policies for which Rn = O(
√
n).

A large environment class corresponds to less knowledge by the learner. A large
competitor class means the regret is a more demanding criteria. Some care is
sometimes required to choose these sets appropriately so that (a) guarantees on the
regret are meaningful and (b) there exist policies that make the regret small.

The framework is general enough to model almost anything by using a rich enough
environment class. This cannot be bad, but with too much generality it becomes impossible
to say much. For this reason, we usually restrict our attention to certain kinds of environment
classes and competitor classes.

A simple problem setting is that of stochastic stationary bandits. In this case the envir-
onment is restricted to generate the reward in response to each action from a distribution that
is specific to that action and independent of the previous action choices and rewards. The
environment class in Example 1.2 satisfies these conditions, but there are many alternatives.
For example, the rewards could follow a Gaussian distribution rather than Bernoulli. This
relatively mild difference does not change the nature of the problem in a significant way. A
more drastic change is to assume the action setA is a subset of Rd and that the mean reward
for choosing some action a ∈ A follows a linear model, Xt = 〈a, θ〉+ ηt for θ ∈ Rd and
ηt a standard Gaussian (zero mean, unit variance). The unknown quantity in this case is θ,
and the environment class corresponds to its possible values (E = Rd).

For some applications, the assumption that the rewards are stochastic and stationary may
be too restrictive. The world mostly appears deterministic, even if it is hard to predict and
often chaotic looking. Of course, stochasticity has been enormously successful in explain-
ing patterns in data, and this may be sufficient reason to keep it as the modelling assumption.
But what if the stochastic assumptions fail to hold? What if they are violated for a single
round? Or just for one action, at some rounds? Will our best algorithms suddenly perform
poorly? Or will the algorithms developed be robust to smaller or larger deviations from the
modelling assumptions?

An extreme idea is to drop all assumptions on how the rewards are generated, except that
they are chosen without knowledge of the learner’s actions and lie in a bounded set. If these
are the only assumptions, we get what is called the setting of adversarial bandits. The trick
to say something meaningful in this setting is to restrict the competitor class. The learner
is not expected to find the best sequence of actions, which may be like finding a needle
in a haystack. Instead, we usually choose Π to be the set of constant policies and demand
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that the learner is not much worse than any of these. By defining the regret in this way, the
stationarity assumption is transported into the definition of regret rather than constraining
the environment.

Of course there are all shades of grey between these two extremes. Sometimes we con-
sider the case where the rewards are stochastic, but not stationary. Or one may analyse
the robustness of an algorithm for stochastic bandits to small adversarial perturbations.
Another idea is to isolate exactly which properties of the stochastic assumption are really
exploited by a policy designed for stochastic bandits. This kind of inverse analysis can help
explain the strong performance of policies when facing environments that clearly violate
the assumptions they were designed for.

1.1.1 Other Learning Objectives

We already mentioned that the regret can be defined in several ways, each capturing slightly
different aspects of the behaviour of a policy. Because the regret depends on the envir-
onment, it becomes a multi-objective criterion: ideally, we want to keep the regret small
across all possible environments. One way to convert a multi-objective criterion into a single
number is to take averages. This corresponds to the Bayesian viewpoint where the objective
is to minimise the average cumulative regret with respect to a prior on the environment class.

Maximising the sum of rewards is not always the objective. Sometimes the learner just
wants to find a near-optimal policy after n rounds, but the actual rewards accumulated over
those rounds are unimportant. We will see examples of this shortly.

1.1.2 Limitations of the Bandit Framework

One of the distinguishing features of all bandit problems studied in this book is that the
learner never needs to plan for the future. More precisely, we will invariably make the
assumption that the learner’s available choices and rewards tomorrow are not affected by
their decisions today. Problems that do require this kind of long-term planning fall into the
realm of reinforcement learning, which is the topic of the final chapter. Another limitation
of the bandit framework is the assumption that the learner observes the reward in every
round. The setting where the reward is not observed is called partial monitoring and is
the topic of Chapter 37. Finally, often, the environment itself consists of strategic agents,
which the learner needs to take into account. This problem is studied in game theory and
would need a book on its own.

1.2 Applications

After this short preview, and as an appetiser before the hard work, we briefly describe the
formalisations of a variety of applications.

A/B Testing
The designers of a company website are trying to decide whether the ‘buy it now’ button
should be placed at the top of the product page or at the bottom. In the old days, they would
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commit to a trial of each version by splitting incoming users into two groups of 10 000.
Each group would be shown a different version of the site, and a statistician would examine
the data at the end to decide which version was better. One problem with this approach is
the non-adaptivity of the test. For example, if the effect size is large, then the trial could be
stopped early.

One way to apply bandits to this problem is to view the two versions of the site as actions.
Each time t a user makes a request, a bandit algorithm is used to choose an action At ∈
A = {SiteA, SiteB}, and the reward is Xt = 1 if the user purchases the product and
Xt = 0 otherwise.

In traditional A/B testing, the objective of the statistician is to decide which website is
better. When using a bandit algorithm, there is no need to end the trial. The algorithm
automatically decides when one version of the site should be shown more often than
another. Even if the real objective is to identify the best site, then adaptivity or early
stopping can be added to the A/B process using techniques from bandit theory. While
this is not the focus of this book, some of the basic ideas are explained in Chapter 33.

Advert Placement
In advert placement, each round corresponds to a user visiting a website, and the set of
actions A is the set of all available adverts. One could treat this as a standard multi-armed
bandit problem, where in each round a policy chooses At ∈ A, and the reward is Xt = 1

if the user clicked on the advert and Xt = 0 otherwise. This might work for specialised
websites where the adverts are all likely to be appropriate. But for a company like Amazon,
the advertising should be targeted. A user that recently purchased rock-climbing shoes is
much more likely to buy a harness than another user. Clearly an algorithm should take this
into account.

The standard way to incorporate this additional knowledge is to use the information
about the user as context. In its simplest formulation, this might mean clustering users and
implementing a separate bandit algorithm for each cluster. Much of this book is devoted to
the question of how to use side information to improve the performance of a learner.

This is a good place to emphasise that the world is messy. The set of available adverts
is changing from round to round. The feedback from the user can be delayed for many
rounds. Finally, the real objective is rarely just to maximise clicks. Other metrics such as
user satisfaction, diversity, freshness and fairness, just to mention a few, are important too.
These are the kinds of issues that make implementing bandit algorithms in the real world
a challenge. This book will not address all these issues in detail. Instead we focus on the
foundations and hope this provides enough understanding that you can invent solutions for
whatever peculiar challenges arise in your problem.

Recommendation Services
Netflix has to decide which movies to place most prominently in your ‘Browse’ page. Like
in advert placement, users arrive at the page sequentially, and the reward can be measured as
some function of (a) whether or not you watched a movie and (b) whether or not you rated
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it positively. There are many challenges. First of all, Netflix shows a long list of movies,
so the set of possible actions is combinatorially large. Second, each user watches relatively
few movies, and individual users are different. This suggests approaches such as low-rank
matrix factorisation (a popular approach in ‘collaborative filtering’). But notice this is not
an offline problem. The learning algorithm gets to choose what users see and this affects
the data. If the users are never recommended the AlphaGo movie, then few users will watch
it, and the amount of data about this film will be scarce.

Network Routing
Another problem with an interesting structure is network routing, where the learner tries
to direct internet traffic through the shortest path on a network. In each round the learner
receives the start/end destinations for a packet of data. The set of actions is the set of all paths
starting and ending at the appropriate points on some known graph. The feedback in this
case is the time it takes for the packet to be received at its destination, and the reward is the
negation of this value. Again the action set is combinatorially large. Even relatively small
graphs have an enormous number of paths. The routing problem can obviously be applied
to more physical networks such as transportation systems used in operations research.

Dynamic Pricing
In dynamic pricing, a company is trying to automatically optimise the price of some product.
Users arrive sequentially, and the learner sets the price. The user will only purchase the
product if the price is lower than their valuation. What makes this problem interesting is (a)
the learner never actually observes the valuation of the product, only the binary signal that
the price was too low/too high, and (b) there is a monotonicity structure in the pricing. If a
user purchased an item priced at $10, then they would surely purchase it for $5, but whether
or not it would sell when priced at $11 is uncertain. Also, the set of possible actions is close
to continuous.

Waiting Problems
Every day you travel to work, either by bus or by walking. Once you get on the bus, the trip
only takes 5 minutes, but the timetable is unreliable, and the bus arrival time is unknown
and stochastic. Sometimes the bus doesn’t come at all. Walking, on the other hand, takes 30
minutes along a beautiful river away from the road. The problem is to devise a policy for
choosing how long to wait at the bus stop before giving up and walking to minimise the time
to get to your workplace. Walk too soon, and you miss the bus and gain little information.
But waiting too long also comes at a price.

While waiting for a bus is not a problem we all face, there are other applications of
this setting. For example, deciding the amount of inactivity required before putting a hard
drive into sleep mode or powering off a car engine at traffic lights. The statistical part of
the waiting problem concerns estimating the cumulative distribution function of the bus
arrival times from data. The twist is that the data is censored on the days you chose to
walk before the bus arrived, which is a problem analysed in the subfield of statistics called
survival analysis. The interplay between the statistical estimation problem and the challenge
of balancing exploration and exploitation is what makes this and the other problems studied
in this book interesting.
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Resource Allocation
A large part of operations research is focussed on designing strategies for allocating scarce
resources. When the dynamics of demand or supply are uncertain, the problem has ele-
ments reminiscent of a bandit problem. Allocating too few resources reveals only partial
information about the true demand, but allocating too many resources is wasteful. Of course,
resource allocation is broad, and many problems exhibit structure that is not typical of bandit
problems, like the need for long-term planning.

Tree Search
The UCT algorithm is a tree search algorithm commonly used in perfect-information game-
playing algorithms. The idea is to iteratively build a search tree where in each iteration the
algorithm takes three steps: (1) chooses a path from the root to a leaf; (2) expands the leaf (if
possible); (3) performs a Monte Carlo roll-out to the end of the game. The contribution of a
bandit algorithm is in selecting the path from the root to the leaves. At each node in the tree,
a bandit algorithm is used to select the child based on the series of rewards observed through
that node so far. The resulting algorithm can be analysed theoretically, but more importantly
has demonstrated outstanding empirical performance in game-playing problems.

1.3 Notes

1 The reader may find it odd that at one point we identified environments with maps from histories
to rewards, while we used the language that a learner ‘adopts a policy’ (a map from histories to
actions). The reason is part historical and part because policies and their design are at the center
of the book, while the environment strategies will mostly be kept fixed (and relatively simple). On
this note, strategy is also a word that sometimes used interchangeably with policy.

1.4 Bibliographic Remarks

As we mentioned in the very beginning, the first paper on bandits was by Thompson [1933]. The
experimentation on mice and humans that led to the name comes from the paper by Bush and Mosteller
[1953]. Much credit for the popularisation of the field must go to famous mathematician and statisti-
cian, Herbert Robbins, whose name appears on many of the works that we reference, with the earliest
being: [Robbins, 1952]. Another early pioneer is Herman Chernoff, who wrote papers with titles like
‘Sequential Decisions in the Control of a Spaceship’ [Bather and Chernoff, 1967].

Besides these seminal papers, there are already a number of books on bandits that may serve as
useful additional reading. The most recent (and also most related) is by Bubeck and Cesa-Bianchi
[2012] and is freely available online. This is an excellent book and is warmly recommended. The
main difference between their book and ours is that (a) we have the benefit of seven years of ad-
ditional research in a fast-moving field and (b) our longer page limit permits more depth. Another
relatively recent book is Prediction, Learning and Games by Cesa-Bianchi and Lugosi [2006]. This is
a wonderful book, and quite comprehensive. But its scope is ‘all of’ online learning, which is so broad
that bandits are not covered in great depth. We should mention there is also a recent book on bandits
by Slivkins [2019]. Conveniently it covers some topics not covered in this book (notably Lipschitz
bandits and bandits with knapsacks). The reverse is also true, which should not be surprising since our
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book is currently 400 pages longer. There are also four books on sequential design and multi-armed
bandits in the Bayesian setting, which we will address only a little. These are based on relatively old
material, but are still useful references for this line of work and are well worth reading [Chernoff,
1959, Berry and Fristedt, 1985, Presman and Sonin, 1990, Gittins et al., 2011].

Without trying to be exhaustive, here are a few articles applying bandit algorithms; a recent survey

is by Bouneffouf and Rish [2019]. The papers themselves will contain more useful pointers to the vast

literature. We mentioned AlphaGo already [Silver et al., 2016]. The tree search algorithm that drives

its search uses a bandit algorithm at each node [Kocsis and Szepesvári, 2006]. Le et al. [2014] apply

bandits to wireless monitoring, where the problem is challenging due to the large action space. Lei

et al. [2017] design specialised contextual bandit algorithms for just-in-time adaptive interventions

in mobile health: in the typical application the user is prompted with the intention of inducing a long-

term beneficial behavioural change. See also the article by Greenewald et al. [2017]. Rafferty et al.

[2018] apply Thompson sampling to educational software and note the trade-off between knowledge

and reward. Sadly, by 2015, bandit algorithms still have not been used in clinical trials, as explicitly

mentioned by Villar et al. [2015]. Microsoft offers a ‘Decision Service’ that uses bandit algorithms

to automate decision-making [Agarwal et al., 2016].
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